

Universität des Saarlandes FR 6.2 Informatik

Prof. Dr. Benjamin Doerr, Dr. Danny Hermelin, Dr. Reto Spöhel

Summer 2011

Solution for Exercise 11

Exercise 2 (2 points)

Let *G* be a perfect graph, and let *H* be an arbitrary induced subgraph of *G*. Since *H* is an induced subgraph of a perfect graph, we have $\omega(H) = \chi(H)$. Consider an arbitrary coloring of *H* with $\chi(H)$ colors. The maximum number of vertices that can be colored with the same color is $\alpha(H)$. Hence, the maximum number of vertices that can be colored with $\chi(H)$ colors is $\alpha(H) \cdot \chi(H)$. Thus $|V(H)| \le \alpha(H) \cdot \chi(H) = \alpha(H) \cdot \omega(H)$.

Exercise 3 (4 points)

- (*a*) Let *G* be a chordal graph. If *G* is complete then the statement is trivial, so assume *G* is not complete, and in particular, that |V(G)| > 1. Let $a, b \in V(G)$ be two non-adjacent vertices in *G*, and let $X \subseteq V(G) \setminus \{a, b\}$ be a minimal *a*-*b* separator. Also, let $s, t \in X$. By minimality of *X*, there are *s*-*t*-paths both in *G*₁ and in *G*₂. Let *P*₁ be a shortest *s*-*t*-path in *G*₁, and let *P*₂ be a shortest *s*-*t*-path in *G*₂. Then *sP*₁*tP*₂*s* is a cycle of length at least 4 in *G*, and as *G* is chordal, there must be some edge in *G* connecting two non-incident vertices on this cycle. This edge cannot be between an internal vertex of *P*₁ and an internal vertex of *P*₂, because *X* is a separator, and it cannot be between two internal vertices of *P*₁, nor between two internal vertices of *P*₂, due to the minimality of *P*₁ and *P*₂. Thus, *s* and *t* must be adjacent, and so *X* induces a complete subgraph in *G*.
- (*b*) Let *G* be a chordal graph. We prove the statement by induction in |V(G)|. If |V(G)| = 1, the statement is trivial, so assume |V(G)| > 1, and that the statement is true for all graphs with fewer vertices than *G*. Suppose *G* is not complete. Let $a, b \in V(G)$ be two non-adjacent vertices in *G*, and let $X \subseteq V(G) \setminus \{a, b\}$ be a minimal *a*-*b* separator. Then *X* induces a complete subgraph in *G* according to (*a*). Let *A* denote the connected component of G X containing *a*, and let *B* be the connected component of G X containing *b*. By induction, $A \cup G[X]$ is either complete or it has two non-adjacent simplicial vertices. In both cases, this implies that there is a vertex s_A in *A* which is simplicial $A \cup G[X]$, since there are no two nonadjacent vertices in *X*. Furthermore, as s_A has no neighbors in *G* outside of $A \cup G[X]$, s_A is simplicial also in *G*. Thus, by a similar argument we can obtain a vertex $s_B \in V(B)$ which together with s_A forms a pair of non-adjacent simplicial vertices of *G*.

- (c) Let *G* be a chordal graph. The proof is by induction on V(G). From (*b*), it follows that *G* has a simplicial vertex *x*. By induction, since G v is chordal and has fewer vertices than *G*, it has a simplicial ordering (v_1, \ldots, v_n) . Then (v_1, \ldots, v_n, x) is a simplicial ordering for *G*.
- (*d*) To prove the claim we show that any graph *G* admitting a simplicial ordering has $\chi(G) \leq \omega(G)$. This suffices, since every chordal graph admits a simplicial ordering according to (*c*), and since a graph admits a simplicial ordering iff all of its induced subgraphs admit a simplicial ordering. Assume then that *G* admits a simplicial ordering (v_1, \ldots, v_n) , and let N_i denote the set of neighbors of v_i in $G[\{v_1, \ldots, v_i\}]$, for each $i \in \{1, \ldots, n\}$. As any maximal complete subgraph of *G* is induced by $v_i \cup N_i$ for some $i \in \{1, \ldots, n\}$, we get that $|N_i| < w(G)$ for all $i \in \{1, \ldots, n\}$. Thus $col(G) \leq w(G)$, and as $\chi(G) \leq col(G)$ (Proposition 5.2.2 in the Diestel), we have $\chi(G) \leq w(G)$.

Exercise 4 (2 points)

Let *S* be a maximal set of disjoint *A*-*B*-paths, and let $X := \bigcup_{P \in S} V(P)$. By maximality of *S*, the vertex set *X* is an *A*-*B*-separator in *G*, and so *X* is infinite by the assumption in the exercise. But then, as V(P) is finite for every $P \in S$, it must be the case that *S* is infinite.