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Solution for Exercise 8

General assumption:
Unless stated otherwise, we always color any graph G with numbers {1, . . . , χ(G)}.

Exercise 1

(a) Read carefully and understand all material in Section 4.4 of the Diestel book.

(b) Why is every maximal planar graph with at least four vertices 3-connected?

Solution: By Kuratowski’s Theorem (Theorem 4.4.6) we know that a graph is planar iff it
contains neither K3,3 nor K5 as a topological minor. Knowing this, it suffices to show that
every maximal graph with at least four vertices that does not contain neither K3,3 nor K5 as
a topological minor is 3-connected. This is precisely Lemma 4.4.5.

(c) Read carefully and understand the material in Section 5.0 and 5.2 (up to 5.2.2.) of the
Diestel book.

(d) Explain why Corollary 5.2.3 in the Diestel book follows.

Solution: We know that

χ(G) 6 col(G) = max{δ(H) : H ⊆ G}+ 1.

Let H be a subgraph that achieves the maximum in the formula above. Hence, H is a sub-
graph of G with minimum degree

col(G)− 1 > χ(G)− 1.

(e) Give an example of a graph whose chromatic number equals its chromatic index.

Solution 1: For any even cycle C2k, χ = χ′ = 2.
Solution 2: For any odd cycle C2k+1, χ = χ′ = 3.

(f) Give an example of a graph whose chromatic number is strictly higher than its chromatic
index.

Solution: For an isolated edge, χ = 2 > χ′ = 1.

(g) Give an example of a graph whose coloring number equals its chromatic number.



Solution: For any odd cycle C2k+1, χ = col = 3.

(h) Give an example of a graph whose coloring number is strictly higher than its chromatic
number.

Solution 1: For any even cycle C2k, col = 3 > χ = 2.
Solution 2: For K2,2,2, col = 5 > χ = 3.

(i) Determine the chromatic index of the complete graph on 4 vertices.

Solution: Clearly, χ′ > 3 as the graph is 3-regular. It’s easy to see that each of the three pairs
of non-incident edges can use one color, so χ′ = 3.

(j) Determine the chromatic index of the complete graph on 5 vertices.

Solution: It is easy to check that no color can be used more than twice, so χ′ > |E|/2 = 5. It
is indeed easy to find a proper edge coloring with 5 colors, and so χ′ = 5.

Exercise 2 (written homework, 2 points) Let G1 and G2 be two graphs with |V(G1) ∩ V(G2)| <
k, and let X be a k-connected graph. Prove that if G := G1 ∪ G2 contains a subdivision H
of X, then all branch vertices of H must belong to either V(G1) or V(G2). (Note that this
is a generalization of the observation we used throughout the proof of Lemma 4.4.4 in the
lecture.)

Solution:

Proof. For the sake of contradiction, let a ∈ V(G1) \V(G2) and b ∈ V(G2) \V(G1) be branch
vertices of H in G. Since X is k-connected, the vertices of X corresponding to a and b are
connected by k independent paths in X (by Menger’s Theorem). These give rise to k inde-
pendent a−b paths in H. Each of those paths uses at least one vertex from V(G1) ∩ V(G2).
However, as |V(G1)∩V(G2)| < k, there are no k independent such paths. This is the desired
contradiction, and proves the claim.

Exercise 3 (written homework, 2 points) Show that the chromatic number of a graph G is ex-
actly the maximum of the chromatic numbers of the blocks of G.

Solution:

Proof. Clearly, χ(G) colors are sufficient to properly color all blocks of G, all we need to
show is how to properly color G having a proper coloring of its blocks. W.l.o.g. let G be
connected. We order the blocks of the graph as follows: we take an arbitrary block as B0,
and as Bi (i > 0) we take any block that has a vertex in

⋃
k<i Bk. Since G is connected, such a

block always exists; and since block graphs are forests, Bi has exactly one vertex in common
with

⋃
k<i Bk. Let us prepare for every block Bi a proper coloring with colors {1, . . . , χ(Bi)};

we will refer to this as its intended coloring. We color the graph in the order established
above. We color B0 with its intended coloring. For any subsequent block Bi, the color of
exactly one vertex is already set by our coloring of one of the previous blocks. We compare
this color with the color of the same vertex in the intended coloring for Bi. If the colors
match, we apply the intended coloring; if they are different we apply the intended coloring
with those two colors swapped. After the swapping, we still have a proper coloring of Bi,
and in fact a proper coloring of

⋃
k≤i Bk. As swapping does not increase the total number



of colors used, the claim follows by induction. (Note that the final coloring may use a color
higher than χ(Bi) in some block Bi, as our procedure may swap in a color that was not used
in the intended coloring of Bi.)

Exercise 4 (written homework, 4 points)

a) Show that every finite graph G has a vertex-ordering for which greedy coloring uses
exactly χ(G) colors. [1P.]

Solution:
Proof. Let us enumerate the vertices in the graph according to their increasing color
number in some fixed proper coloring c that uses exactly χ(G) colors. It is easy to check
by induction that greedy coloring will use for every vertex v color c(v) or lower.

b) Explain why what you showed in (a) does not imply that χ(G) = col(G) for every
graph G, and give an example of a graph G with χ(G) < col(G). [1P.]

Solution:
The coloring number gives a pessimistic estimator on the behavior of the greedy algo-
rithm. Namely, if a vertex has a degree d − 1, we might need d colors in order to be
able to color it. Greedy may actually use a lower color if some neighbors of the vertex
have the same color, so it may achieve results better than the coloring number. Kk,k is
k-regular, so it has coloring number k + 1, but it is bipartite so it has chromatic number
2.

c) Show that for every integer k there is a graph G with χ(G) = 2 and a vertex-ordering
for which greedy coloring uses k colors. [2P.]

Solution:
Proof. Let us consider the graph G := {{v1, . . . , vk, w1, . . . , wk}, {viwj : i 6= j}} with its
vertices enumerated as v1, w1, v2, w2, . . . , vk, wk. It is easy to see that greedy coloring
will use color i exactly for the vertices vi and wi, i = 1, . . . , k. Thus it uses k colors in
total. However, 2 colors would be sufficient, as G is bipartite.


