
Maximum Cardinality Matching

Ran Duan (Postdoc at MPI)

In this lecture

• Concepts of matchings

• Hopcroft-Karp’s algorithm for maximum
cardinality matching in bipartite graphs

• Edmonds’s algorithm for maximum cardinality
matching in general graphs

Basic Concepts and Notations

• In graph G=(V,E), a matching M:

▫ A set of vertex-disjoint edges

▫ Matched vertices: the vertices associated with an
edge in M

▫ Free vertices: unmatched vertices

Basic Concepts and Notations

• Matching M:

▫ A set of vertex-disjoint edges

▫ Matched vertices: the vertices associated with an
edge in M

▫ Free vertices: unmatched vertices

• Perfect Matching M:

▫ No free vertices

Basic Concepts and Notations

• Matching M:
▫ A set of vertex-disjoint edges
▫ Matched vertices: the vertices associated with an edge

in M
▫ Free vertices: unmatched vertices

• Perfect Matching M:
▫ No free vertices

• Maximum Cardinality Matching (MCM)
▫ Maximize |M|

• Maximum Weighted Matching (MWM)
▫ Maximize



w(e)
eM



Applications of matching problems

• Assignment
▫ Minimizing costs in job assigments

• Image Feature Matching

▫ Match image features (lines, points) between two
images

• Building blocks of other algorithms

▫ 1.5-Approximate travelling salesman problem
 Christofides algorithm
 Find a minimum spanning tree and a minimum weight

perfect matching

Augmenting paths

• Alternating paths:

▫ The edges alternate between M and E\M

• Augmenting paths

▫ The alternating paths whose both ends are free
vertices

▫ One more non-matching edges than matching
edges

Alternating Cycles

• A cycle in which edges alternate between M and
E\M

• Given two matchings M1 and M2, then the
subgraph (V, M1⊕M2) is composed of

▫ isolating vertices

▫ alternating paths

▫ alternating cycles

▫ all alternate between M1 and M2

▫ “A⊕B” represents (A\B)∪(B\A)

• Given two matching M1 and M2, then the
subgraph (V, M1⊕M2) is composed of

▫ isolating vertices

▫ alternating paths

▫ alternating cycles

▫ all alternate between M1 and M2

▫ “A⊕B” represents (A\B)∪(B\A)

• Because every vertex only associated with at
most one edge in each Mi

Augmenting Paths

• Augmenting paths

▫ The alternating paths whose both ends are free
vertices

• If P is an augmenting path w.r.t. M, then M⊕P is
also a matching M’, and |M’|=|M|+1

An Example

M P M’=M⊕P

Basic Algorithm for Maximum Cardinality Matching

• Start from the empty matching

• Repeat

▫ Find an augmenting paths

▫ Augment along that path (non-matching edges  matching
edges)

• Until there is no augmenting paths

Basic Algorithm for Maximum Cardinality Matching

• Start from the empty matching

• Repeat

▫ Find an augmenting paths

▫ Augment along that path (non-matching edges  matching
edges)

• Until there is no augmenting paths

• At most n iterations

Correctness:

No augmenting path=>Maximum Matching

• Let M be the current matching and M* be the maximum matching,

• In M⊕M*, every vertex is incident with at most one edge in M and
one edge in M*

• M⊕M* consists of:

▫ single line: M*-edge

▫ double line: M-edge

Correctness:

No augmenting path=>Maximum Matching

• If |M*|>|M|, there must a
path of the first type

• It is an augmenting path
w.r.t. M

Bipartite Graphs

Reduce Bipartite Matching to Flow

Reduce Bipartite Matching to Flow

The residual graph

Augmenting path

Alternating trees

• Start from a free vertex on the left side, mark it as
“EVEN”

• Search all the unmatched edges associated with it, mark
the vertices on the other sides by “ODD”

Alternating trees

• Start from a free vertex on the left side, mark it as
“EVEN”

• Search all the unmatched edges associated with it, mark
the vertices on the other sides by “ODD”

Note that EVEN vertices are in L, and ODD vertices are in R.

Alternating Trees

• If we find an ODD vertex that is free, then we have found
an augmenting path

• If an ODD vertex v is marked and matched, mark its
matched vertex w by “EVEN”, then start from w.

Continue

• If v is already marked
“ODD”, do nothing

• When there is no augmenting path from a free vertex,
which means all the vertices on the alternating tree of
that free vertex are not on an augmenting paths, so we
can erase the entire tree and start from other free
vertices.

• When there is no augmenting path from a free vertex,
which means all the vertices on the alternating tree of
that free vertex are not on an augmenting paths, so we
can erase the entire tree and start from other free
vertices.

• Every edge is scanned only once.

• The time for finding an augmenting path is O(m).

• When there is no augmenting path from a free vertex,
which means all the vertices on the alternating tree of
that free vertex are not on an augmenting paths, so we
can erase the entire tree and start from other free
vertices.

• Every edge is scanned only once.

• The time for finding an augmenting path is O(m).

• Total running time: O(mn)

The Hopcroft-Karp Algorithm for Bipartite Graphs

• Find a maximal set of shortest augmenting paths in one
search

• The length of augmenting paths will increase after
augmentation.

• After n1/2 iterations, the length of augmenting paths will
be at lease n1/2, so there are at most n1/2 free vertices left.

• Total time: O(mn1/2)

Level Graph

• Start from all the free vertices in L

• Find the length l of shortest augmenting paths

Level Graph

• In the level graph L, every vertex and edge is on a
shortest augmenting path from s to t.

▫ The edges are only between EVEN vertices and ODD
vertices in adjacent levels.

• There is no edge like this:

• Find all the shortest augmenting paths by a Depth-First
Search in this level graph.

▫ When we find an augmenting path, delete all the
vertices and edges in it.

• Find all the shortest augmenting paths by a Depth-First
Search in this level graph.

▫ When we find an augmenting path, delete all the
vertices and edges in it.

• Find all the shortest augmenting paths by a Depth-First
Search in this level graph.

▫ When we find an augmenting path, delete all the
vertices and edges in it.

▫ Delete the backtracking edges

• Find all the shortest augmenting paths by a Depth-First
Search in this level graph.

▫ When we find an augmenting path, delete all the
vertices and edges in it.

▫ Delete the backtracking edges

• Find all the shortest augmenting paths by a Depth-First
Search in this level graph.

▫ When we find an augmenting path, delete all the
vertices and edges in it.

▫ Delete the backtracking edges

• We can find a maximal set Ω of augmenting paths.

• So every edge is visited only once, and the time needed
for this is O(m)

Proof

• Lemma: After augmentation of these paths, there is no
augmenting paths of length at most l any more.

• We assign directions to edges and get G’:

▫ Unmatching edges: from L to R

▫ Matching edges from R to L

• A path between free vertices of L and R in G’ 

 An augmenting path in G

• There is no edges from level i to level i+2 or higher.

• After augmentation, the edges in the augmenting paths
reverse directions

• So if there is still an augmenting path, it cannot overlap
other augmenting paths, contradicting that we have
found a maximal set of augmenting paths.

Example

• Ω:

Example

• Then any path overlapping Ω will have longer
length

The Hopcroft-Karp Algorithm for Bipartite Graphs

• Find a maximal set of shortest augmenting paths in one
search

• The length of augmenting paths will increase after
augmentation.

• After n1/2 iterations, the length of augmenting paths will
be at lease n1/2, so there are at most n1/2 free vertices left.

The Hopcroft-Karp Algorithm for Bipartite Graphs

• Find a maximal set of shortest augmenting paths in one
search

• The length of augmenting paths will increase after
augmentation.

• After n1/2 iterations, the length of augmenting paths will
be at lease n1/2, so there are at most n1/2 free vertices left.

• After k iterations, the length of augmenting paths will be
at lease k

• If we compare the current matching M and the
maximum matching M*, we can get |M*|-|M| disjoint
augmenting paths

• So |M*|-|M|≤|M*|/k≤n/k

k

k

k

• After k iterations, the length of augmenting paths will be
at lease k

• If we compare the current matching M and the
maximum matching M*, we can get |M*|-|M| disjoint
augmenting paths

• So |M*|-|M|≤|M*|/k≤n/k

• When k=n1/2, |M*|-|M|≤n1/2, so we only need to find n1/2
augmenting paths. So the running time is O(mn1/2).

Approximate Matching

• After k iterations, the length of augmenting paths will be
at lease k

• If we compare the current matching M and the
maximum matching M*, we can get |M*|-|M| disjoint
augmenting paths

• So |M*|-|M|≤|M*|/k,

• and |M|≥|M*|-|M*|/k=(1-1/k)|M*|

• so we can get a (1-1/k)-approximate matching in O(km)
time.

Non-bipartite Matching

• New concept: Blossom

Non-bipartite Matching

• New concept: Blossom

• Why?

Non-bipartite Matching

• New concept: Blossom

• Why?

Non-bipartite Matching

• New concept: Blossom

• Why?

Non-bipartite Matching

• New concept: Blossom

• So all the vertices in this odd-
length cycle are both EVEN and
ODD, we call this kind of cycles
“blossoms”

Blossom

• A blossom B is a cycle in G consisting of 2k + 1 edges of
which exactly k belong to M.

• The only vertex whose matching edge is not in B is called
the base.

Property of blossom
• Edges associated with any vertex in the blossom can be

in an augmenting path

Property of blossom
• Edges associated with any vertex in the blossom can be

in an augmenting path

Shrinking Blossoms

• Thus in the search blossoms can be shrunk to
one vertex, we call it the contracted graph

Shrinking Blossoms

• Thus in the search blossoms can be shrunk to
one vertex, we call it contracted graph

• Then we find augmenting paths in the
contracted graph.

• Finally we can unshrink the graph and get the
real augmenting paths.

Example

• A blossom can contain other smaller blossoms

Edmonds’ algorithm

• When searching an edge (v,w) where v is marked
“EVEN”

▫ If w is free, we have found an augmenting path

▫ If w is unmarked and matched, mark it “ODD” and
mark its matched vertex w’ “EVEN”

▫ If w is already labeled “ODD”, do nothing

▫ If w is already labeled “EVEN”, we have found a
blossom. Shrink the blossom to a single vertex and get
a new graph G’. Find augmenting paths in G’.

Detecting blossoms
▫ If w is already labeled “EVEN”, we have found a

blossom. Shrink the blossom to a single vertex and get
a new graph G’. Find augmenting paths in G’.

Retrieving Augmenting Path

• Retrieve the real augmenting path in G from the path in
the contracted graph G’:

Retrieving Augmenting Path

• Retrieve the real augmenting path in G from the path in
the contracted graph G’:

Retrieving Augmenting Path

• Retrieve the real augmenting path in G from the path in
the contracted graph G’:

Running time

• In O(m) time we either find an augmenting path or a
blossom.

• We may contract at most n blossoms before finding an
augmenting path, so the time for an augmenting path is
O(mn)

Analysis of Running Time

• Start from the empty matching

• Repeat

▫ Find an augmenting paths

▫ Augment along that path (non-matching edges  matching
edges)

• Until there is no augmenting paths

• At most n iterations

• Every iteration takes O(mn) time

• Total time: O(mn2)

Fast Implementation

• Using union-find structure to maintain blossoms.

• Shrinking a blossom: find the least common ancestor of
two EVEN vertices.

Micali and Vazirani algorithm

• The maximum cardinality matching in general
graphs can be also found in O(mn1/2) time.

▫ By S. Micali and V.V.Vazirani (1980)

▫ Similar idea as Hopcroft-Karp’s algorithm for

bipartite graphs

▫ But much more complicated

Best algorithms for maximum matching

Bipartite Graphs General Graphs

Cardinality Matching O(mn1/2)
[Hopcroft & Karp 1973]

O(mn1/2)
[Micali & Vazirani 1980]

Weighted Matching O(mn1/2log(nN))
[Gabow & Tarjan 1988]

[Gabow & Tarjan 1988]



O(m n log(nN) (m,n)logn)

Very Complicated

Best algorithms for maximum matching

Bipartite Graphs General Graphs

Cardinality Matching O(mn1/2)
[Hopcroft & Karp 1973]

O(mn1/2)
[Micali & Vazirani 1980]

Weighted Matching O(mn1/2log(nN))
[Gabow & Tarjan 1988]

[Gabow & Tarjan 1988]

O(Nnω)
[Sankowski 2006]

O(mn1/2logN)
[Duan & Su 2012]



O(m n log(nN) (m,n)logn)

Next Class

• Weighted matching for bipartite and general
graphs

