
Maximum Weighted Matching
Ran Duan

In this lecture

• Hall’s theorem

• Maximum weighted bipartite matching

• Hungarian algorithm

Hall’s Theorem

• Given a bipartite graph G=(L∪R,E), where |L|=|R|,

▫ It contains a perfect matching if and only if:

▫ For every subset S⊆L, |Γ(S)|≥|S|

▫ (Γ(S) is the set of vertices adjacent to S)

Proof on Induction

• Let n=|L|=|R|

• When n=1, trivial

• Suppose it holds for all n≤k, for n=k+1, two cases:

Proof on Induction

• Let n=|L|=|R|

• When n=1, trivial

• Suppose it holds for all n≤k, for n=k+1, two cases:

• Case I: For every subset S⊆L, |Γ(S)|≥|S|+1
• Then we arbitrarily put an edge (u,v) in the matching

• In G-{u,v}, it still satisfies the condition |Γ(S)|≥|S|, so the result
holds by the induction condition

Proof on Induction

• Case II: there exists a T⊆L which has |Γ(T)|=|T|, then
the subgraphs of G on:

▫ T∪Γ(T)

▫ (L\T) ∪(R\Γ(T))

 both satisfies the Hall’s condition

Proof on Induction

• Case II: there exists a T⊆L which has |Γ(T)|=|T|, then
the subgraphs of G on:

▫ T∪Γ(T)

▫ (L\T) ∪(R\Γ(T))

 both satisfies the Hall’s condition

There may be an edge between L\T and Γ(T)

But there are no edge between T and R\Γ(T)

Proof on Induction

▫ In T∪Γ(T), every S⊆T have

Γ(S)⊆Γ(T), so it satisfies the

Hall’s condiction

Proof on Induction

▫ In (L\T)∪(R\Γ(T)),

if ∃S⊆L\T having

|Γ(S)∩(R\Γ(T))|<|S|,

then T∪S will also break the

Hall’s condition for G,

a contradiction

So (L\T)∪(R\Γ(T)) satisfies

the Hall’s condition

Proof on Induction

• Case II: there exists a T⊆L which has |Γ(T)|=|T|, then
the two subgraphs of G on:

▫ T∪Γ(T)

▫ (L\T) ∪(R\Γ(T))

 both satisfies the Hall’s condition

So we can find perfect matchings in these two subgraphs,
and finally get a perfect matching of G.

Weighted Bipartite Matching

• Maximum Weighted Matching (MWM)

▫ Maximize



w(e)
eM



Assignment Problem

• In operation research:

▫ Some agents, some tasks

▫ Assign each task to a agent

▫ Maximize efficiency or minimize cost

Cleaning Sweeping Washing

Jim $2 $6 $4

Steve $3 $1 $2

Alan $5 $4 $3

Weighted Bipartite Matching

• When not every pair of vertices of L and R has an edge,
we can consider two problems:

• Maximum (Minimum) perfect matching

▫ The maximum or minimum among all perfect matchings

• Maximum matching

▫ Not necessarily perfect

Weighted Bipartite Matching

• When not every pair of vertices of L and R has an edge,
we can consider two problems:

• Maximum (Minimum) perfect matching (MWPM)

▫ The maximum or minimum among all perfect matchings

• Maximum matching (MWM)

▫ Not necessarily perfect

MWPM MWM

Reduction between MWM and MWPM

• MWM=>MWPM

▫ We add zero-weight edge for any pair of (u,v) if there
is no edge between (u,v). (u∈L, v∈R)

▫ In the new graph any matching can be extend to a
perfect matching of the same weight, so the maximum
perfect matching must have maximum weight.

Reduction between MWM and MWPM

• MWM=>MWPM

▫ We add zero-weight edge for any pair of (u,v) if there
is no edge between (u,v). (u∈L, v∈R)

▫ In the new graph any matching can be extend to a
perfect matching of the same weight, so the maximum
perfect matching must have maximum weight.

▫ It will increase the number of edges

Reduction between MWM and MWPM

• MWM=>MWPM

▫ Duplicate G, we have G1=(L1,R1) and G2=(L2,R2).

▫ Link the two copies of every vertex of G by an edge with
weight zero

▫ Still a bipartite graph: one side L1∪R2, the other side L2∪R1

Reduction between MWM and MWPM

• MWM=>MWPM

▫ Duplicate G, we have G1=(L1,R1) and G2=(L2,R2).

▫ Link the two copies of every vertex of G by an edge with
weight zero

▫ Still a bipartite graph: one side L1∪R2, the other side L2∪R1

Reduction between MWM and MWPM

• MWM=>MWPM

▫ Duplicate G, we have G1=(L1,R1) and G2=(L2,R2).

▫ Link the two copies of every vertex of G by an edge with
weight zero

▫ Still a bipartite graph: one side L1∪R2, the other side L2∪R1

Reduction between MWM and MWPM

• MWM=>MWPM

▫ Duplicate G, we have G1=(L1,R1) and G2=(L2,R2).

▫ Link the two copies of every vertex of G by an edge with
weight zero

▫ Still a bipartite graph: one side L1∪R2, the other side L2∪R1

▫ The number of vertices and edges are still O(n) and O(m),
respectively.

Reduction between MWM and MWPM

• MWPM=>MWM

▫ If the weights are in [0,…,N], add nN to the weight of every
edge, and get a new graph G’

▫ The weight of a matching of k edges in G’ is ≤k(n+1)N

 (when k≤n-1, k(n+1)N<n2N)

▫ The weight of a perfect matching in G’ is ≥n2N

▫ So the maximum matching in G’ must be a perfect
matching.

Hungarian Algorithm

• By Harold Kuhn in 1955, who gave the name because it was largely
based on the earlier works of two Hungarian mathematicians:
Dénes Kőnig and Jenő Egerváry.

• In 2006, it was discovered that Carl Jacobi had solved the
assignment problem in the 19th century.

Hungarian Algorithm

• By Harold Kuhn in 1955, who gave the name because it was largely
based on the earlier works of two Hungarian mathematicians:
Dénes Kőnig and Jenő Egerváry.

• In 2006, it was discovered that Carl Jacobi had solved the
assignment problem in the 19th century.

• We will first talk about the maximum perfect matching.

Hungarian Algorithm

• Dual variable y: L∪R→Z satisfies:

• For every e=(u,v), y(u)+y(v)≥w(e)

Hungarian Algorithm

• Dual variable y: L∪R→Z satisfies:

• For every e=(u,v), y(u)+y(v)≥w(e)

• So for every perfect matching M,



w(M)  w(e)  y(v)
vLR


eM



Hungarian Algorithm

• Dual variable y: L∪R→Z satisfies:

• For every e=(u,v), y(u)+y(v)≥w(e)

• So for every perfect matching M,

• Our aim: obtain a perfect matching M* s.t.

▫ for every e∈M*, y(u)+y(v)=w(e)


w(M)  w(e)  y(v)
vLR


eM



• Throughout the algorithm:

▫ y(u)+y(v)≥w(e) ∀ e=(u,v) (domination)

▫ y(u)+y(v)=w(e) if e∈M (tightness)

• Throughout the algorithm:

▫ y(u)+y(v)≥w(e) ∀ e=(u,v) (domination)

▫ y(u)+y(v)=w(e) if e∈M (tightness)

• Tight edges:

▫ An edge e=(u,v) is tight if y(u)+y(v)=w(e)

▫ Denote the subgraph of tight edges by Gy

Procedure

• Let y(u)=N, y(v)=0 (u∈L, v∈R)

• Repeat

▫ Augment M in Gy (subgraph of tight edges), until there
is no augmenting path any more.

▫ If M is not perfect, do the dual adjustment to make
more edges tight.

• Until M is perfect

Procedure

• Let y(u)=N, y(v)=0 (u∈L, v∈R)

• Repeat

▫ Augment M in Gy (subgraph of tight edges), until there
is no augmenting path any more. (Augmentation step)

▫ If M is not perfect, adjust the dual variable y to make
more edges tight. (Dual adjustment step)

• Until M is perfect

Augmentation step

• Find Gy (subgraph of tight edges)

▫ From the tightness condition, all matching edges are
in Gy

• Finding augmenting path as in cardinality matching

• Until there is no augmenting paths any more.

Augmentation step

• An example:

Augmentation step

• An example:

Augmentation Step

• We can use breath-first search to find augmenting paths

• It takes O(m) time for one path.

Dual-adjustment step

• We assign directions to edges in Gy and get Gy’:

▫ Non-matching edges: from L to R

▫ Matching edges from R to L

▫ A path between free vertices of L and R in Gy’  An
augmenting path in Gy

Dual-adjustment step

• We assign directions to edges in Gy and get Gy’:
▫ Non-matching edges: from L to R
▫ Matching edges from R to L
▫ A path between free vertices of L and R in Gy’  An

augmenting path in Gy

• We have to guarantee there is no augmenting path in Gy

before the dual-adjustment
• So there is no directed path between free vertices of L

and R in Gy’

An example

Gy Gy’

Dual-adjustment

• In Gy’, find the vertices reachable from free vertices of L,
call this set Z

▫ Since there is no directed path between free vertices of L
and R in Gy’, Z does not contain free vertices of R

Dual-adjustment

• In Gy’, find the vertices reachable from free vertices of L,
call this set Z

▫ Since there is no directed path between free vertices of L
and R in Gy’, Z does not contain free vertices of R

• Let y(u)=y(u)-Δ for u∈L∩Z

• Let y(v)=y(v)+Δ for v∈R∩Z

▫ Δ can bring more tight edges without breaking the
domination condition

▫ For integer-weighted graph, we can set Δ=1

An example

• Tight edges

• Matching edges

(Dual adjustment step)
Let Z be the set of vertices reachable from
free vertices of L
Let y(u)=y(u)-Δ for u∈L∩Z
Let y(v)=y(v)+Δ for v∈R∩Z

An example

• Tight edges

• Matching edges

(Dual adjustment step)
Let Z be the set of vertices reachable from
free vertices of L
Let y(u)=y(u)-Δ for u∈L∩Z
Let y(v)=y(v)+Δ for v∈R∩Z

Correctness

• Z is the set of vertices reachable
from free vertices of L

• all vertices in L-Z are matched

• all vertices in R∩Z are matched

Correctness

• Z is the set of vertices reachable
from free vertices of L

• for a matching edge (u,v), either:

▫ u and v are both in Z

▫ u and v are neither in Z

▫ (If v is in Z, u must be in Z)

▫ (u can only be reached from v)

Correctness

• Z is the set of vertices reachable
from free vertices of L

• for a matching edge (u,v), either:

▫ u and v are both in Z

▫ u and v are neither in Z

• So after the dual-adjustment, all
matching edges still satisfy

 y(u)+y(v)=w(u,v)

For non-matching edges

• Z is the set of vertices reachable
from free vertices of L by tight
edges

• There is no tight edges (u,v) from
L∩Z to R-Z

▫ Otherwise v will be in Z

For non-matching edges

• Z is the set of vertices reachable from
free vertices of L by tight edges

• There is no tight edges (u,v) from
L∩Z to R-Z

• For edges (u,v) from L-Z to R∩Z

▫ Only v increase

▫ The domination condition

 y(u)+y(v)≥w(u,v) still holds

For non-matching edges

• Z is the set of vertices reachable
from free vertices of L by tight
edges

• There is no tight edges (u,v) from
L∩Z to R-Z

• So the amount of adjustment

 Δ=min{y(u)+y(v)-w(u,v) |

 u∈L∩Z, v∈R-Z}

▫ So we can have more tight edges,
and Z will get larger.

For non-matching edges

• So the amount of adjustment

 Δ=min{w(u,v)-y(u)-y(v) |

 u∈L∩Z, v∈R-Z}

▫ So we can have more tight edges,
and Z will get larger.

▫ Until some free vertex is added to Z

• Let y(u)=N, y(v)=0 (u∈L, v∈R)

• Repeat

▫ Augment M in Gy (subgraph of tight edges), until there
is no augmenting path any more. (Augmentation step)

▫ If M is not perfect, adjust the dual variable y to make
more edges tight. (Dual adjustment step)

 Let Z be the set of vertices reachable from free
vertices of L

 Let y(u)=y(u)-Δ for u∈L∩Z

 Let y(v)=y(v)+Δ for v∈R∩Z

• Until M is perfect

Running Time

• M can be augmented n times

• There can be at most O(n) dual-adjustment steps before
M can be augmented

▫ Every time Z becomes larger

• The time needed by searching for an augmenting path or
a dual-adjustment step is O(m)

• The total time is O(mn2)

An example

An example

• Tight edges

(Augmenting step)
find augmenting path

An example

• Tight edges

• Matching edges

An example

• Tight edges

• Matching edges

(Dual adjustment step)
Let Z be the set of vertices reachable from
free vertices of L
Let y(u)=y(u)-Δ for u∈L∩Z
Let y(v)=y(v)+Δ for v∈R∩Z

An example

• Tight edges

• Matching edges

(Dual adjustment step)
Let Z be the set of vertices reachable from
free vertices of L
Let y(u)=y(u)-Δ for u∈L∩Z
Let y(v)=y(v)+Δ for v∈R∩Z

An example

• Tight edges

• Matching edges

(Augmenting step)
find augmenting path

An example

• Tight edges

• Matching edges

An example

• Tight edges

• Matching edges

(Dual adjustment step)
Let Z be the set of vertices reachable from
free vertices of L
Let y(u)=y(u)-Δ for u∈L∩Z
Let y(v)=y(v)+Δ for v∈R∩Z

An example

• Tight edges

• Matching edges

(Dual adjustment step)
Let Z be the set of vertices reachable from
free vertices of L
Let y(u)=y(u)-Δ for u∈L∩Z
Let y(v)=y(v)+Δ for v∈R∩Z

An example

• Tight edges

• Matching edges

(Dual adjustment step)
Let Z be the set of vertices reachable from
free vertices of L
Let y(u)=y(u)-Δ for u∈L∩Z
Let y(v)=y(v)+Δ for v∈R∩Z

An example

• Tight edges

• Matching edges

(Dual adjustment step)
Let Z be the set of vertices reachable from
free vertices of L
Let y(u)=y(u)-Δ for u∈L∩Z
Let y(v)=y(v)+Δ for v∈R∩Z

An example

• Tight edges

• Matching edges

(Augmenting step)
find augmenting path

Finally

• Note that y-value
can be negative

Termination condition

• If we want a maximum (minimum) perfect matching,

 then we stop when we get a perfect matching M*

• Now

• For every other perfect M,

• So w(M*)≥w(M) 

w(M*)  w(e)  y(v)
vLR


eM *





w(M)  w(e)  y(v)
vLR


eM



Termination condition

• If we want a maximum matching, then we stop when the
free vertices of L have zero y-value.

▫ The y-value of free vertices are decreased by the same
amount in every step, so they remain equal throughout the
algorithm

Termination condition

▫ Since at the beginning, y(L)=N, y(R)=0

▫ In the dual-adjustment step:

 y(u)=y(u)-Δ for u∈L∩Z

 y(v)=y(v)+Δ for v∈R∩Z

▫ Z does not contain free vertices in R, otherwise there will be
augmenting paths

• So the free vertices of R have zero y-value throughout the
algorithm

Termination condition

• If we want a maximum matching, then we stop when the
free vertices of L have zero y-value, and get M*

• Then all free vertices have zero y-value.

• Now

• For every other M,

• So w(M*)≥w(M)



w(M*)  w(e)  y(v)
vLR


eM *





w(M)  w(e)  y(v)
vLR


eM



In the example
For maximum perfect
matching

For maximum matching

Approximate matching (optional)

• Add a little relaxation on the tightness condition

• Converge more quickly

Original conditions

• Throughout the algorithm:

▫ y(e)≥w(e) (domination)

▫ y(e)=w(e) if e∈M (tightness)

Relaxed conditions

• Throughout the algorithm:

▫ y(e)≥w(e)-1/k (domination)

▫ y(e)=w(e) if e∈M (tightness)

Relaxed conditions

• Throughout the algorithm:

▫ y(e)≥w(e)-1/k (domination)

▫ y(e)=w(e) if e∈M (tightness)

• Then we run the Hungarian search on eligible edges:

▫ y(e)=w(e)-1/k if e not in M

▫ all the matching edges

• After augmentation, we add 1/k to the R-side vertex of
every new matching edges, so the tightness for matching
edges still holds.

• After augmentation, we add 1/k to the R-side vertex of
every new matching edges, so the tightness for matching
edges still holds.

• So other edges associated with these vertices will not be
eligible any more

• After augmentation, we add 1/k to the R-side vertex of
every new matching edges, so the tightness for matching
edges still holds.

• So other edges associated with these vertices will not be
eligible any more

• We just need to find a maximal set of augmenting paths
in O(m) time, then there will be no augmenting path
before dual-adjustment

• After kN dual-adjustments we can get a (1-1/k)-
approximate maximum weighted matching

About the exam time

• All students are now asked to register in HISPOS for the
exams for the summer term 2012.

• Please inform the students about the obligatory
examination registration.

• In case of problems with the registration, the students
can send an email to

▫ studium@cs.uni-saarland.de

Next lecture

• Maximum weighted matching in general graphs

• Some applications of matching

