

Universität des Saarlandes FR 6.2 Informatik

Prof. Dr. Benjamin Doerr, Dr. Danny Hermelin, Dr. Reto Spöhel

Summer 2011

Solution for Exercise 7

Exercise 1 oral homework, total 8 points via test

(a) —

(b) The following graph is a subdivision of $K_{3,3}$ that contains 10 vertices. Green vertices are the subdividing vertices.

(c) A graph *X* is a minor of a graph *G* if *G* contains an inflation of *X* as a subgraph.

(d) True. We proved in the lecture that every minor *X* of *G* is also a topological minor of *G* whenever $\Delta(X) \leq 3$ (Proposition 1.7.4 in Diestel). As $\Delta(K_{3,3}) = 3$, the claim follows.

(e) (Corollary 1.7.3 in Diestel) Let *X* and *G* be finite graphs. Then *X* is a minor of *G* iff there are graphs G_0, \ldots, G_n such that $G_0 = G$ and $G_n = X$ and each G_{i+1} arises from G_i by deleting an edge, contracting an edge, or deleting a vertex.

(f) In the proof of Lemma 4.4.3, we contract an edge xy in our given graph G, and let v_{xy} be the new vertex. For the proof to follow we need all neighbors of v_{xy} to lie on some cycle in G/xy. To get this, we use the fact that since G/xy is 3-connected, $G/xy - v_{xy}$ is 2-connected, and so by proposition 4.2.6 all neighbors of v_{xy} in G/xy lie on a cycle.

We need the assumption that *G* does not contain K_5 or $K_{3,3}$ as minors, and not as topological minors, because we want to contract an arbitrary edge xy in *G*. We use the fact that if G/xy has a minor *X*, then *G* will also have *X* as its minor. Since we are contracting an arbitrary edge, this holds only for minors and not necessarily for topological minors.

Exercise 2

(a) Consider a set of graphs \mathcal{G} which is closed under minors, and let \mathcal{F} denote the set of minor-minimal graphs which are not in \mathcal{G} . Then \mathcal{F} is antichain in the minor order, and so it is finite by Robertson and Seymour's Graph Minor Theorem. To complete the proof, we show that \mathcal{F} is a forbidden minor characterization of \mathcal{G} .

Let *G* be an arbitrary graph. If *G* contains a minor *F* for some $F \in \mathcal{F}$, then $G \notin \mathcal{G}$ since otherwise we would have $F \in \mathcal{G}$ by the fact that \mathcal{G} is closed under minors; a contradiction to the definition of \mathcal{F} . Conversely, if *G* does not contain any minor $F \in \mathcal{F}$, then it must be that $G \in \mathcal{G}$, since \mathcal{F} is the set of all minor-minimal graphs which do not belong to \mathcal{G} . It therefore follows that \mathcal{F} is a forbidden minor characterization of \mathcal{G} .

(b) Consider a set of graphs \mathcal{G} which is closed under minors, and let \mathcal{F} be a finite forbidden minor characterization of \mathcal{G} (which exists according to (a)). We need to show that \mathcal{G} also has a finite forbidden *topological* minor characterization. For this, as \mathcal{F} is finite, it is enough to show that for any $F \in \mathcal{F}$ there exists a finite set of graphs $\mathcal{H}(F)$ such that F is minor of G iff H is a topological minor of G for some $H \in \mathcal{H}(F)$.

So fix some arbitrary $F \in \mathcal{F}$. For each $x \in V(F)$, let \mathcal{T}_x denote the set of all trees with at most $d_H(x)$ leafs, and with no internal vertices of degree 2. Then each tree in \mathcal{T}_x has at less than $2 \cdot d_H(x)$ vertices, and so \mathcal{T}_x is finite. Now consider a graph H obtained by replacing each vertex $x \in V(F)$ with a tree $T_x \in \mathcal{T}_x$, and connecting two leafs of T_x and T_y whenever $xy \in E(F)$. By construction we have

H is a topological minor of $G \Rightarrow F$ is a minor of *G*.

Furthermore, any inflation of *F* contains as a topological minor a graph *H* that can be constructed as above. Thus, letting $\mathcal{H}(F)$ denote the set of all such graphs *H*, we have

F is a minor of *G* \iff *H* is a topological minor of *G* for some *H* \in $\mathcal{H}(F)$

as required. Since T_x is finite for each $x \in V(F)$, we get that $\mathcal{H}(F)$ is finite, and we are done.

Exercise 3

(a) Let *G* be an outerplanar graph, and let \tilde{G} denote a planar drawing of *G* with all vertices lying on the boundary of the outer face. Consider the graph *H* obtained from *G* by adding a new vertex *v* which is adjacent to all vertices of *G*. Since all vertices of *G* lie on the boundary of the outer face *f* in \tilde{G} , we can connect any point *p* in *f* to all vertices of \tilde{G} by Jordan curves which intersect each other only at *p*. In this way, we can extend \tilde{G} to a planar drawing of *H*, and so *H* is planar.

Conversely, let *G* be a graph such that the graph *H* obtained by adding a vertex *v* that is connected to every vertex in *G* is planar. Consider some planar drawing \tilde{H} of *H*. Since *v* is connected to all the vertices of *G*, all these vertices lie on some face in \tilde{H} . Now let \tilde{G} denote

the drawing obtained from \tilde{H} by removing v along with all of its incident edges. Then \tilde{G} is a planar drawing of G. By using an appropriate mapping of \tilde{G} to the sphere and then back again to the plane (*e.g.* using stereographic projections), we get another planar drawing of G in which all vertices lie on the outer face. Hence, G is outerplanar.

(b) Let *G* be an outerplanar graph. If we add a vertex *v* that is connected to every vertex in *G*, then G + v is a planar graph (by (a)). We need to show that *G* does not contain K_4 nor $K_{2,3}$ as topological minors. We will prove this by contradiction. Suppose *G* contains K_4 as a topological minor. Then *G* has a subgraph *X* which is a subdivision of K_4 , and X + v contains a subdivision of K_5 . Hence, by Kuratowski's theorem, G + v is not planar; a contradiction. A similar contradiction can be obtained also for $K_{2,3}$. Thus, *G* does not contain K_4 nor $K_{2,3}$ as topological minors.

Conversely, let *G* be a graph that does not contain K_4 nor $K_{2,3}$ as topological minors. Then the graph *H* obtained by adding a vertex to *G* which is adjacent to all V(G) does not contain K_5 as a topological minor, nor $K_{3,3}$ as a topological minor. Thus, *H* is planar by Kuratowski's theorem, and so *G* is outerplanar by (a).