NP-Hard problems: Vertex Cover \(G=(V,E) \) - \(k \)

Assume (under Exp. Time Hypothesis) to need \(C^n \) time, \(c>1 \) known.

2) If \(k \) is small \(1.28^k \) known.

Def: A problem \(P \) is parameterised if \(P \subseteq \{ (x,k) \mid k=\log n \} \implies 2^{O(k)} \) for any \(f(k) \).

Equivalent \(P \) in time \(n^{O(k)} \) for any fixed \(k \).

Vertex Cover (VC)

Given \((G,k) \)

1. Pick edge \(uv \in E(G) \)
2. Try \((G-u,v,k-1)\)
 - If pos. answer \(|X|=k-L \)
 - Try \((G-v,u,k-2)\) same way
3. Else reject

\[\text{height} = k \]
\[\text{size} \leq 2^k \]
\[(G,x,0) \text{ Accept or Reject} \]

Feedback Vertex

Find \(k \)-vertices that hit every cycle \(c \) of \(G \).

Interactive Compression.

Will show \(O^*(5^k) \) time alg.
Let $G = (V, E)$, $V = \{v_1, \ldots, v_n\}$

Let bars denote vertices from 1 to n to indicate graph by taking first i vertices
$G_i = G_{\{v_1, \ldots, v_i\}}$

Observe: FVS for G_i is FVS for G_i for all $i = n$
Feedback vertex set

Assume we know FVS X_c for G_i, $|X_c| = k$

Then $X_c + v_{i+1}$ is FVS for G_{i+1}

Idea: Compress $X_c + v_{i+1}$ to optimal solution $|X_{i+1}| \leq k$ in $F(k)$ time

Gives FPT alg:

Input: G, X, k
X is FVS, $|X| \leq k + 1$

1) for every $v \in X$ replace set
 1.1) if $G[\bar{v}]$ is not a forest (contains cycle) choose other v

12) call subroutine

Input II (G, v_1, v_2, k')
$G[\bar{v_1}], G[\bar{v_2}]$ forests

For FVS for G contained in v_1:
1) delete leaves $d_G(v) = 1 = d_{\bar{v}}(v)$
2) $d_G(v) = 2$, $v \in v_1$, bypass v
 except if $N(v) \leq v_2$

$N(v) = \{w, w'\}$
Add edge uw, remove v, bypass v
Keep parallel edges
3) Pick \(v \in V_1 \) with \(\geq 2 \) ms \(u, w \in V_2 \)

3.1 If \(V_2 + V \) has cycle, delete \(v \)

3.2 Branch (b) move \(v \) from \(V \) to \(V \)

Then \(Alg 2 \) runs in time \(O^*(4^k) \)

(assuming \(G \in V_1, G \in V_1 \) are forests, \(|V_2| \leq k + 1 \) and is correct)

Proof: Let \(v \) be a leaf in \(G \in V_1 \). If \(|N(v) \cap V_2| < 2 \) then \(d_0(v) = 2 \) and

steps 1 or 2 apply. Thus \(v \) exits for step 3.

In \(\# \) sol. 5, either \(V \in S \) or \(V \notin S \) this branch will find sol. 5.

Running time:

- Other branch (not sol)
 - More letter from \(V \) to \(V \)
 - \(\leq \# \) of conn. comp. \(V_2 \)
 - \(\leq k + 1 \) (\(V_2 \) is subset of prev. sol.)

\(\# \) of conn. comp. in \(G[V_2] \) = 2

\(\Rightarrow \) gives branching tree, height \(\leq p \leq k + (k+1) \leftrightarrow \) size \(O^*(4^k) \leftrightarrow O^*(4^k) \)

\(2^p \leq 2^{2(k+1)} \leq 2^{2k} \)
Total work
\[\sum_{S=x} y_{k-15} \]

\[\sum_{i=1}^{\frac{k}{2}} (y_{k-i})^2 = \sum_{i=0}^{\frac{k}{2}} i \cdot (y_{k-i})^2 \]

\[\sum_{i=0}^{\frac{k}{2}} \sum_{j=0}^{i} (y_{k-i})^2 = \frac{1}{4} \sum_{j=0}^{k/2} (y_{k-j})^2 + \frac{1}{4} \sum_{j=0}^{k/2} (y_{k-j})^2 = \frac{1}{4} \sum_{j=0}^{k} (y_{k-j})^2 = 0 \text{ (for } k) \]

(S: deleted part of \(x_y + v_{y+1} \))

Call \(H_y \) with \(k' = k - 15 \)

\[y_{k-1} - y_{k-1} \cdot (k_{15}) - y_{k-1} \cdot (k_{16}) \]