(Geometric) dual

Prop.

G be a planar emb.

The dual graph G* of G consists of
- a vertex f* for each face
- an edge e* = fᵢ* fᵢ* ∈ E(G*) for all fᵢ*, fᵢ* sharing one edge.

![Diagram of a dual graph](image)

- 1 bijection edge ↔ dual edge
- Dual graph is plane.
- if G is connected ⇒ G* G

Interdigitating Trees

Thm. Let T be a spanning tree of planar graph G.

The dual N* of non-tree edges N form a spanning tree in G* (spanning tree of faces)

Proof:

No cycle in N

Assume there is cycle C

⇒ C divides plane into 2 parts

But T crosses C in at least one tree edge

Connected

T spans = |E(T)| = n - 1

⇒ |N| - |N*| = m - n + 1

want show |N*| more than ↑ by one.

by Euler ⇒ n - m + |N*| = 2 ⇒ |N*| = m - n + 2

![Diagram of a spanning tree](image)
Half-edge data structure ("chains", "bidirected" edge)

- in LEDA, OGDF

- Need often $O(1)$ queries for reporting
 - faces to left/right of an edge
 - end points of an edge
 - 1st edge incident to given vertex
 - clockwise/counter-clockwise successor edge in circular order (given v, e)
 - position of edge in incidence lists

\[
\text{face}(e_i)
\]

\[
\text{reverse}(e_i)
\]

- source
- target
- every face has representative edge.

Want:

Given 2 vertices, $v, w \in V(G)$ report whether they are adjacent.

Constant Adjacency Queries

k-orientation = orientation s.t. node has $\leq k$ outgoing edges.

Static case: By Euler's formula $\Rightarrow \exists$ vertex of degree ≥ 5

- delete v, orient its edges out
- and keep doing (deletion preserve planarity)

\[
\Rightarrow \text{planar graph has acyclic } 5\text{-orientation}
\]

(If cyclic then 3-orientation)

So check outgoing edges of v, w in $\mathcal{O}(1)$
Decremental Adjacency Queries

can delete & contract
easy! in O(1) → assume resulting graph is simple.

Want 14-orientation; if contraction exceeds 14 outgoing edges on \(w \)
put \(w \) in list \(L \)

While \(L \neq \emptyset \)
remove \(w \) from \(L \)
For each cut edge \(w \rightarrow v \)
add \(v \rightarrow w \) to outgoing \([v] \)

\[\text{reverse direction of } w \text{'s out edges.} \]
if outgoing \([v] \geq 14 \) → add \(v \) to \(L \)

set outgoing \([w] = \emptyset \)

Lemma: For any orientation \(O \) of planar graph \(G \), and \(v \in V \)
exists path from \(v \) to a vertex with outdegree \(\leq 3 \) in \(O \) of length \(\log n \)-1

Proof:
\(L_i \) = all nodes from \(v \), reachable by path of length \(i \)

Assume: \(L[\log n]-1 \) contain no outdegree \(\leq 3 \) node.

Will prove \(|L_{i+1}| \geq 2 |L_i| \)
\[\Rightarrow |L_{i+1}| \geq 2 \log n \geq n^{1 \over 2} \]

Each vertex in \(L_i \) has outdegree \(\geq 4 \) \(\Rightarrow \) sum of outdegree \(\geq 4 |L_i| \)
but \(G[L_i] \) is plane \(\Rightarrow \) has \(\leq 3 |L_i| - 6 \) edges in \(L_i \)
\[\Rightarrow \text{so } 3 \text{ edges leaving } L_i \text{ at least } |L_i| + 6 \]
\[\Rightarrow |L_{i+1}| \geq 2 |L_i| \quad \blacksquare \]