Advanced Graph Algorithms 19.04.2012.

Eulerian graphs

1. Definition. A graph is Eulerian if it has an Eulerian circuit.

Application: Chinese postman problem: postman has to visit every street (edges), how to optimize the route?

Euler circuits

1. Theorem. A graph G is Eulerian \Leftrightarrow the degree of every vertex in G is even.

1. Proof. (\Rightarrow) : Let C circuit, pick a vertex v in V(C) $deg(v) = 2^* \#(visits) \Rightarrow even$

 (\Leftarrow) : By induction on m:

• m = 3 ok. (fully connected garph with 3 vertices)

G with m+1 edges: let's assume it has no cycle, so it's a forest, but every tree has a leaf (vertex of degree 1, which is odd), but in G every vertex must be even
⇒ G contains a cycle
let C a cycle in G
G₁ ∪ G₂ ∪ ··· ∪ G_N = G \ E(C) where G_i are the components
G_i still have only even vertices (from each component 2 edges were removed)
⇒ G_i Eulerian (#(vertices) ≤ m)
⇒ C₁ ∪ C₂ ∪ ··· ∪ C_N ∪ C Euler circuit in G

Euler trails

2. Theorem. G contains Euler trail \Leftrightarrow G has 0 or 2 odd-degree vertices.

2. Proof. (\Rightarrow) : let s start, t end of the trail, if s=t then we have 0 odd vertices, else 2

 (\Leftarrow) : 0: easy 2: s and t are odd. connect s and t with an additional edge e. we got a graph with only even vertices.

previous theorem \Rightarrow it has an Euler circuit.

remove e. Euler circuit minus one edge is Euler trail. so G has an Euler trail.

To check if the graph has an Euler circuit: O(n+m)How to find this circuit?

2. Definition. A bridge in a graph is an edge whose deletion increases the number of components.

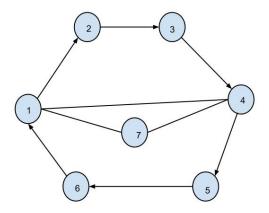
1. Observation. In G e is bridge \Leftrightarrow G doesn't contain a cycle through e.

1. Corollary. An Eulerian graph does not contain any bridge.

Algorithm (first try, which fails because it does not deal with bridges)

- 1. start with an arbitrary vertex $v, C = \{v\}$
- 2. choose iteratively incident edge e to v, s.t. e is not in C
- 3. add e to C
- 4. repeat with setting v to the end point of e

Counterexample, where this algorithm fails:



Algorithm (Fleury 1883)

- 1. start with arb. vertex v (for Euler trail v is odd degree vertex if exists), $C = \{v\}$
- 2. as long as $G \setminus E(C)$ contains incident edges to v:
 - 1. choose incident edge e = vw that is no bridge in $G \setminus E(C)$ unless there is no alternative
 - 2. add e to C, set v := w

3. Definition. Let X subset of V. The (vertex-) induced subgraph G[X] is the subgraph of G with vertex set X and with every edge in G having both end points in X.

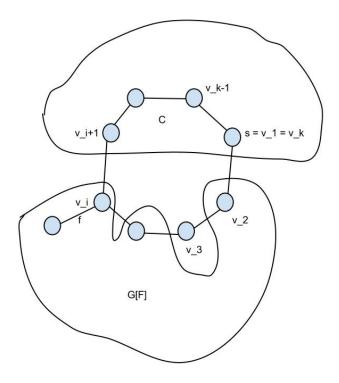
4. Definition. Let X subset of E. The edge-induced subgraph is the subgraph of G with edge set X and every vertex in G which is an end point of some x in X.

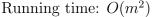
3. Proof. (Correctness of Fleury's algorithm):

- C is a walk
- C is a trail: we are not visiting any edge twice (we don't take from C)
- C ends at start vertex (closed trail): can't stop before, because that would mean that there is an odd vertex, so there is another edge going out (2.1.)
- C is Eulerian: Assume C is not Eulerian:

Consider $F = E(G) \setminus E(C)$ and G[F] F is not empty s (starting vertex) is not in G[F] (alg. ends when no more incident edges are found so every edge incident to s is in E(C)) let v_i be the last visited vertex on C that is in G[F] $v_i v_{i+1}$ is a chosen edge by algorithm but since it is in G[F] there must be another edge which we didn't visit, call it f $v_{i+1} \dots v_k$ are not incident to any edge in G[F]so $v_i v_{i+1}$ must be a bridge when chosen by the algorithm $\Rightarrow f$ is also bridge (alg choses bridge only if no other alternative) in $G \setminus$ $(v_1 v_2, v_2 v_3, v_{i-1} v_i)$

but G[F] is Eulerian (all edges have even minus even degrees) \Rightarrow contradiction (f is a bridge, and Eulerian must not contain a bridge)





with dynamically checking bridges (with complicated data structures): $O(m \log^3 m)$ There is an even better algorithm: O(m):

Algorithm (Hierholzer 1873)

- 1. choose starting vertex s, follow an arbitrary trail back to s
- 2. add to C_1 those edges which were visited
- 3. let C denote the to-be-constructed Euler circuit. first, set $C := C_1$
- 4. as long as there is some incident edge to some vertex v_i in C_i (until the last constructed circuit):
 - 1. ignore the edges of C_i and continue with the remaining graph G_i
 - 2. start another closed trail C_{i+1} from v_i using the edges of G_i
 - 3. glue together C_{i+1} with C in the following way:
 - 1. start with the edges of C until v_i is reached
 - 2. insert the edges of C_{i+1} after the node v_i
 - 3. continue with the remaining edges of C
 - 4. set C to this new circuit

C will be an Eulerian circuit.