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In this lecture 

• Concepts of matchings 

• Hopcroft-Karp’s algorithm for maximum 
cardinality matching in bipartite graphs 

• Edmonds’s algorithm for maximum cardinality 
matching in general graphs 

 



Basic Concepts and Notations 

• In graph G=(V,E), a matching M: 

▫ A set of vertex-disjoint edges 

▫ Matched vertices: the vertices associated with an 
edge in M 

▫ Free vertices: unmatched vertices 
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Basic Concepts and Notations 

• Matching M: 
▫ A set of vertex-disjoint edges 
▫ Matched vertices: the vertices associated with an edge 

in M 
▫ Free vertices: unmatched vertices 

• Perfect Matching M: 
▫ No free vertices 

• Maximum Cardinality Matching (MCM) 
▫ Maximize |M| 

• Maximum Weighted Matching (MWM) 
▫ Maximize  



w(e)
eM





Applications of matching problems 

• Assignment 
▫ Minimizing costs in job assigments 

 
• Image Feature Matching 

▫ Match image features (lines, points) between two 
images 

 
• Building blocks of other algorithms 

▫ 1.5-Approximate travelling salesman problem 
 Christofides algorithm 
 Find a minimum spanning tree and a minimum weight 

perfect matching 



Augmenting paths 

• Alternating paths: 

▫ The edges alternate between M and E\M 

• Augmenting paths 

▫ The alternating paths whose both ends are free 
vertices 

▫ One more non-matching edges than matching 
edges 



Alternating Cycles 

• A cycle in which edges alternate between M and 
E\M 



• Given two matchings M1 and M2, then the 
subgraph (V, M1⊕M2) is composed of 

▫ isolating vertices 

▫ alternating paths 

▫ alternating cycles 

 

▫ all alternate between M1 and M2 

▫ “A⊕B” represents (A\B)∪(B\A) 



• Given two matching M1 and M2, then the 
subgraph (V, M1⊕M2) is composed of 

▫ isolating vertices 

▫ alternating paths 

▫ alternating cycles 

 

▫ all alternate between M1 and M2 

▫ “A⊕B” represents (A\B)∪(B\A) 

 

• Because every vertex only associated with at 
most one edge in each Mi 



Augmenting Paths 

• Augmenting paths 

▫ The alternating paths whose both ends are free 
vertices 

• If P is an augmenting path w.r.t. M, then M⊕P is 
also a matching M’, and |M’|=|M|+1 



An Example 

M P M’=M⊕P  



Basic Algorithm for Maximum Cardinality Matching 

• Start from the empty matching 

• Repeat 

▫ Find an augmenting paths 

▫ Augment along that path (non-matching edges  matching 
edges) 

• Until there is no augmenting paths 



Basic Algorithm for Maximum Cardinality Matching 

• Start from the empty matching 

• Repeat 

▫ Find an augmenting paths 

▫ Augment along that path (non-matching edges  matching 
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• At most n iterations 



Correctness:  

No augmenting path=>Maximum Matching  

• Let M be the current matching and M* be the maximum matching, 

• In M⊕M*, every vertex is incident with at most one edge in M and 
one edge in M* 

• M⊕M* consists of: 

 

 

▫ single line: M*-edge 

▫ double line: M-edge 



Correctness:  

No augmenting path=>Maximum Matching  

• If |M*|>|M|, there must a 
path of  the first type 

• It is an augmenting path 
w.r.t. M 

 



Bipartite Graphs 

 



Reduce Bipartite Matching to Flow 

  



Reduce Bipartite Matching to Flow 

  



The residual graph 

  



Augmenting path 

  



Alternating trees 

• Start from a free vertex on the left side, mark it as 
“EVEN” 

• Search all the unmatched edges associated with it, mark 
the vertices on the other sides by “ODD” 



Alternating trees 

• Start from a free vertex on the left side, mark it as 
“EVEN” 

• Search all the unmatched edges associated with it, mark 
the vertices on the other sides by “ODD” 

Note that EVEN vertices are in L, and ODD vertices are in R. 



Alternating Trees 

• If we find an ODD vertex that is free, then we have found 
an augmenting path 

• If an ODD vertex v is marked and matched, mark its 
matched vertex w by “EVEN”, then start from w. 



Continue 

• If v is already marked 
“ODD”, do nothing  



• When there is no augmenting path from a free vertex, 
which means all the vertices on the alternating tree of 
that free vertex are not on an augmenting paths, so we 
can erase the entire tree and start from other free 
vertices. 
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• When there is no augmenting path from a free vertex, 
which means all the vertices on the alternating tree of 
that free vertex are not on an augmenting paths, so we 
can erase the entire tree and start from other free 
vertices. 

 

• Every edge is scanned only once. 

• The time for finding an augmenting path is O(m). 

• Total running time: O(mn) 



The Hopcroft-Karp Algorithm for Bipartite Graphs 

• Find a maximal set of shortest augmenting paths in one 
search 

• The length of augmenting paths will increase after 
augmentation. 

• After n1/2 iterations, the length of augmenting paths will 
be at lease n1/2, so there are at most n1/2  free vertices left. 

• Total time: O(mn1/2) 

 



Level Graph 

• Start from all the free vertices in L 

• Find the length l of shortest augmenting paths 



Level Graph 

• In the level graph L, every vertex and edge is on a 
shortest augmenting path from s to t.  

▫ The edges are only between EVEN vertices and ODD 
vertices in adjacent levels. 

 



• There is no edge like this: 



• Find all the shortest augmenting paths by a Depth-First 
Search in this level graph. 

▫ When we find an augmenting path, delete all the 
vertices and edges in it. 
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• Find all the shortest augmenting paths by a Depth-First 
Search in this level graph. 

▫ When we find an augmenting path, delete all the 
vertices and edges in it. 

▫ Delete the backtracking edges 

 
• We can find a maximal set Ω of augmenting paths. 

• So every edge is visited only once, and the time needed 
for this is O(m) 



Proof 

• Lemma: After augmentation of these paths, there is no 
augmenting paths of length at most l any more. 

 

• We assign directions to edges and get G’: 

▫ Unmatching edges: from L to R 

▫ Matching edges from R to L 

• A path between free vertices of L and R in G’  

   An augmenting path in G 



• There is no edges from level i to level i+2 or higher. 

• After augmentation, the edges in the augmenting paths 
reverse directions 

• So if there is still an augmenting path, it cannot overlap 
other augmenting paths, contradicting that we have 
found a maximal set of augmenting paths. 



Example 

• Ω: 



Example 



• Then any path overlapping Ω will have longer 
length 



The Hopcroft-Karp Algorithm for Bipartite Graphs 

• Find a maximal set of shortest augmenting paths in one 
search 

• The length of augmenting paths will increase after 
augmentation. 

• After n1/2 iterations, the length of augmenting paths will 
be at lease n1/2, so there are at most n1/2  free vertices left. 
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search 
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• After k iterations, the length of augmenting paths will be 
at lease k 

• If we compare the current matching M and the 
maximum matching M*, we can get |M*|-|M| disjoint 
augmenting paths 

• So |M*|-|M|≤|M*|/k≤n/k 

 
k 

k 

k 



• After k iterations, the length of augmenting paths will be 
at lease k 

• If we compare the current matching M and the 
maximum matching M*, we can get |M*|-|M| disjoint 
augmenting paths 

• So |M*|-|M|≤|M*|/k≤n/k 

 

• When k=n1/2, |M*|-|M|≤n1/2, so we only need to find n1/2 
augmenting paths. So the running time is O(mn1/2). 

 



Approximate Matching 

• After k iterations, the length of augmenting paths will be 
at lease k 

• If we compare the current matching M and the 
maximum matching M*, we can get |M*|-|M| disjoint 
augmenting paths 

• So |M*|-|M|≤|M*|/k,  

• and |M|≥|M*|-|M*|/k=(1-1/k)|M*| 

• so we can get a (1-1/k)-approximate matching in O(km) 
time. 
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• New concept: Blossom 
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Non-bipartite Matching 

• New concept: Blossom 

• So all the vertices in this odd-
length cycle are both EVEN and 
ODD, we call this kind of cycles 
“blossoms” 



Blossom 

• A blossom B is a cycle in G consisting of 2k + 1 edges of 
which exactly k belong to M. 

• The only vertex whose matching edge is not in B is called 
the base. 



Property of blossom 
• Edges associated with any vertex in the blossom can be 

in an augmenting path 



Property of blossom 
• Edges associated with any vertex in the blossom can be 

in an augmenting path 



Shrinking Blossoms 

• Thus in the search blossoms can be shrunk to 
one vertex, we call it the contracted graph  



Shrinking Blossoms 

• Thus in the search blossoms can be shrunk to 
one vertex, we call it contracted graph  

• Then we find augmenting paths in the 
contracted graph. 

• Finally we can unshrink the graph and get the 
real augmenting paths.  



Example 

 



• A blossom can contain other smaller blossoms 

 



Edmonds’ algorithm 

• When searching an edge (v,w) where v is marked 
“EVEN” 

▫ If w is free, we have found an augmenting path 

▫ If w is unmarked and matched, mark it “ODD” and 
mark its matched vertex w’ “EVEN” 

▫ If w is already labeled “ODD”, do nothing 

▫ If w is already labeled “EVEN”, we have found a 
blossom. Shrink the blossom to a single vertex and get 
a new graph G’. Find augmenting paths in G’. 

 

 



Detecting blossoms 
▫ If w is already labeled “EVEN”, we have found a 

blossom. Shrink the blossom to a single vertex and get 
a new graph G’. Find augmenting paths in G’. 

 



Retrieving Augmenting Path 

• Retrieve the real augmenting path in G from the path in 
the contracted graph G’: 



Retrieving Augmenting Path 
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Retrieving Augmenting Path 

• Retrieve the real augmenting path in G from the path in 
the contracted graph G’: 



Running time 

• In O(m) time we either find an augmenting path or a 
blossom.  

• We may contract at most n blossoms before finding an 
augmenting path, so the time for an augmenting path is 
O(mn) 

 



Analysis of Running Time 

• Start from the empty matching 

• Repeat 

▫ Find an augmenting paths 

▫ Augment along that path (non-matching edges  matching 
edges) 

• Until there is no augmenting paths 

 

• At most n iterations 

• Every iteration takes O(mn) time 

• Total time: O(mn2) 



Fast Implementation 

• Using union-find structure to maintain blossoms. 

• Shrinking a blossom: find the least common ancestor of 
two EVEN vertices. 



Micali and Vazirani algorithm 

• The maximum cardinality matching in general 
graphs can be also found in O(mn1/2) time. 

▫ By S. Micali and V.V.Vazirani (1980) 

▫ Similar idea as Hopcroft-Karp’s algorithm for 

bipartite graphs 

▫ But much more complicated 



Best algorithms for maximum matching 

Bipartite Graphs General Graphs 

Cardinality Matching O(mn1/2)  
[Hopcroft & Karp 1973] 

O(mn1/2)  
[Micali & Vazirani 1980] 

Weighted Matching O(mn1/2log(nN))  
[Gabow & Tarjan 1988] 

 
[Gabow & Tarjan 1988] 



O(m n log(nN) (m,n)logn)

Very Complicated 



Best algorithms for maximum matching 

Bipartite Graphs General Graphs 

Cardinality Matching O(mn1/2)  
[Hopcroft & Karp 1973] 

O(mn1/2)  
[Micali & Vazirani 1980] 

Weighted Matching O(mn1/2log(nN))  
[Gabow & Tarjan 1988] 

 
[Gabow & Tarjan 1988] 

O(Nnω) 
[Sankowski 2006] 

O(mn1/2logN)  
[Duan & Su 2012] 



O(m n log(nN) (m,n)logn)



Next Class 

• Weighted matching for bipartite and general 
graphs 


