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Solution for Exercise 6

Exercise 1 (oral homework, in total 8 points via test)

(a) Read carefully and understand Menger’s Theorem (local (3.3.1) and global (3.3.6) ver-
sions) in Diestel’s book.

(b) Let G be a graph, and let A, B ⊆ V(G). If there is an A-B separator in G of size k, can
there be more than k disjoint A-B paths in G? Why?

Solution: No, because if there would be more than k disjoint A-B paths in G, then removing
any set of k vertices in G would leave at least one of these paths intact, and would therefore
not separate A from B.

(c) If X is an A-B separator in G, is any A-X separator in G also an A-B separator of G? Why?

Solution: Yes, since if X is an A-B separator in G, then each A-B path uses a vertex from X.
An A-X separator separates all A-X paths, hence all A-B paths, since each A-B path uses at
least one vertex from X.

(d) What is the graph obtained by contracting an arbitrary edge in K5?

Solution: K4

(e) Read carefully and understand all the notions and definitions given in Section 4.2 of
Diestel’s Book.

(f) Draw a planar drawing of K2,3.

Solution:

(g) What are the faces of a plane graph?

Solution: A face of a graph G is a maximal connected subset of R2\G.



(h) What is Euler’s Formula?

Solution: Let G be a connected plane graph with n vertices, m edges, and ℓ faces. Then
n − m + ℓ = 2.

Exercise 2 (written homework, 2 points)

Suppose that G1 and G2 are k-connected graphs with V(G1) ∩ V(G2) ≥ k. Prove that G =
G1 ∪ G2 is also k-connected.

Solution:

The statement obviously holds for k = 0. Assume therefore that k ≥ 1. We show that for
any set S ∈ V(G) with |S| < k, any pair of distinct vertices in G − S are connected by a path.
So let S be an arbitrary such subset, and pick two distinct vertices u and w in G − S. If both
u and w are in G1, or both are in G2, then we know that they are connected in G − S by the
assumption that G1 and G2 are k-connected. Otherwise, since |V(G1) ∩ V(G2)| ≥ k, there
will remain at least one vertex of V(G1) ∩ V(G2) in the graph G − S, pick one and call it v.
Since G1 − S and G2 − S are connected, there is a path P1 from u to v in G1, and a path P2
from v to w in G2. Hence, there is a walk uP1vP2w from u to w in G − S, which means that u
to w are connected in G − S.

Exercise 3 (written homework, 3 points)

Let G be a k-connected graph for some k > 1.

(a) Show that for any cycle C in G, and any vertex v ∈ V(G) \V(C), there are min{k, |V(C)|}
paths from v to V(C) such that none of these paths intersect except on v. [1P]

Solution: Let ℓ = min{k, |V(C)|}, and let A = N(v), B = V(C), and X be a set of ver-
tices separating A and B in G. Then |A| ≥ k ≥ ℓ, since G is k-connected, and |B| ≥ ℓ
by definition. Furthermore, G is ℓ-connected, since G is k-connected and ℓ ≤ k. Thus, by
the ℓ-connectedness of G, it follows that |X| ≥ ℓ. Applying Menger’s Theorem (Theorem
3.3.1) with the sets A and B above, we get that there are at least ℓ disjoint A-B paths in G.
Connecting v to each of these paths at their endpoints in A gives us the required paths.

(b) Use (a) to show that any set of k vertices X ⊆ V(G) is contained on some cycle of G.
(Hint: Start with a cycle that contains as many vertices of X as possible, and use (a) to arrive
at a contradiction if this cycle does not contain all of X). [2P]

Solution:

Consider a cycle C := v1, . . . vcv1 that contains as many vertices of X as possible (we know
one exists since G is k-connected and k > 1). Assume that there is a vertex w ∈ X\V(C).
By (a), there are min{k, |V(C)|} paths from w to V(C) that do not intersect except in v. If
|V(C)| ≤ k, we know that there are paths from w to v1 and from w to vc that only intersect in
w. But then v1Cvcwv1 is a cycle with more vertices from X than C, and we get a contradiction.
Otherwise, we consider the case where |V(C)| > k. We know that there can be at most k − 1
vertices from X in V(C), and that there are k paths from w to V(C) that do not intersect
except in w. Therefore, by the pigeonhole principle, two of those paths P1 and P2 end in two



different vertices in V(C), say in vi and in vj, such that there is no vertex from X between
them on C. Hence, the cycle wP1viCvjP2w has more vertices from X than C, and again we
get a contradiction.

Exercise 4 (written homework, 3 points)

Show that any graph can be drawn in R3 with no edge crossings (in the same sense that any
planar graph can be drawn in the plane with no edge crossings).

Solution:

Let G = ({v1 . . . vn}, {e1 . . . em}) be an arbitrary graph. Put each vertex vi ∈ V(G) on the
point (0, 0, i), and draw each edge ej ∈ E(G) on a different half plane αj := {(x, y, z) :
x ∈ R+, z ∈ R, and y = j · x} such that it intersects with the z-axis only at its endpoints.
Since each edge is drawn on a different plane and meets the z-axis only at its endpoints,
and moreover the half planes intersect only at the z-axis, any pair of distinct edges can only
intersect at their endpoints. Thus the above construction gives a drawing in R3 with no edge
crossings.


