
Advanced Graph Algorithms 19.04.2012.

Eulerian graphs

1. Definition. A graph is Eulerian if it has an Eulerian circuit.

Application: Chinese postman problem: postman has to visit every street (edges),
how to optimize the route?

Euler circuits

1. Theorem. A graph G is Eulerian ⇔ the degree of every vertex in G is even.

1. Proof. (⇒) : Let C circuit, pick a vertex v in V(C)
deg(v) = 2* #(visits) ⇒ even

(⇐) : By induction on m:

• m = 3 ok. (fully connected garph with 3 vertices)

• G with m+1 edges: let’s assume it has no cycle, so it’s a forest, but every tree
has a leaf (vertex of degree 1, which is odd), but in G every vertex must be
even
⇒ G contains a cycle
let C a cycle in G
G1 ∪G2 ∪ · · · ∪GN = G \ E(C) where Gi are the components
Gi still have only even vertices (from each component 2 edges were removed)
⇒ Gi Eulerian (#(vertices) ≤ m)
⇒ C1 ∪ C2 ∪ · · · ∪ CN ∪ C Euler circuit in G

Euler trails

2. Theorem. G contains Euler trail ⇔ G has 0 or 2 odd-degree vertices.

2. Proof. (⇒) : let s start, t end of the trail, if s=t then we have 0 odd vertices,
else 2

(⇐) : 0 : easy
2 : s and t are odd. connect s and t with an additional edge e. we got a graph with
only even vertices.
previous theorem ⇒ it has an Euler circuit.
remove e. Euler circuit minus one edge is Euler trail. so G has an Euler trail.

To check if the graph has an Euler circuit: O(n + m)
How to find this circuit?

2. Definition. A bridge in a graph is an edge whose deletion increases the number
of components.

1. Observation. In G e is bridge ⇔ G doesn’t contain a cycle through e.

1. Corollary. An Eulerian graph does not contain any bridge.

1



Algorithm (first try, which fails because it does not

deal with bridges)

1. start with an arbitrary vertex v, C = {v}

2. choose iteratively incident edge e to v, s.t. e is not in C

3. add e to C

4. repeat with setting v to the end point of e

Counterexample, where this algorithm fails:

Algorithm (Fleury 1883)

1. start with arb. vertex v (for Euler trail v is odd degree vertex if exists),
C = {v}

2. as long as G \ E(C) contains incident edges to v :

1. choose incident edge e = vw that is no bridge in G \ E(C) unless there is
no alternative

2. add e to C, set v := w

3. Definition. Let X subset of V . The (vertex-) induced subgraph G[X] is the
subgraph of G with vertex set X and with every edge in G having both end points in
X.

4. Definition. Let X subset of E. The edge-induced subgraph is the subgraph of G
with edge set X and every vertex in G which is an end point of some x in X.

3. Proof. (Correctness of Fleury’s algorithm):

2



• C is a walk

• C is a trail: we are not visiting any edge twice (we don’t take from C)

• C ends at start vertex (closed trail): can’t stop before, because that would mean
that there is an odd vertex, so there is another edge going out (2.1.)

• C is Eulerian:
Assume C is not Eulerian:

Consider F = E(G) \ E(C) and G[F ]
F is not empty
s (starting vertex) is not in G[F ] (alg. ends when no more incident edges are
found so every edge incident to s is in E(C) )
let vi be the last visited vertex on C that is in G[F ]
vivi+1 is a chosen edge by algorithm but since it is in G[F ] there must be an-
other edge which we didn’t visit, call it f
vi+1 . . . vk are not incident to any edge in G[F ]
so vivi+1 must be a bridge when chosen by the algorithm
⇒ f is also bridge (alg choses bridge only if no other alternative) in G \
(v1v2, v2v3, vi−1vi)
but G[F ] is Eulerian (all edges have even minus even degrees)⇒ contradiction
(f is a bridge, and Eulerian must not contain a bridge)

Running time: O(m2)
with dynamically checking bridges (with complicated data structures): O(m log3m)
There is an even better algorithm: O(m):

3



Algorithm (Hierholzer 1873)

1. choose starting vertex s, follow an arbitrary trail back to s

2. add to C1 those edges which were visited

3. let C denote the to-be-constructed Euler circuit. first, set C := C1

4. as long as there is some incident edge to some vertex vi in Ci (until the last
constructed circuit):

1. ignore the edges of Ci and continue with the remaining graph Gi

2. start another closed trail Ci+1 from vi using the edges of Gi

3. glue together Ci+1 with C in the following way:

1. start with the edges of C until vi is reached

2. insert the edges of Ci+1 after the node vi

3. continue with the remaining edges of C

4. set C to this new circuit

C will be an Eulerian circuit.

4


