
Dynamic Connectivity

Ran Duan

In this talk

 Concept of dynamic algorithms

 Dynamic connectivity of O(log2n) amortized update time

 Decremental minimum spanning tree

Dynamic Problems

 Find algorithms and data structures to answer a certain

query about a set of input objects where each time the

input data is modified.

Dynamic Graph

 Fully dynamic model: we can insert and delete edges to

the graph G

 Decremental model: only deletions

 Incremental model: only insertions

About dynamic algorithms

 Measures of complexity:

 Memory space to store the required data structures

 Initial construction time for the data structure

 Insertion/deletion time: time required to modify the data

structure

 Update time

 Query time: time needed to answer an query

Amortized analysis

 For a sequence of updates, count the average time

needed per each update.

 Some updates may require much longer time

 Only happen infrequently

Connectivity Problem

 In an undirected graph G, judge whether any two vertices

are connected by a path.

Dynamic Connectivity

 We can insert or delete edges in this graph, and still find

the connectivity of any pair of vertices.

Dynamic Connectivity

 We can insert or delete edges in this graph, and still find

the connectivity of any pair of vertices.

Connectivity and spanning forest

 Spanning forest F: there is a spanning tree in each

connected component

 Connectivity: check whether u,v are in the same spanning

tree of F.

Dynamic Connectivity

 Maintain the spanning forest dynamically

 Inserting (u,v):

 When u,v are in the same tree, F do not change

 When u,v are not in the same tree, connect these trees to a

bigger tree

Dynamic Connectivity

 Maintain the spanning forest dynamically

 Deleting a tree edge (u,v):

 The tree will be split into two parts

 We need to find other edges reconnecting these two parts

Dynamic Connectivity

 Maintain the spanning forest dynamically

 Deleting a tree edge (u,v):

 The tree will be split into two parts

 We need to find other edges reconnecting these two parts

Dynamic Connectivity

 Maintain the spanning forest dynamically

 Deleting a tree edge (u,v):

 The tree will be split into two parts

 We need to find other edges reconnecting these two parts

Dynamic Connectivity

 Maintain the spanning forest dynamically

 Deleting a tree edge (u,v):

 The tree will be split into two parts

 We need to find other edges reconnecting these two parts

Holm, Lichtenberg & Thorup’s structure

 O(log2n) amortized update time

 Best amortized update time so far.

 Appears in STOC’98

High-level description

 Each edge e is assigned a level l(e). (0≤l(e)≤lmax)

 Ei={edges of level ≥ i}

 So E=E0⊇E1⊇…⊇Elmax

Level 2

Level 1

Level 0

E0

E1

E2

High-level description

 We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax on

E0,E1,…,Elmax

 if e=(u,v) is a non-tree edge in Ei, u and v are connected in Fi

 if e is a tree edge in Fi, it must be a tree edge in Fj (j<i)

 Also, the number of vertices of a tree in Fi is at most n/2i

 These properties are maintained throughout the

algorithm.

High-level description

 We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax on

E0,E1,…,Elmax

 if e=(u,v) is a non-tree edge in Ei, u and v are connected in Fi

 if e is a tree edge in Fi, it must be tree edge in Fj (j<i)

 Also, the number of vertices of a tree in Fi is at most n/2i

 The sizes of connected components decrease by a half when

level increases

 So lmax=O(log n)

 These properties are maintained throughout the

algorithm.

Example

Example – tree edge

 level ≥2

 level 1

 level 0

Remind

 Inserting (u,v):

 When u,v are in the same tree, F do not change

 When u,v are not in the same tree, connect these trees to a

bigger tree

 Deleting a tree edge (u,v):

 The tree will be split into two parts

 We need to find other edges reconnecting these two parts

Algorithm

 Initially the graph is empty

 Level of an edge only increases, never decreases

 When we have checked the edge, its level increases

 Only increases for lmax=O(log n) times

 So the amortized time for an edge is very small.

Algorithm

 Insert(e):

 l(e)=0, if its two ends are not connected in F0, e is added to F0

 Delete(e):

 If e is not a tree edge at level l(e), simply delete e

 If e is a tree edge, delete it in F0, F1,…,Fl(e),

 and call Reconnect(e, l(e))

Algorithm

 Insert(e):

 l(e)=0, if its two ends are not connected in F0, e is added to F0

 Delete(e):

 If e is not a tree edge at level l(e), simply delete e

 If e is a tree edge, delete it in F0, F1,…,Fl(e),

 and call Reconnect(e, l(e))

 Spanning forests F=F0⊇F1⊇…⊇Flmax on

E0,E1,…,Elmax

So when e is not a tree edge at its level l(e),

it can not be a tree edge at other levels.

Algorithm

 Reconnect((u,v),i) – reconnect trees containing u and v by

edges of level i

 T– original tree in Fi containing (u,v),

 T(u),T(v)– trees in Fi containing u,v after deletion of (u,v)

 One of T(u),T(v) has at most a half as many vertices as T,

assume it is T(u), move T(u) to level i+1

 Check level i edges f incident to T(u) one by one, either:

 f does not connect T(u) and T(v), then it must be included in T(u),

increase its level to i+1

 f connect T(u) and T(v), stop the search, and add f to F0, F1,…,Fi

 If no such edges are found, call Reconnect((u,v),i-1)

 If i=0, we conclude that there is no reconnecting edges.

Algorithm

 f does not connect T(u) and T(v), then it must be included in T(u),

increase its level to i+1 (since |T(u)|≤½|T|)

 f connect T(u) and T(v), stop the search, and add f to F0, F1,…,Fi

Algorithm

 f does not connect T(u) and T(v), then it must be included in T(u),

increase its level to i+1

 f connect T(u) and T(v), stop the search, and add f to F0, F1,…,Fi

Algorithm

 f does not connect T(u) and T(v), then it must be included in T(u),

increase its level to i+1

 f connect T(u) and T(v), stop the search, and add f to F0, F1,…,Fi

Bound the reconnecting time

 In one update we may need to check all the edges associated

with a subtree T(u)

 But after checking an edge, its level increases, so every edge

can be checked O(log n) times

 If initially the graph is empty, the number of edges is at most

the number of update, so we need to check O(log n) edges

per update.

 We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax on

E0,E1,…,Elmax

 if e=(u,v) is a non-tree edge in Ei, u and v are connected in Fi

 if e is a tree edge in Fi, it must be tree edge in Fj (j<i)

 Also, the number of vertices of a tree in Fi is at most n/2i

 These properties hold after the update algorithm

Example

 F0, F1, F2: (non-tree edges are shown only in their levels)

Example

 Deleting a tree edge:

Example

 Call Reconnect(e,l(e))

Example

 Check for an edge whether it can reconnect them

Example

 Remove it to higher level

Example

 Call reconnect in lower level

Implementation

 We need to keep dynamic forest

 Merge two tree by an edge

 Split a tree into two subtrees

 Find the tree containing a given vertex

 Return the size of a tree

 Min-key: returns the minimal key in a tree

 These operations can all be done in O(log n) time.

ET-trees

 Euler Tour of T:

 Every vertex can appear many times in the Euler Tour, but

we only keep any one of them for each vertex to form a

ET-list：

 v1，v2，… vn

When we delete a tree edge, the ET-list will be

divided into ≤3 parts, and we need to merge two

lists.

v1，v2，v3，v4，v5，v6，v7，v8，v9，v10，v11

(v1，v2，v3，v4，v5，v10，v11); (v6，v7，v8，v9)

When we connect two trees by an edge, we need

to split the ET-lists of the two trees from the

vertices on that edge …

(v1，v2，v3，v4，v5), (v6，v7)

(u1), (u2，u3，u4)

When we connect two trees by an edge, we need

to split the ET-lists of the two trees from the

vertices on that edge, and merge them in the

right order.

(v1，v2，v3，v4，v5), (v6，v7); (u1), (u2，u3，u4)

(v1，v2，v3，v4，v5，u2，u3，u4，u1，v6，v7)

Euler Tour

 Euler Tour of T:

 So we only need O(1) link & cut operations to maintain the

ET-lists per tree merging or splitting.

 However, we need balanced binary trees to keep the ET-lists,

so it takes O(log n) time to rebalancing after a update,

Self-balancing binary search tree

 Automatically keep its height O(log n)

Self-balancing binary search tree

 Need O(log n) time to rebalancing

 O(log n) time to find the root from a vertex

 Every vertex can store the size or min-key of its subtree,

so these information can be maintained in O(log n) time

per update.

ET-tree

 We need to keep dynamic forest

 Merge two tree by an edge

 Split a tree into two subtrees

 Find the tree containing a given vertex

 Return the size of a tree

 Min-key: returns the minimal key in a tree

 These operations can all be done in O(log n) time.

Back to dynamic connectivity

 If initially the graph is empty, the number of edges is at

most the number of update, so we need to check O(log n)

edges per update.

 Since merging two trees takes O(log n) time, and an edge

can merge trees in O(log n) levels, so the amortized

update time is O(log2n)

Back to dynamic connectivity

 If initially the graph is empty, the number of edges is at

most the number of update, so we need to check O(log n)

edges per update.

 Since merging two trees takes O(log n) time, and an edge

can merge trees in O(log n) levels, so the amortized

update time is O(log2n).

 Deletion can cost O(log2n) time.

 Delete an edge in lmax trees

 Query time: O(log n/loglog n)

 Space: O(m+nlog n) (almost linear)

Dynamic Minimum Spanning Tree

 Much more complicated since we need to consider the

order of edges

 Decremental minimum spanning tree

 Only a modification from dynamic connectivity structure

 Only support deletions

Algorithm

 Originally we have a MST F0 at level 0

 Delete(e):

 If e is not a tree edge at level l(e), simply delete e

 If e is a tree edge, delete it in F0, F1,…,Fl(e),

 and call Reconnect(e, l(e))

Spanning forests F=F0⊇F1⊇…⊇Flmax on

E0,E1,…,Elmax

So when e is not a tree edge at level l(e), it

can not be a tree edge at other levels.

Algorithm

 Reconnect((u,v),i) – reconnect trees containing u and v by

edges of level i

 T– original tree containing (u,v),

 T(u),T(v)– trees containing u,v after deletion of (u,v)

 One of T(u),T(v) has at most a half as many vertices as T,

assume it is T(u), move T(u) to level i+1

 Check level i edges f incident to T(u) in increasing order,

 f does not connect T(u) and T(v), then it must be included in T(u),

increase its level to i+1

 f connect T(u) and T(v), stop the search, and add f to F0, F1,…,Fi

 If no such edges are found, call Reconnect((u,v),i-1)

 If i=0, we conclude that there is no reconnecting edges.

Algorithm

 Reconnect((u,v),i) – reconnect trees containing u and v by
edges of level i

 T– original tree containing (u,v),

 T(u),T(v)– trees containing u,v after deletion of (u,v)

 One of T(u),T(v) has at most a half as many vertices as T,
assume it is T(u), move T(u) to level i+1

 Check level i edges f incident to T(u) in increasing order,

 f does not connect T(u) and T(v), then it must be included in T(u),
increase its level to i+1

 f connect T(u) and T(v), stop the search, and add f to F0, F1,…,Fi

 If no such edges are found, call Reconnect((u,v),i-1)

 If i=0, we conclude that there is no reconnecting edges.

 Intuitively, we can see we find the minimum edge which reconnects the
two subtrees.

Example

Example

Example

Invariants

1. We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax

on E0,E1,…,Elmax

2. The number of vertices of a tree in Fi is at most n/2i

3. Every cycle C has a non-tree edge e with:

)(min)(

)(max)(

flel

fwew

Cf

Cf

Invariants

1. We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax

on E0,E1,…,Elmax

2. The number of vertices of a tree in Fi is at most n/2i

3. Every cycle C has a non-tree edge e with:

)(min)(

)(max)(

flel

fwew

Cf

Cf

Proof of correctness

 Assume (3), the lightest replacement edge is on the

maximum level

 The algorithm maintains (3)

Proof of correctness

 Assume (3), the lightest replacement edge is on the

maximum level

 Compare two replacement edges e1, e2, if w(e1)≤w(e2), we

need to prove l(e1)≥l(e2)

 e1, e2 can form cycles C1, C2 with the original tree

Proof of correctness

 Assume (3), the lightest replacement edge is on the

maximum level

 Compare two replacement edges e1, e2, if w(e1)≤w(e2), we

need to prove l(e1)≥l(e2)

 e1, e2 can form cycles C1, C2 with the original tree

 e1, e2 must be largest edges in C1, C2, resp. Otherwise original tree is

not minimum

 Assume (3), the lightest replacement edge is on the

maximum level

 Compare two replacement edges e1, e2, if w(e1)<w(e2), we

need to prove l(e1)≥l(e2)

 e1, e2 can form cycles C1, C2 with the original tree

 e1, e2 must be largest edges in C1, C2, resp. Otherwise original tree is

not minimum

 C=C1⊕C2 is also a cycle with e1 and e2, and w(e2) is the

largest in C, so l(e2) is lowest.

(3) Every cycle C has a non-tree edge e with largest weight and lowest level

Proof of correctness

 The algorithm maintains (3):

 When the level of e increases, e is in T(u)

 Assume e is the unique lowest largest edge on some cycle C

 All other edges of C incident to T(u) have level >l(e)

 C cannot leave T(u)

 So all other edges in C have level >l(e), so (3) is maintained when l(e)

increases by 1

(3) Every cycle C has a non-tree edge e with largest weight and lowest level

Proof of correctness

 The algorithm maintains (3):

 When the level of e increases, e is in T(u)

 Assume e is the unique lowest largest edge on some cycle C

 All other edge of C incident to T(u) have level >l(e)

 C cannot leave T(u) (Otherwise there will be a replacement found.)

 So all other edges in C have level >l(e), so (3) is maintained when l(e)

increases by 1

(3) Every cycle C has a non-tree edge e with largest weight and lowest level

Update time

 Only need to maintain min-key in ET-tree structure

 Update time for this decremental MST is still O(log2n)

Discussion

 Why is it hard to extend this to fully dynamic MST?

 Unlike connectivity structures, we may need to change the

forest when inserting an edge.

 Totally breaking the order of the structure

Invariants

1. We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax on E0,E1,…,Elmax

2. The number of vertices of a tree in Fi is at most n/2i

3. Every cycle C has a non-tree edge e with:

 If we insert an edge with very small weight:

w(e) max fC w(f)

l(e) max fC l(f)

Invariants

1. We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax on E0,E1,…,Elmax

2. The number of vertices of a tree in Fi is at most n/2i

3. Every cycle C has a non-tree edge e with:

 If we insert an edge with very small weight:

 The MST will change, so as MST in higher

 levels

w(e) max fC w(f)

l(e) max fC l(f)

Invariants

1. We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax on E0,E1,…,Elmax

2. The number of vertices of a tree in Fi is at most n/2i

3. Every cycle C has a non-tree edge e with:

 If we insert an edge with very small weight:

 The MST will change, so as MST in higher

 levels

 Level decreasing will destroy the hierarchy

w(e) max fC w(f)

l(e) max fC l(f)

Too large for this

level if we add the

new edge here.

Originally this edge at level

2, but we need to decrease

this level after update

Fully dynamic MST

 An O(log4n) amortized update time structure is given in:

 “Poly-logarithmic deterministic fully-dynamic algorithms for

connectivity, minimum spanning tree, 2-edge, and biconnectivity”

 By Holm, Lichtenberg, Thorup, Jounral of ACM 2001

 Construct smaller decremental structure every time

 Complicated analysis

Overview of Dynamic Connectivity Results

 Edge update—amortized time

 Holm, Lichtenberg, and Thorup: O(log2n)

 Edge update—worst-case

 Frederickson, Eppstein et al: O(n1/2)

Dynamic Subgraph Model

 There is a fixed underlying graph G, every vertex in G is

in one of the two states “on” and “off”.

 Construct a dynamic data structure:

 Update: Switch a vertex “on” or “off”.

 Query: For a pair (u,v), answer connectivity/shortest path

between u and v in the subgraph of G induced by the “on”

vertices.

Dynamic Connectivity

Edge Updates Vertex Updates (Subgraph)

Amortized O(log2n)
[Holm, Lichtenberg & Thorup
’1998]

Õ(m2/3), with query time Õ(m1/3)
[Chan, Pâtraşcu & Roditty ‘2008]

Worst-Case O(n1/2)
[O(m1/2) by Frederickson ’1985]
[Improved by Eppstein, Galil,
Italiano, Nissenzweig ‘1992]

Õ(m4/5), with query time Õ(m1/5)
[Duan 2010]

d-failure Model

 d-failure model:

 The number of “failed” vertices/edges is bounded by d

 It can be seen as a static structure, in which the query (u,v) is

given with a set D of “failed” vertices/edges and |D|≤ d

Next lecture

 Worst-case dynamic connectivity

