Advanced Graph Algorithms 19.04.2012.

Eulerian graphs

1. Definition. A graph is Eulerian if it has an Fulerian circuit.

Application: Chinese postman problem: postman has to visit every street (edges),
how to optimize the route?

Euler circuits

1. Theorem. A graph G is Fulerian < the degree of every vertex in G is even.

1. Proof. (=) : Let C circuit, pick a vertex v in V(C)
deg(v) = 2% #(visits) = even

(<) : By induction on m:
e m = 3 ok. (fully connected garph with 3 vertices)

o G with m+1 edges: let’s assume it has no cycle, so it’s a forest, but every tree
has a leaf (vertex of degree 1, which is odd), but in G every vertex must be
even
= G contains a cycle
let C'a cycle in G
GiUGyU---UGN = G\ E(C) where G; are the components
G, still have only even vertices (from each component 2 edges were removed)
= G, Fulerian (#(vertices) < m)
= CiUCyU---UCNyUC Euler circuit in G

Euler trails

2. Theorem. G contains Euler trail < G has 0 or 2 odd-degree vertices.

2. Proof. (=) : let s start, t end of the trail, if s=t then we have 0 odd vertices,
else 2

(<) : 0: easy

2 : s and t are odd. connect s and t with an additional edge e. we got a graph with
only even vertices.

previous theorem = it has an Euler circuit.

remove e. Buler circuit minus one edge is Fuler trail. so G has an Fuler trail.

To check if the graph has an Euler circuit: O(n + m)
How to find this circuit?

2. Definition. A bridge in a graph is an edge whose deletion increases the number
of components.

1. Observation. In G e is bridge < G doesn’t contain a cycle through e.

1. Corollary. An FEulerian graph does not contain any bridge.



Algorithm (first try, which fails because it does not
deal with bridges)

1. start with an arbitrary vertex v, C' = {v}
2. choose iteratively incident edge e to v, s.t. e is not in C'
3. add e to C

4. repeat with setting v to the end point of e

Counterexample, where this algorithm fails:

Algorithm (Fleury 1883)

1. start with arb. vertex v (for Euler trail v is odd degree vertex if exists),

C = {v}
2. as long as G\ E(C) contains incident edges to v :

1. choose incident edge e = vw that is no bridge in G \ E(C) unless there is
no alternative

2. add e to C, set v :=w

3. Definition. Let X subset of V.. The (vertex-) induced subgraph G[X] is the
subgraph of G with vertex set X and with every edge in G having both end points in
X.

4. Definition. Let X subset of E. The edge-induced subgraph is the subgraph of G
with edge set X and every vertex in G which is an end point of some x in X.

3. Proof. (Correctness of Fleury’s algorithm):
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C is a walk

C' is a trail: we are not visiting any edge twice (we don’t take from C')

C' ends at start vertez (closed trail): can’t stop before, because that would mean
that there is an odd vertex, so there is another edge going out (2.1.)

C is Eulerian:
Assume C is not Eulerian:

Consider F' = E(G) \ E(C) and G[F]

F'is not empty

s (starting vertex) is not in G[F] (alg. ends when no more incident edges are
found so every edge incident to s is in E(C) )

let v; be the last visited vertex on C' that is in G[F

Vi1 is a chosen edge by algorithm but since it is in G[F] there must be an-
other edge which we didn’t visit, call it f

Vit1 ... U are not incident to any edge in G[F]

50 v;v;11 must be a bridge when chosen by the algorithm

= f is also bridge (alg choses bridge only if no other alternative) in G\
(U1U2, VaV3, Ui—lvi)

but G|F| is Eulerian (all edges have even minus even degrees) = contradiction
(f is a bridge, and Eulerian must not contain a bridge)

Running time: O(m?)
with dynamically checking bridges (with complicated data structures): O(mlog®m)
There is an even better algorithm: O(m):



Algorithm (Hierholzer 1873)

1. choose starting vertex s, follow an arbitrary trail back to s
2. add to C those edges which were visited
3. let C denote the to-be-constructed Euler circuit. first, set C' := C}

4. as long as there is some incident edge to some vertex v; in C; (until the last
constructed circuit):
1. ignore the edges of C; and continue with the remaining graph G;
2. start another closed trail C;,; from v; using the edges of G;
3. glue together C;; with C in the following way:

1. start with the edges of C' until v; is reached
2. insert the edges of C;;; after the node v;

3. continue with the remaining edges of C'

4. set C to this new circuit

C will be an Eulerian circuit.



