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Solution for Exercise 9

Note: Unless explicitly stated otherwise, whenever we speak of a colouring, we mean a
proper colouring as defined in the lecture.

Exercise 2

(a) We know from Corollary 2.1.3 that d-regular bipartite graphs G have a 1-factor M ⊆
E(G). Clearly G\M is still bipartite and (d − 1)-regular. Therefore we can inductively par-
tition the edge set of G into a series of d disjoint 1-factors M1, . . . , Md. We can now assign
the colour i to every e ∈ Mi, for all 1 ≤ i ≤ d. This is a valid colouring of the edges, as by
the definition of a 1-factor no two edges from the same Mi are incident to a common node.
Hence χ

′(G) ≤ d.

Since G contains a node that is incident to d edges, there can be no edge colouring that uses
less colours, therefore χ

′(G) = d.

(b) We show that it is possible to augment any bipartite G = (A∪̇B, E) with ∆ := ∆(G)
to a ∆-regular bipartite graph. If w.l.o.g. |A| < |B|, we add |B| − |A| new nodes to A

to obtain G(0) = (A′∪̇B, E). Let H = K∆,∆ − {x, y} be a complete bipartite graph with
parts of size ∆ from which one (arbitrary) edge is removed. As long as there is a pair of

vertices u ∈ A′, v ∈ B in G(i) with deg(u), deg(v) < ∆, we construct G(i+1) by adding a
disjoint copy of H and connecting the endpoints x and y of the missing edge in H to u and v,
respectively. This increases deg(u) and deg(v) by one, leaves the degrees of all other vertices

in G(i) unchanged, and adds 2∆ new vertices of degree ∆. Furthermore G(i+1) is bipartite by
construction.

As |A′| = |B| we will run out of vertices u ∈ A′ and v ∈ B with degree less than ∆ at the
same time (after exactly ∆|B| − E(G) steps, to be precise). Therefore, the final graph in this
sequence is ∆-regular. Let Ĝ denote this last graph. By (a) the chromatic index of Ĝ is ∆

and, as G is a subgraph of Ĝ, we have χ
′(G) ≤ χ

′(Ĝ) = ∆. On the other hand, ∆ colours are
clearly necessary to colour G, as there is at least one vertex of degree ∆ in G. Thus χ

′(G) = ∆.

Exercise 3

We claim that

χ
′(Kℓ) =

{

ℓ ℓ odd

ℓ− 1 ℓ even.



First consider the odd case. Let the vertices be numbered from 0 to ℓ− 1. We construct the
colour classes as a series of maximal matchings in G. We construct ℓ matchings by selecting
the edges Mi = {{i + k, i − k}|k = 1, . . . , (ℓ− 1)/2}, for i = 0, . . . , ℓ− 1 where addition is
done modulo ℓ. Every node i is contained in ℓ− 1 matchings (all except Mi), so we cover
all edges. By assigning one colour to each matching, we obtain an ℓ-colouring for G. This is
clearly optimal, as no colour class can contain more than (ℓ− 1)/2 edges.

With some imagination this scheme is equivalent to colouring the edges by their slope in a
particular drawing of the graph.

The edges are coloured by their slope.

In the even case we fix an arbitrary vertex v and remove it from the graph. The remaining
graph has an odd number of vertices and can hence be coloured with ℓ− 1 colours as de-
scribed above. In this colouring every colour is missing from exactly one vertex. Let the
colour ci be missing from ui. Then we construct a colouring for the whole graph with the
same number of colours by assigning ci to the edge {v, ui}.

Again with some imagination this can be seen as putting the additional vertex in the middle
of the circle, colouring the remaining graph by slope and then colouring every edge to the
central vertex with the colour of the matching to which it is orthogonal.

Edges to the central vertex get the colour of the matching to which they are orthogonal.

Exercise 4

(a) —

(b) All four colours must appear in the neighbourhood of the vertex v. We may have
|N(v)| = 4 and every colour occurs exactly once, or we may have |N(v)| = 5, and there
is one colour that appears twice.



(c) Consider as in the original proof a cyclic (say clockwise) enumeration v1, . . . , v5 (or v1, . . . , v4

if |N(v)| = 4) of the neighbours of v in a planar drawing of G, where c(vi) = i, i = 1, . . . , 4.
In the original argument we showed that either v1 and v3 are in different components of H1,3

(the subgraph of G induced by the vertices coloured 1 or 3), or v2 and v4 are in different com-
ponents of H2,4 (the subgraph of G induced by the vertices coloured 2 or 4). Then we could
either recolour v1 by swapping the colours 1 and 3 in the corresponding component of H1,3,
or we could recolour v2 by swapping the colours 2 and 4 in the corresponding component
of H2,4. This freed up either colour 1 or colour 2, which we could then assign to v.

This still works for the case with four colours if |N(v)| = 4, and it even works if |N(v)| = 5
provided the two neighbours of v with the same colour are next to each other: Assume
w.l.o.g. that both v4 and v5 have colour 4. Then any v1–v3 path separates v2 from both v4

and v5, and therefore the swapping indicated above never involves v5 and frees up either
colour 1 or colour 2 as before.

This however does not work in the remaining case where the two neighbours of v with the
same colour are not next to each other: Assume w.l.o.g. that both v2 and v5 have colour 2.
Then as before any v1–v3 path separates v2 from v4 (and v5), but recolouring v2 does not free
up colour 2 (because it is still used for v5), and recolouring v4 instead (note that the original
argument is symmetric with respect to the roles of v2 and v4) might also fail because v4 and
v5 might be in the same component of H2,4. Then swapping the colours in this component
recolours v4 with colour 2 as desired, but at the same time also recolours v5 with colour 4 —
spoiling the entire argument.

Exercise 5

(a) Consider the case where there are exactly six people p1, . . . , p6 at the party. Assign each
person pi to vertex vi in a K6 and colour the edge {vi, vj} red if pi knows pj, blue otherwise.
We want to show that there is a monochromatic triangle in the graph as this corresponds to
three persons that know (resp. don’t know) each other.

The vertex v1 has five incident edges, at least three of which must have the same colour, say
red. Let vi, vj, vk be the other endpoints of the red edges. If any of the edges {vi, vj}, {vi, vk},
{vj, vk} is red, we obtain a red triangle with v1. Otherwise vi, vj, vk form a blue triangle.

(b) We show by induction over k + ℓ that there is an integer P(k, ℓ) such that at any party
with P(k, ℓ) people, at least k know each other, or ℓ do not know each other. We frame this
as a colouring problem on a complete graph with P(k, ℓ) vertices, as in (a). We want to show
that there exists a red k-clique or a blue ℓ-clique in this graph. By (a), we can set P(k, ℓ) = 6
for k + ℓ ≤ 3.

For the induction step, assume that P(k − 1, ℓ) and P(k, ℓ− 1) exist. We will prove the claim
for P̂ := P(k, ℓ) := P(k − 1, ℓ) + P(k, ℓ− 1). Consider an arbitrary coloring of the complete
graph on P̂ vertices. Fix a vertex v, and let R and B be the sets of vertices that are connected
to v via a red, respectively blue, edge. Clearly, P̂ = |R|+ |B|+ 1.

By the definition of R, B, and P̂ = P(k, ℓ), either |B| ≥ P(k, ℓ− 1) or |R| ≥ P(k − 1, ℓ) (as
otherwise |R|+ |B| ≤ P̂ − 2, a contradiction). W.l.o.g. let |B| ≥ P(k, ℓ− 1). If the subgraph
induced by the vertices of B contains a red clique of size k we are done, otherwise by the



induction hypothesis this graph must contain a blue clique of size ℓ − 1, which together
with v forms a blue clique of size ℓ.

Remark: The minimal number we can choose as P(k, ℓ) is called the (asymmetric) Ramsey
number of k and ℓ and is commonly written R(k, ℓ). It is not hard to see that the above
inductive argument gives an upper bound of 2k+ℓ (using P(k, ℓ) = 8 = 23 for k + ℓ ≤ 3 as
the induction base). For the symmetric case k = ℓ this gives R(k, k) ≤ 4k; this is best known
up to subexponential terms. The best known lower bound for R(k, k) is 2k/2, again up to
subexponential terms.


