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In this lecture 

• Maximum weighted matching in general graphs 
• Edmonds’ algorithm for MWM 
• An Application: Christofides algorithm 



Review of Hungarian algorithm 

•  Throughout the algorithm: 
▫  y(u)+y(v)≥w(e)  ∀ e=(u,v)  (domination) 
▫  y(u)+y(v)=w(e)    if e∈M  (tightness) 

•  Tight edges: 
▫  An edge e=(u,v) is tight if y(u)+y(v)=w(e) 
▫  Denote the subgraph of tight edges by Gy 



Review of Hungarian algorithm 
•  Let y(u)=N, y(v)=0 (u∈L, v∈R) 
•  Repeat 
▫  Augment M in Gy (subgraph of tight edges), until there 

is no augmenting path any more. (Augmentation step) 
▫  If M is not perfect, adjust the dual variable y to make 

more edges tight. (Dual adjustment step) 
•  Until M is perfect 



Dual-adjustment step 
•  We assign directions to edges in Gy and get Gy’: 
▫  Non-matching edges: from L to R 
▫  Matching edges from R to L 
▫  A path between free vertices of L and R in Gy’  An 

augmenting path in Gy 



Dual-adjustment 
•  In Gy’, find the vertices reachable from free vertices of L, 

call this set Z 
▫  Since there is no directed path between free vertices of L 

and R in Gy’, Z does not contain free vertices of R   

•  Let y(u)=y(u)-Δ   for u∈L∩Z 
•  Let y(v)=y(v)+Δ   for v∈R∩Z 
▫  Δ can bring more tight edges without breaking the 

domination condition 
▫  For integer-weighted graph, we can set Δ=1 



An example 
•  Tight edges 
•  Matching edges 

(Dual adjustment step) 
Let Z be the set of vertices reachable from 
free vertices of L 
Let y(u)=y(u)-Δ   for u∈L∩Z 
Let y(v)=y(v)+Δ   for v∈R∩Z 



An example 
•  Tight edges 
•  Matching edges 

(Dual adjustment step) 
Let Z be the set of vertices reachable from 
free vertices of L 
Let y(u)=y(u)-Δ   for u∈L∩Z 
Let y(v)=y(v)+Δ   for v∈R∩Z 



Blossom 
•  A blossom B is a cycle in G consisting of 2k + 1 edges of 

which exactly k belong to M. 
•  The only vertex whose matching edge is not in B is called 

the base. 



Difficulty for general graphs 
•  Since a blossom contains odd number of vertices, it hard 

to add some amount to some vertices and subtract the 
same amount to others and keep all the edges of the 
blossom tight. 



Difficulty for general graphs 
•  Since a blossom contains odd number of vertices, it’s 

hard to add some amount to some vertices and subtract 
the same amount to others and keep all the edges of the 
blossom tight. 

•  Thus it cannot guarantee Z to be larger every time. 



Solution: Dual-variables on blossoms 

• Edmond’s primal-dual algorithm: 

€ 

y :Vertices→ℜ

z :Blossom→ℜ,z ≥ 0

yz(u,v) = y(u) + y(v) + z(B)
u,v∈B
∑



Solution: Dual-variables on blossoms 

•  Edmond’s primal-dual algorithm: 

€ 

y :Vertices→ℜ

z :Blossom→ℜ,z ≥ 0

yz(u,v) = y(u) + y(v) + z(B)
u,v∈B
∑

u,v both in the blossom B,  
not necessarily a blossom edge 



Solution: Dual-variables on blossoms 

•  Edmond’s primal-dual algorithm: 

€ 

y :Vertices→ℜ

z :Blossom→ℜ,z ≥ 0

yz(u,v) = y(u) + y(v) + z(B)
u,v∈B
B∈Ω

∑

They can be in multiple blossoms. 
Define the set of all the blossoms to be Ω  

Here B1 is a root blossom. 



Solution: Dual-variables on blossoms 

•  Edmond’s primal-dual algorithm: 

•  They will satisfy: 
▫  z(B)≥0 for all blossoms B, and z(B)>0 if B is a root blossom 
▫  yz(e)≥w(e)  for all edges e 
▫  yz(e)=w(e)  if e is a matching edge or a blossom edge 

€ 

y :Vertices→ℜ

z :Blossom→ℜ,z ≥ 0

yz(u,v) = y(u) + y(v) + z(B)
u,v∈B
∑



Solution: Dual-variables on blossoms 

•  Edmond’s primal-dual algorithm: 

•  They will satisfy: 
▫  z(B)≥0 for all blossoms B, and z(B)>0 if B is a root blossom 
▫  yz(e)≥w(e)  for all edges e 
▫  yz(e)=w(e)  if e is a matching edge or a blossom edge 
▫  (So all blossom edges are tight) 

€ 

y :Vertices→ℜ

z :Blossom→ℜ,z ≥ 0

yz(u,v) = y(u) + y(v) + z(B)
u,v∈B
∑



Why we need z-value? 
•  Remind the difficulty: 



Why we need z-value? 
•  Now we can just minus 

(plus) Δ to all the vertices in 
the blossom, and plus 
(minus) 2Δ to the z-value of 
the root blossom. 

•  Then yz(e) for edges in the 
blossom will remain 
unchanged. 



Solution: Dual-variables on blossoms 

•  Edmond’s primal-dual algorithm: 

•  Eligible edges: 
▫  Matching edges 
▫  Blossom edges 
▫  Other edges satifying yz(e)=w(e) 

€ 

y :Vertices→ℜ

z :Blossom→ℜ,z ≥ 0

yz(u,v) = y(u) + y(v) + z(B)
u,v∈B
∑



•  Remind next Monday we talked about alternating trees 
and we marked vertices to be EVEN or ODD based on 
their lengths of alternating path to free vertices 

•  This time we mark them OUT and IN instead. 



Procedure (Every iteration) 
•  (There is contracted graph G’ which contracts all blossoms) 
•  Run breath-first search from all free vertices on eligible edges 
•  If we find an edge connecting OUT vertices, there is an augmenting 

path or a new blossom 
▫  An augmenting path: update the matching M, blossoms and G’ 
▫  New blossom: Shrinking the blossom B, z(B):=0, update G’ 

•  Otherwise run the dual-adjustment: 
▫  For vertex v’ in G’ which have been labeled OUT or IN, we labeled OUT 

or IN to the original vertex v in G contained in v’. 
▫  y(v):=y(v)-Δ  for all OUT vertex v 
▫  y(v):=y(v)+Δ  for all IN vertex v 
▫  z(B):=z(B)+2Δ  if B is a root blossom containing OUT vertices 
▫  z(B):=z(B)-2Δ  if B is a root blossom containing IN vertices 
▫  Dissolve root blossoms with zero z-values (non-root blossoms can have 

zero z-values), update G’ and set of eligible edges 



Procedure (Every iteration) 
•  (There is contracted graph G’ which contracts all blossoms) 
•  Run breath-first search from all free vertices on eligible edges 
•  If we find an edge connecting OUT vertices, there is an augmenting 

path or a new blossom 
▫  An augmenting path: update the matching M, blossoms and G’ 
▫  New blossom: Shrinking the blossom B, z(B):=0, update G’ 

•  Otherwise run the dual-adjustment: 
▫  For vertex v’ in G’ which have been labeled OUT or IN, we labeled OUT 

or IN to the original vertex v in G contained in v’. 
▫  y(v):=y(v)-Δ  for all OUT vertex v 
▫  y(v):=y(v)+Δ  for all IN vertex v 
▫  z(B):=z(B)+2Δ  if B is a root blossom containing OUT vertices 
▫  z(B):=z(B)-2Δ  if B is a root blossom containing IN vertices 
▫  Dissolve root blossoms with zero z-values (non-root blossoms can have 

zero z-values), update G’ and set of eligible edges 



•  (There is contracted graph G’ which contracts all blossoms) 
•  Run breath-first search from all free vertices on eligible edges 
•  If we find an edge connecting OUT vertices, there is an augmenting 

path or a new blossom 

OUT 
IN 



•  If we find an edge connecting OUT vertices, there is an augmenting 
path or a new blossom 

•  If the edge connects different trees from different free vertices, then 
we can get an augmenting path 

OUT 
IN 



•  If we find an edge connecting OUT vertices, there is an augmenting 
path or a new blossom 

•  If the edge connects different trees from different free vertices, then 
we can get an augmenting path 

OUT 
IN 



•  If we find an edge connecting OUT vertices, there is an augmenting 
path or a new blossom 

•  If the edge connects vertices from the same free vertex, then we can 
get a new blossom 

OUT 
IN 



•  If we find an edge connecting OUT vertices, there is an augmenting 
path or a new blossom 

•  If the edge connects vertices from the same free vertex, then we can 
get a new blossom 

OUT 
IN 



Procedure (Every iteration) 
•  (There is contracted graph G’ which contracts all blossoms) 
•  Run breath-first search from all free vertices on eligible edges 
•  If we find an edge connecting OUT vertices, there is an augmenting 

path or a new blossom 
▫  An augmenting path: update the matching M, blossoms and G’ 
▫  New blossom: Shrinking the blossom B, z(B):=0, update G’ 

•  Otherwise run the dual-adjustment: 
▫  For vertex v’ in G’ which have been labeled OUT or IN, we labeled OUT 

or IN to the original vertex v in G contained in v’. 
▫  y(v):=y(v)-Δ  for all OUT vertex v 
▫  y(v):=y(v)+Δ  for all IN vertex v 
▫  z(B):=z(B)+2Δ  if B is a root blossom containing OUT vertices 
▫  z(B):=z(B)-2Δ  if B is a root blossom containing IN vertices 
▫  Dissolve root blossoms with zero z-values (non-root blossoms can have 

zero z-values), update G’ and set of eligible edges 



Augmentation 
•  Since a blossom can have positive z-value, we cannot 

dissolve all the blossoms. 
•  On the augmenting path, switch between non-matching 

and matching in G’ and in every blossom 
•  So for every blossom on the augmenting path, the base 

will change. 



For example 
•  It’s an augmenting path in G’ 



For example 
•  This is the corresponding 

augmenting path in the real 
graph G 



For example 
•  After augmentation 



•  After augmentation 
•  The base of B1 and B2 change 



Augmentation 
•  On the augmenting path, switch between non-matching 

and matching in G’ and in every blossom 
•  So for every blossom on the augmenting path, the base 

will change. 

•  After augmentation, functions y,z and blossoms do not 
change, so all tight edges (including all matching edges 
and blossom edges) remain tight. 

•  We need to dissolve all the blossoms of zero z-value. 



Procedure (Every iteration) 
•  (There is contracted graph G’ which contracts all blossoms) 
•  Run breath-first search from all free vertices on eligible edges 
•  If we find an edge connecting OUT vertices, there is an augmenting 

path or a new blossom 
▫  An augmenting path: update the matching M, blossoms and G’ 
▫  New blossom: Shrinking the blossom B, z(B):=0, update G’ 

•  Otherwise run the dual-adjustment: 
▫  For vertex v’ in G’ which have been labeled OUT or IN, we labeled OUT 

or IN to the original vertex v in G contained in v’. 
▫  y(v):=y(v)-Δ  for all OUT vertex v 
▫  y(v):=y(v)+Δ  for all IN vertex v 
▫  z(B):=z(B)+2Δ  if B is a root blossom containing OUT vertices 
▫  z(B):=z(B)-2Δ  if B is a root blossom containing IN vertices 
▫  Dissolve root blossoms with zero z-values (non-root blossoms can have 

zero z-values), update G’ and set of eligible edges 



Blossoms Shrinking 

•  When we find such a blossom, 



Blossoms Shrinking 

•  When we find such a blossom, shrink it to a single 
vertex. 



Blossoms Shrinking 

•  Important Property: all the new blossoms in this 
algorithm have EVEN length augmenting path to free 
vertices. (OUT blossoms) 

•  Since new IN blossoms cannot be discovered 



•  Important Property: all the new blossoms in this algorithm have 
EVEN length augmenting path to free vertices. (OUT blossoms) 

•  Since new IN blossoms cannot be discovered 

•  This would be an IN blossom: 



•  But we do not scan such non-matching edges from IN vertices 



Blossoms Shrinking 

•  Important Property: all the new blossoms in this 
algorithm have EVEN length augmenting path to free 
vertices. (OUT blossoms) 

•  Since new IN blossoms cannot be discovered 
•  Also, all root IN blossoms with zero z-value have been 

dissolved after augmentation or dual-adjustment. 

•  These can guarantee that there is no IN root blossoms 
with zero z-value 



Procedure (Every iteration) 
•  (There is contracted graph G’ which contracts all blossoms) 
•  Run breath-first search from all free vertices on eligible edges 
•  If we find an edge connecting OUT vertices, there is an augmenting 

path or a new blossom 
▫  An augmenting path: update the matching M, blossoms and G’ 
▫  New blossom: Shrinking the blossom B, z(B):=0, update G’ 

•  Otherwise run the dual-adjustment: 
▫  For vertex v’ in G’ which have been labeled OUT or IN, we labeled OUT 

or IN to the original vertex v in G contained in v’. 
▫  y(v):=y(v)-Δ  for all OUT vertex v 
▫  y(v):=y(v)+Δ  for all IN vertex v 
▫  z(B):=z(B)+2Δ  if B is a root blossom containing OUT vertices 
▫  z(B):=z(B)-2Δ  if B is a root blossom containing IN vertices 
▫  Dissolve root blossoms with zero z-values (non-root blossoms can have 

zero z-values), update G’ and set of eligible edges 



•  (There is contracted graph G’ which contracts all blossoms) 
•  Run breath-first search from all free vertices on eligible edges 
•  If we find an edge connecting OUT vertices, there is an augmenting 

path or a new blossom 
▫  An augmenting path: update the matching M, blossoms and G’ 
▫  New blossom: Shrinking the blossom B, z(B):=0, update G’ 

•  Otherwise run the dual-adjustment: 
▫  For vertex v’ in G’ which have been labeled OUT or IN, we labeled OUT 

or IN to the original vertex v in G contained in v’. 
▫  y(v):=y(v)-Δ  for all OUT vertex v 
▫  y(v):=y(v)+Δ  for all IN vertex v 
▫  z(B):=z(B)+2Δ  if B is a root blossom containing OUT vertices 
▫  z(B):=z(B)-2Δ  if B is a root blossom containing IN vertices 
▫  Dissolve root blossoms with zero z-values (non-root blossoms can have 

zero z-values), update G’ and set of eligible edges 

No IN root blossoms with zero z-value 



•  (There is contracted graph G’ which contracts all blossoms) 
•  Run breath-first search from all free vertices on eligible edges 
•  If we find an edge connecting OUT vertices, there is an augmenting 

path or a new blossom 
▫  An augmenting path: update the matching M, blossoms and G’ 
▫  New blossom: Shrinking the blossom B, z(B):=0, update G’ 

•  Otherwise run the dual-adjustment: 
▫  For vertex v’ in G’ which have been labeled OUT or IN, we labeled OUT 

or IN to the original vertex v in G contained in v’. 
▫  y(v):=y(v)-½  for all OUT vertex v 
▫  y(v):=y(v)+½  for all IN vertex v 
▫  z(B):=z(B)+1  if B is a root blossom containing OUT vertices 
▫  z(B):=z(B)-1  if B is a root blossom containing IN vertices 
▫  Dissolve root blossoms with zero z-values (non-root blossoms can have 

zero z-values), update G’ and set of eligible edges 

For simplicity we let Δ=½ for integer-weighted graphs 



Dual-adjustment 

•  Here B1 is an OUT root 
blossom and B3 is an IN 
root blossom 



Correctness of dual-adjustment 
•  After searching for augmenting paths and blossoms, in 

G’ there doesn’t exist the following: 
▫  IN root blossoms with zero z-value 
▫  tight edge connecting OUT vertices 

▫  tight edge connecting an OUT vertex and an unmarked 
vertex 



Correctness of dual-adjustment 
•  After searching for augmenting paths and blossoms, in 

G’ there doesn’t exist the following: 
▫  IN root blossoms with zero z-value 
▫  tight edge connecting OUT vertices 

  Otherwise we can find an augmenting path or an OUT blossom 
▫  tight edge connecting an OUT vertex and an unmarked 

vertex 
  Otherwise we can mark that vertex “IN” 



Remind: Dual-variables on blossoms 

•  Edmond’s primal-dual algorithm: 

•  They will satisfy: 
▫  z(B)≥0 for all blossoms B, and z(B)>0 if B is a root blossom 
▫  yz(e)≥w(e)  for all edges e 
▫  yz(e)=w(e)  if e is a matching edge or a blossom edge 
▫  (So all blossom edges are tight) 

€ 

y :Vertices→ℜ

z :Blossom→ℜ,z ≥ 0

yz(u,v) = y(u) + y(v) + z(B)
u,v∈B
∑



Correctness 

•  All the y-values of vertices are integer multiples 
of ½ 

•  All the z-values of blossoms are integers 

•  For each edge e in a blossom, the yz(e) will not 
change 
▫  If an OUT blossom, y(u),y(v) decrease by ½, z(B) 

increases by 1 
▫  If an IN blossom, y(u),y(v) increase by ½, z(B) 

decreases by 1 
▫  If it is not marked, nothing change 

y(v):=y(v)-½  for all OUT vertex v 
y(v):=y(v)+½  for all IN vertex v 
z(B):=z(B)+1 if B is an OUT root blossom 
z(B):=z(B)-1  if B is an IN root blossom 



Correctness 

•  All the y-values of vertices are integer multiples 
of ½ 

•  All the z-values of blossoms are integers 

•  For matching edges not in a blossom, one end is 
OUT and one end is IN, also yz(e) will not 
change. 

•  Thus, tightness for blossom edges and matching 
edges still holds 

y(v):=y(v)-½  for all OUT vertex v 
y(v):=y(v)+½  for all IN vertex v 
z(B):=z(B)+1 if B is an OUT root blossom 
z(B):=z(B)-1  if B is an IN root blossom 



Correctness 

•  z(B)≥0 for all blossoms B, and z(B)>0 if B is a 
root blossom 

•  All new root blossoms are OUT, so we add their 
z-value to 1 just after contracting them. 

•  We dissolve all the root blossoms with zero z-
values after augmentation and dual-adjustment. 

y(v):=y(v)-½  for all OUT vertex v 
y(v):=y(v)+½  for all IN vertex v 
z(B):=z(B)+1 if B is an OUT root blossom 
z(B):=z(B)-1  if B is an IN root blossom 



Correctness 

•  Domination: yz(e)≥w(e) 
•  We have already prove it when e=(u,v) is contained in a blossom 
•  Otherwise yz(e)=y(u)+y(v), and it can only decrease when both are 

OUT or one is OUT and one is unmarked. (e cannot be tight in these 
cases) 



Correctness 

•  All the y-values of vertices are integer multiples of ½ 
•  All the z-values of blossoms are integers 

•  Define the parity of y(v) for a vertex v to be the parity of the its 
multiple of ½ 

•  (For example, 3/2 is an odd multiple of ½) 

y(v):=y(v)-½  for all OUT vertex v 
y(v):=y(v)+½  for all IN vertex v 
z(B):=z(B)+1 if B is an OUT root blossom 
z(B):=z(B)-1  if B is an IN root blossom 



Correctness 

•  All the y-values of vertices are integer multiples of ½ 
•  All the z-values of blossoms are integers 

•  Then for tight edges (u,v), since  

•  and w(u,v) is an integer, so y(u) and y(v) have the same parity (to 
the multiples of ½). 

•  Since in the search, all OUT and IN vertices are linked by tight 
edges, so they have the same parity. 

y(v):=y(v)-½  for all OUT vertex v 
y(v):=y(v)+½  for all IN vertex v 
z(B):=z(B)+1 if B is an OUT root blossom 
z(B):=z(B)-1  if B is an IN root blossom 

€ 

w(u,v) = yz(u,v) = y(u) + y(v) + z(B)
u,v∈B
∑



•  When e is not a matching or blossom edges,  
•  yz(e)=y(u)+y(v), and it can only decrease when both are OUT or one 

is OUT and one is unmarked. (e cannot be tight in these cases) 

•  If both u and v are OUT, u,v have the same parity, so y(u)+y(v)>w(e) 
is an integer, so y(u)+y(v)≥w(e)+1.  

•  After dual-adjustment, y(u)+y(v)≥w(e) 

y(v):=y(v)-½  for all OUT vertex v 
y(v):=y(v)+½  for all IN vertex v 
z(B):=z(B)+1  if B is OUT 
z(B):=z(B)-1  if B is IN 



•  When e is not a matching or blossom edges,  
•  yz(e)=y(u)+y(v), and it can only decrease when both are OUT or one 

is OUT and one is unmarked. (e cannot be tight in these cases) 

•  If both u and v are OUT, u,v have the same parity, so y(u)+y(v)>w(e) 
is an integer, so y(u)+y(v)≥w(e)+1.  

•  After dual-adjustment, y(u)+y(v)≥w(e) 

•  If only u is OUT, yz(e) only decrease by ½, so y(u)+y(v)≥w(e) after 
dual-adjustment. 



Correctness 
•  We have show that dual-adjustments will keep the properties of 

dual-variables: 
▫  z(B)≥0 for all blossoms B, and z(B)>0 if B is a root blossom 
▫  yz(e)≥w(e)  for all edges e 
▫  yz(e)=w(e)  if e is a matching edge or a blossom edge 
▫  (So all blossom edges are tight) 

•  Also, if at the beginning all vertices have y-value N/2, 
•  all free vertices have the same and smallest y-value 

throughout the algorithm 

•  Until we get a perfect matching 



When achieving a perfect matching M*… 

•  Since all matching edges are tight, and every blossom B contains     
(|B|-1)/2  matching edges. 

•  For every other perfect matching M, a blossom B cannot contain 
more than (|B|-1)/2 edges of M, so 

•  (Here E(B) is the set of all edges whose both ends are in B) 
•  So M* is a maximum weighted perfect matching 

€ 

w(M*) = yz(e)
e∈M *
∑ = y(u)

u∈V
∑ + z(B)⋅

B −1( )
2B∈Ω

∑

€ 

w(M) ≤ yz(e)
e∈M
∑ = y(u)

u∈V
∑ + z(B)M ∩ E(B)

B∈Ω
∑ ≤ y(u)

u∈V
∑ + z(B)⋅

B −1( )
2B∈Ω

∑



•  Also, we can find a maximum weighted matching when 
the y-values of free vertices reach 0.   



Analysis of running time 
•  Find the minimum difference yz(e)-w(e) of non-tight edges e 
•  Then do the dual-adjustment until some new edges becomes tight 
•  So in O(m) time, these two kinds of new tight edges may emerge:  
▫  Tight edge connecting two OUT vertices,  

 then we can find a new blossom 
▫  Tight edge connecting an OUT vertex and an unmarked vertex, 

 then the set of marked vertices will be larger 



Analysis of running time 
•  Find the minimum difference yz(e)-w(e) of non-tight edges e 
•  Then do the dual-adjustment until some new edges becomes tight 
•  So in O(m) time, these two kinds of new tight edges may emerge:  
▫  Tight edge connecting two OUT vertices,  

 then we can find a new blossom 
▫  Tight edge connecting an OUT vertex and an unmarked vertex, 

 then the set Z of marked vertices will be larger 

•  Before we find an augmenting path, we can find O(n) blossoms, and 
the set Z can become larger O(n) times 

•  Also finding a blossom takes O(m) time 
•  So the running time for one augmenting path is O(mn) 



Analysis of running time 
•  So the time for one augmenting path is O(mn) 
•  Since there are O(n) augmenting paths 
•  The total running time is O(mn2) 



An application of MWM in general graphs 

•  Christofides heuristic algorithm 
▫  For an approximate solution of the traveling salesman 

problem 
▫  On a complete graph G=(V,E,w), and its edge weights 

satisfy the triangle inequality: 
  w(x,y)+w(y,z)≥w(x,z),  for all x,y,z∈V 



Traveling salesman problem 

•  Find the shortest cycle which visits every node exactly 
once.  



Traveling salesman problem 

•  Find the shortest cycle which visits every node exactly 
once. 

•  NP-complete: one of the hardest problem in NP to find a 
polynomial time algorithm. 

•  Thus, we need polynomial time approximate algorithms.  



Hamilton Cycle 
•  A path visits every node exactly once 
•  Also NP-complete 



Euler cycle 

•  A cycle visits every edge exactly once 
•  Famous “Seven Bridges of Königsberg”  



Euler cycle 

•  A cycle visits every edge exactly once 
•  Famous “Seven Bridges of Königsberg” 

•  Simple P-problem: 
▫  Euler cycle  the degree of every node is even 
▫  Also apply to multigraph (multiple edges between a pair of 

vertices)   



Approximate solution 
•  k-approximate solution: a cycle that travels through 

every city once, and its length L: 
▫  L≤kL’,  where L’ is the real TSP solution 



Minimum Spanning Tree 
•  A tree containing all vertices of V and having minimum 

total weights 



Christofides algorithm 
1.  Find a minimum spanning tree T of G 
2.  Let O be the set of vertices with odd degrees in T, find a minimum 

perfect matching M in the subgraph induced by O 
3.  Combine T and M to form a multigraph H  
4.  Form an Euler Tour P in H 
5.  Make P Hamiltonian by skipping visited nodes. 



Christofides algorithm 
1.  Find a minimum spanning tree T of G 
2.  Let O be the set of vertices with odd degrees in T, find a minimum 

perfect matching M in the subgraph induced by O 
▫  Since G is a complete graph, and |O| is even, there is always a perfect 

matching. 
3.  Combine T and M to form a multigraph H  
4.  Form an Euler Tour P in H 
5.  Make P Hamiltonian by skipping visited nodes. 



Christofides algorithm 
1.  Find a minimum spanning tree T of G 
2.  Let O be the set of vertices with odd degrees in T, find a minimum 

perfect matching M in the subgraph induced by O 
▫  Since G is a complete graph, and |O| is even, there is always a perfect 

matching. 
3.  Combine T and M to form a multigraph H  
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4.  Form an Euler cycle P in H 
5.  Make P Hamiltonian by skipping visited nodes. 



Christofides algorithm 
1.  Find a minimum spanning tree T of G 
2.  Let O be the set of vertices with odd degrees in T, find a minimum 

perfect matching M in the subgraph induced by O 
▫  Since G is a complete graph, and |O| is even, there is always a perfect 

matching. 
3.  Combine T and M to form a multigraph H  
▫  The degree of every node in H is even, so there is a Euler cycle in H 

4.  Form an Euler cycle P in H 
5.  Make P Hamiltonian by skipping visited nodes. 
▫  Since G satisfies the triangle inequality, shortcutting vertices cannot 

increase the length 



Example 
•  Vertices with odd degrees and vertices with even degrees 



Example 
•  Find a perfect matching on odd vertices 
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Example 
•  Then it must have an Euler cycle 
•  Shortcutting visited nodes 
•  Finally: 



Approximate ratio: 1.5 
•  Weights of minimum spanning tree T is at most TSP 
▫  because TSP with one edge erased is a spanning tree 
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▫  w(T)≤w(TSP) 
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▫  triangle inequlity 
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Approximate ratio: 1.5 
•  Weights of minimum spanning tree T is at most TSP 
▫  w(T)≤w(TSP) 

•  TSP on the subgraph induced by O is at most TSP on G 
▫  w(TSPO)≤w(TSP) 
▫  w(M)≤½w(TSPO) 

•  Since shortcutting duplicated vertices will not increase 
length, the final path P 
▫  w(P)≤w(T)+w(M)≤1.5w(TSP) 



Next lecture 

• Dynamic connectivity 


