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In this lecture 

• Hall’s theorem 

• Maximum weighted bipartite matching 

• Hungarian algorithm 



Hall’s Theorem 

• Given a bipartite graph G=(L∪R,E), where |L|=|R|,  

▫ It contains a perfect matching if and only if: 

▫ For every subset S⊆L, |Γ(S)|≥|S| 

▫ (Γ(S) is the set of vertices adjacent to S) 



Proof on Induction 

• Let n=|L|=|R| 

• When n=1, trivial 

• Suppose it holds for all n≤k, for n=k+1, two cases: 

 



Proof on Induction 

• Let n=|L|=|R| 

• When n=1, trivial 

• Suppose it holds for all n≤k, for n=k+1, two cases: 

 

• Case I: For every subset S⊆L, |Γ(S)|≥|S|+1 
• Then we arbitrarily put an edge (u,v) in the matching 

• In G-{u,v}, it still satisfies the condition |Γ(S)|≥|S|, so the result 
holds by the induction condition 

 



Proof on Induction 

• Case II: there exists a T⊆L which has |Γ(T)|=|T|, then 
the subgraphs of G on: 

▫ T∪Γ(T) 

▫ (L\T) ∪(R\Γ(T)) 

    both satisfies the Hall’s condition 



Proof on Induction 

• Case II: there exists a T⊆L which has |Γ(T)|=|T|, then 
the subgraphs of G on: 

▫ T∪Γ(T) 

▫ (L\T) ∪(R\Γ(T)) 

    both satisfies the Hall’s condition 

 
There may be an edge between L\T and Γ(T) 

But there are no edge between T and R\Γ(T)  



Proof on Induction 

▫ In T∪Γ(T), every S⊆T have 

Γ(S)⊆Γ(T), so it satisfies the  

Hall’s condiction 



Proof on Induction 

▫ In (L\T)∪(R\Γ(T)), 

if ∃S⊆L\T having  

|Γ(S)∩(R\Γ(T))|<|S|, 

then T∪S will also break the 

Hall’s condition for G,  

a contradiction 

 

So (L\T)∪(R\Γ(T)) satisfies  

the Hall’s condition 



Proof on Induction 

• Case II: there exists a T⊆L which has |Γ(T)|=|T|, then 
the two subgraphs of G on: 

▫ T∪Γ(T) 

▫ (L\T) ∪(R\Γ(T)) 

    both satisfies the Hall’s condition 

 

So we can find perfect matchings in these two subgraphs, 
and finally get a perfect matching of G. 



Weighted Bipartite Matching 

• Maximum Weighted Matching (MWM) 

▫ Maximize  

 



w(e)
eM





Assignment Problem 

• In operation research: 

▫ Some agents, some tasks 

▫ Assign each task to a agent 

▫ Maximize efficiency or minimize cost 

 
Cleaning Sweeping Washing 

Jim $2 $6 $4 

Steve $3 $1 $2 

Alan $5 $4 $3 



Weighted Bipartite Matching 

• When not every pair of vertices of L and R has an edge, 
we can consider two problems: 

• Maximum (Minimum) perfect matching 

▫ The maximum or minimum among all perfect matchings 

• Maximum matching 

▫ Not necessarily perfect 



Weighted Bipartite Matching 

• When not every pair of vertices of L and R has an edge, 
we can consider two problems: 

• Maximum (Minimum) perfect matching (MWPM) 

▫ The maximum or minimum among all perfect matchings 

• Maximum matching (MWM) 

▫ Not necessarily perfect 

MWPM MWM 



Reduction between MWM and MWPM 

• MWM=>MWPM 

▫ We add zero-weight edge for any pair of (u,v) if there 
is no edge between (u,v). (u∈L, v∈R) 

▫ In the new graph any matching can be extend to a 
perfect matching of the same weight, so the maximum 
perfect matching must have maximum weight.  



Reduction between MWM and MWPM 

• MWM=>MWPM 

▫ We add zero-weight edge for any pair of (u,v) if there 
is no edge between (u,v). (u∈L, v∈R) 

▫ In the new graph any matching can be extend to a 
perfect matching of the same weight, so the maximum 
perfect matching must have maximum weight. 

 

▫ It will increase the number of edges 



Reduction between MWM and MWPM 

• MWM=>MWPM 

▫ Duplicate G, we have G1=(L1,R1) and G2=(L2,R2). 

▫ Link the two copies of every vertex of G by an edge with 
weight zero 

▫ Still a bipartite graph: one side L1∪R2, the other side L2∪R1 
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Reduction between MWM and MWPM 

• MWM=>MWPM 

▫ Duplicate G, we have G1=(L1,R1) and G2=(L2,R2). 

▫ Link the two copies of every vertex of G by an edge with 
weight zero 

▫ Still a bipartite graph: one side L1∪R2, the other side L2∪R1 

▫ The number of vertices and edges are still O(n) and O(m), 
respectively. 



Reduction between MWM and MWPM 

• MWPM=>MWM 

▫ If the weights are in [0,…,N], add nN to the weight of every 
edge, and get a new graph G’ 

▫ The weight of a matching of k edges in G’ is ≤k(n+1)N 

    (when k≤n-1, k(n+1)N<n2N) 

▫ The weight of a perfect matching in G’ is ≥n2N 

▫ So the maximum matching in G’ must be a perfect 
matching. 

 



Hungarian Algorithm 

• By Harold Kuhn in 1955, who gave the name because it was largely 
based on the earlier works of two Hungarian mathematicians: 
Dénes Kőnig and Jenő Egerváry. 

• In 2006, it was discovered that Carl Jacobi had solved the 
assignment problem in the 19th century. 

 



Hungarian Algorithm 

• By Harold Kuhn in 1955, who gave the name because it was largely 
based on the earlier works of two Hungarian mathematicians: 
Dénes Kőnig and Jenő Egerváry. 

• In 2006, it was discovered that Carl Jacobi had solved the 
assignment problem in the 19th century. 

 

• We will first talk about the maximum perfect matching. 

 



Hungarian Algorithm 

• Dual variable y: L∪R→Z satisfies: 

• For every e=(u,v), y(u)+y(v)≥w(e) 



Hungarian Algorithm 

• Dual variable y: L∪R→Z satisfies: 

• For every e=(u,v), y(u)+y(v)≥w(e) 

 

• So for every perfect matching M,  



w(M)  w(e)  y(v)
vLR


eM





Hungarian Algorithm 

• Dual variable y: L∪R→Z satisfies: 

• For every e=(u,v), y(u)+y(v)≥w(e) 

 

• So for every perfect matching M, 

 

 

 

• Our aim: obtain a perfect matching M* s.t. 

▫ for every e∈M*, y(u)+y(v)=w(e) 


w(M)  w(e)  y(v)
vLR


eM





• Throughout the algorithm: 

▫ y(u)+y(v)≥w(e)  ∀ e=(u,v) (domination) 

▫ y(u)+y(v)=w(e)    if e∈M (tightness) 



• Throughout the algorithm: 

▫ y(u)+y(v)≥w(e)  ∀ e=(u,v) (domination) 

▫ y(u)+y(v)=w(e)    if e∈M (tightness) 

• Tight edges: 

▫ An edge e=(u,v) is tight if y(u)+y(v)=w(e) 

▫ Denote the subgraph of tight edges by Gy 

 



Procedure 

• Let y(u)=N, y(v)=0 (u∈L, v∈R) 

• Repeat 

▫ Augment M in Gy (subgraph of tight edges), until there 
is no augmenting path any more. 

▫ If M is not perfect, do the dual adjustment to make 
more edges tight. 

• Until M is perfect 

 

 



Procedure 

• Let y(u)=N, y(v)=0 (u∈L, v∈R) 

• Repeat 

▫ Augment M in Gy (subgraph of tight edges), until there 
is no augmenting path any more. (Augmentation step) 

▫ If M is not perfect, adjust the dual variable y to make 
more edges tight. (Dual adjustment step) 

• Until M is perfect 

 

 



Augmentation step 

• Find Gy (subgraph of tight edges) 

▫ From the tightness condition, all matching edges are 
in Gy 

• Finding augmenting path as in cardinality matching  

• Until there is no augmenting paths any more. 



Augmentation step 

• An example: 



Augmentation step 

• An example: 



Augmentation Step 

• We can use breath-first search to find augmenting paths 

• It takes O(m) time for one path. 



Dual-adjustment step 

• We assign directions to edges in Gy and get Gy’: 

▫ Non-matching edges: from L to R 

▫ Matching edges from R to L 

▫ A path between free vertices of L and R in Gy’  An 
augmenting path in Gy 

 

 



Dual-adjustment step 

• We assign directions to edges in Gy and get Gy’: 
▫ Non-matching edges: from L to R 
▫ Matching edges from R to L 
▫ A path between free vertices of L and R in Gy’  An 

augmenting path in Gy 
 

 
• We have to guarantee there is no augmenting path in Gy 

before the dual-adjustment 
• So there is no directed path between free vertices of L 

and R in Gy’ 
 



An example 

Gy Gy’ 

  



Dual-adjustment 

• In Gy’, find the vertices reachable from free vertices of L, 
call this set Z 

▫ Since there is no directed path between free vertices of L 
and R in Gy’, Z does not contain free vertices of R 

 



Dual-adjustment 

• In Gy’, find the vertices reachable from free vertices of L, 
call this set Z 

▫ Since there is no directed path between free vertices of L 
and R in Gy’, Z does not contain free vertices of R  

 

• Let y(u)=y(u)-Δ  for u∈L∩Z 

• Let y(v)=y(v)+Δ  for v∈R∩Z 

▫ Δ can bring more tight edges without breaking the 
domination condition 

▫ For integer-weighted graph, we can set Δ=1 

 



An example 

• Tight edges 

• Matching edges 

(Dual adjustment step) 
Let Z be the set of vertices reachable from 
free vertices of L 
Let y(u)=y(u)-Δ  for u∈L∩Z 
Let y(v)=y(v)+Δ  for v∈R∩Z 



An example 

• Tight edges 

• Matching edges 

(Dual adjustment step) 
Let Z be the set of vertices reachable from 
free vertices of L 
Let y(u)=y(u)-Δ  for u∈L∩Z 
Let y(v)=y(v)+Δ  for v∈R∩Z 



Correctness 

• Z is the set of vertices reachable 
from free vertices of L 

• all vertices in L-Z are matched 

• all vertices in R∩Z are matched 



Correctness 

• Z is the set of vertices reachable 
from free vertices of L 

 

• for a matching edge (u,v), either: 

▫ u and v are both in Z 

▫ u and v are neither in Z 

 

▫ (If v is in Z, u must be in Z) 

▫ (u can only be reached from v) 



Correctness 

• Z is the set of vertices reachable 
from free vertices of L 

 

• for a matching edge (u,v), either: 

▫ u and v are both in Z 

▫ u and v are neither in Z 

• So after the dual-adjustment, all 
matching edges still satisfy 

    y(u)+y(v)=w(u,v) 

 



For non-matching edges 

• Z is the set of vertices reachable 
from free vertices of L by tight 
edges 

 

• There is no tight edges (u,v) from 
L∩Z to R-Z 

▫ Otherwise v will be in Z 



For non-matching edges 

• Z is the set of vertices reachable from 
free vertices of L by tight edges 

• There is no tight edges (u,v) from 
L∩Z to R-Z 

 

• For edges (u,v) from L-Z to R∩Z 

▫ Only v increase 

▫ The domination condition  

    y(u)+y(v)≥w(u,v) still holds 



For non-matching edges 

• Z is the set of vertices reachable 
from free vertices of L by tight 
edges 

• There is no tight edges (u,v) from 
L∩Z to R-Z 

 

• So the amount of adjustment  

 Δ=min{y(u)+y(v)-w(u,v) |  

         u∈L∩Z, v∈R-Z} 

▫ So we can have more tight edges, 
and Z will get larger. 

 

 



For non-matching edges 

 

• So the amount of adjustment  

 Δ=min{w(u,v)-y(u)-y(v) |  

         u∈L∩Z, v∈R-Z} 

▫ So we can have more tight edges, 
and Z will get larger. 

▫ Until some free vertex is added to Z 

 



• Let y(u)=N, y(v)=0 (u∈L, v∈R) 

• Repeat 

▫ Augment M in Gy (subgraph of tight edges), until there 
is no augmenting path any more. (Augmentation step) 

 

▫ If M is not perfect, adjust the dual variable y to make 
more edges tight. (Dual adjustment step) 

 Let Z be the set of vertices reachable from free 
vertices of L 

 Let y(u)=y(u)-Δ  for u∈L∩Z 

 Let y(v)=y(v)+Δ  for v∈R∩Z 

 

• Until M is perfect 

 

 



Running Time 

• M can be augmented n times 

• There can be at most O(n) dual-adjustment steps before 
M can be augmented 

▫ Every time Z becomes larger 

• The time needed by searching for an augmenting path or 
a dual-adjustment step is O(m) 

• The total time is O(mn2) 



An example 

 



An example 

• Tight edges 

(Augmenting step) 
find augmenting path 
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An example 

• Tight edges 

• Matching edges 

(Dual adjustment step) 
Let Z be the set of vertices reachable from 
free vertices of L 
Let y(u)=y(u)-Δ  for u∈L∩Z 
Let y(v)=y(v)+Δ  for v∈R∩Z 



An example 

• Tight edges 

• Matching edges 

(Augmenting step) 
find augmenting path 



Finally 

• Note that y-value 
can be negative  



Termination condition 

• If we want a maximum (minimum) perfect matching, 

 then we stop when we get a perfect matching M* 

 

• Now  

 

• For every other perfect M,  

 

• So w(M*)≥w(M) 

w(M*)  w(e)  y(v)
vLR


eM *





w(M)  w(e)  y(v)
vLR


eM





Termination condition 

• If we want a maximum matching, then we stop when the 
free vertices of L have zero y-value.  

 

▫ The y-value of free vertices are decreased by the same 
amount in every step, so they remain equal throughout the 
algorithm 



Termination condition 

 

▫ Since at the beginning, y(L)=N, y(R)=0 

▫ In the dual-adjustment step: 

 y(u)=y(u)-Δ  for u∈L∩Z 

 y(v)=y(v)+Δ  for v∈R∩Z 

▫ Z does not contain free vertices in R, otherwise there will be 
augmenting paths 

• So the free vertices of R have zero y-value throughout the 
algorithm 

 



Termination condition 

• If we want a maximum matching, then we stop when the 
free vertices of L have zero y-value, and get M* 

• Then all free vertices have zero y-value. 

 

• Now 

 

• For every other M, 

 

• So w(M*)≥w(M) 

 



w(M*)  w(e)  y(v)
vLR


eM *





w(M)  w(e)  y(v)
vLR


eM





In the example 
For maximum perfect 
matching 

For maximum matching 

  



Approximate matching (optional) 

• Add a little relaxation on the tightness condition 

• Converge more quickly  



Original conditions 

• Throughout the algorithm: 

▫ y(e)≥w(e)    (domination) 

▫ y(e)=w(e)   if e∈M  (tightness) 



Relaxed conditions 

• Throughout the algorithm: 

▫ y(e)≥w(e)-1/k     (domination) 

▫ y(e)=w(e)   if e∈M  (tightness) 



Relaxed conditions 

• Throughout the algorithm: 

▫ y(e)≥w(e)-1/k     (domination) 

▫ y(e)=w(e)   if e∈M  (tightness) 

 

• Then we run the Hungarian search on eligible edges: 

▫ y(e)=w(e)-1/k   if e not in M      

▫ all the matching edges 



• After augmentation, we add 1/k to the R-side vertex of 
every new matching edges, so the tightness for matching 
edges still holds.  



• After augmentation, we add 1/k to the R-side vertex of 
every new matching edges, so the tightness for matching 
edges still holds.  

• So other edges associated with these vertices will not be 
eligible any more 



• After augmentation, we add 1/k to the R-side vertex of 
every new matching edges, so the tightness for matching 
edges still holds.  

• So other edges associated with these vertices will not be 
eligible any more 

• We just need to find a maximal set of augmenting paths 
in O(m) time, then there will be no augmenting path 
before dual-adjustment 

• After kN dual-adjustments we can get a (1-1/k)-
approximate maximum weighted matching 



About the exam time 

• All students are now asked to register in HISPOS for the 
exams for the summer term 2012. 

 

• Please inform the students about the obligatory 
examination registration. 

 

• In case of problems with the registration, the students 
can send an email to 

▫ studium@cs.uni-saarland.de 

 



Next lecture 

• Maximum weighted matching in general graphs 

• Some applications of matching 


