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Solution for Exercise 7

Exercise 1 oral homework, total 8 points via test

(a) —

(b) The following graph is a subdivision of K3,3 that contains 10 vertices. Green vertices are
the subdividing vertices.

(c) A graph X is a minor of a graph G if G contains an inflation of X as a subgraph.

(d) True. We proved in the lecture that every minor X of G is also a topological minor of G
whenever ∆(X) ≤ 3 (Proposition 1.7.4 in Diestel). As ∆(K3,3) = 3, the claim follows.

(e) (Corollary 1.7.3 in Diestel) Let X and G be finite graphs. Then X is a minor of G iff there
are graphs G0,. . . ,Gn such that G0 = G and Gn = X and each Gi+1 arises from Gi by deleting
an edge, contracting an edge, or deleting a vertex.

(f) In the proof of Lemma 4.4.3, we contract an edge xy in our given graph G, and let vxy be
the new vertex. For the proof to follow we need all neighbors of vxy to lie on some cycle in
G/xy. To get this, we use the fact that since G/xy is 3-connected, G/xy− vxy is 2-connected,
and so by proposition 4.2.6 all neighbors of vxy in G/xy lie on a cycle.

We need the assumption that G does not contain K5 or K3,3 as minors, and not as topological
minors, because we want to contract an arbitrary edge xy in G. We use the fact that if G/xy
has a minor X, then G will also have X as its minor. Since we are contracting an arbitrary
edge, this holds only for minors and not necessarily for topological minors.



Exercise 2

(a) Consider a set of graphs G which is closed under minors, and let F denote the set of
minor-minimal graphs which are not in G. Then F is antichain in the minor order, and so
it is finite by Robertson and Seymour’s Graph Minor Theorem. To complete the proof, we
show that F is a forbidden minor characterization of G.

Let G be an arbitrary graph. If G contains a minor F for some F ∈ F , then G /∈ G since
otherwise we would have F ∈ G by the fact that G is closed under minors; a contradiction to
the definition of F . Conversely, if G does not contain any minor F ∈ F , then it must be that
G ∈ G, since F is the set of all minor-minimal graphs which do not belong to G. It therefore
follows that F is a forbidden minor characterization of G.

(b) Consider a set of graphs G which is closed under minors, and let F be a finite forbidden
minor characterization of G (which exists according to (a)). We need to show that G also has
a finite forbidden topological minor characterization. For this, as F is finite, it is enough to
show that for any F ∈ F there exists a finite set of graphs H(F) such that F is minor of G iff
H is a topological minor of G for some H ∈ H(F).

So fix some arbitrary F ∈ F . For each x ∈ V(F), let Tx denote the set of all trees with at
most dH(x) leafs, and with no internal vertices of degree 2. Then each tree in Tx has at less
than 2 · dH(x) vertices, and so Tx is finite. Now consider a graph H obtained by replacing
each vertex x ∈ V(F) with a tree Tx ∈ Tx, and connecting two leafs of Tx and Ty whenever
xy ∈ E(F). By construction we have

H is a topological minor of G ⇒ F is a minor of G.

Furthermore, any inflation of F contains as a topological minor a graph H that can be con-
structed as above. Thus, letting H(F) denote the set of all such graphs H, we have

F is a minor of G ⇐⇒ H is a topological minor of G for some H ∈ H(F)

as required. Since Tx is finite for each x ∈ V(F), we get that H(F) is finite, and we are done.

Exercise 3

(a) Let G be an outerplanar graph, and let G̃ denote a planar drawing of G with all vertices
lying on the boundary of the outer face. Consider the graph H obtained from G by adding a
new vertex v which is adjacent to all vertices of G. Since all vertices of G lie on the boundary
of the outer face f in G̃, we can connect any point p in f to all vertices of G̃ by Jordan curves
which intersect each other only at p. In this way, we can extend G̃ to a planar drawing of H,
and so H is planar.

Conversely, let G be a graph such that the graph H obtained by adding a vertex v that is
connected to every vertex in G is planar. Consider some planar drawing H̃ of H. Since v is
connected to all the vertices of G, all these vertices lie on some face in H̃. Now let G̃ denote



the drawing obtained from H̃ by removing v along with all of its incident edges. Then G̃ is
a planar drawing of G. By using an appropriate mapping of G̃ to the sphere and then back
again to the plane (e.g. using stereographic projections), we get another planar drawing of
G in which all vertices lie on the outer face. Hence, G is outerplanar.

(b) Let G be an outerplanar graph. If we add a vertex v that is connected to every vertex in
G, then G + v is a planar graph (by (a)). We need to show that G does not contain K4 nor
K2,3 as topological minors. We will prove this by contradiction. Suppose G contains K4 as a
topological minor. Then G has a subgraph X which is a subdivision of K4, and X + v contains
a subdivision of K5. Hence, by Kuratowski’s theorem, G + v is not planar; a contradiction.
A similar contradiction can be obtained also for K2,3. Thus, G does not contain K4 nor K2,3
as topological minors.

Conversely, let G be a graph that does not contain K4 nor K2,3 as topological minors. Then
the graph H obtained by adding a vertex to G which is adjacent to all V(G) does not contain
K5 as a topological minor, nor K3,3 as a topological minor. Thus, H is planar by Kuratowski’s
theorem, and so G is outerplanar by (a).


