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In this talk 

 Concept of dynamic algorithms 

 Dynamic connectivity of O(log2n) amortized update time 

 Decremental minimum spanning tree 



Dynamic Problems 

 Find algorithms and data structures to answer a certain 

query about a set of input objects where each time the 

input data is modified. 

 



Dynamic Graph 

 Fully dynamic model: we can insert and delete edges to 

the graph G 

 Decremental model: only deletions 

 Incremental model: only insertions 

 



About dynamic algorithms 

 Measures of complexity: 

 Memory space to store the required data structures 

 Initial construction time for the data structure 

 Insertion/deletion time: time required to modify the data 

structure 

 Update time 

 Query time: time needed to answer an query 

 



Amortized analysis 

 For a sequence of updates, count the average time 

needed per each update. 

 Some updates may require much longer time 

 Only happen infrequently 



Connectivity Problem 

 In an undirected graph G, judge whether any two vertices 

are connected by a path. 



Dynamic Connectivity 

 We can insert or delete edges in this graph, and still find 

the connectivity of any pair of vertices. 



Dynamic Connectivity 

 We can insert or delete edges in this graph, and still find 

the connectivity of any pair of vertices. 



Connectivity and spanning forest 

 Spanning forest F: there is a spanning tree in each 

connected component 

 Connectivity: check whether u,v are in the same spanning 

tree of F. 



Dynamic Connectivity 

 Maintain the spanning forest dynamically 

 Inserting (u,v): 

 When u,v are in the same tree, F do not change 

 When u,v are not in the same tree, connect these trees to a 

bigger tree 



Dynamic Connectivity 

 Maintain the spanning forest dynamically 

 Deleting a tree edge (u,v): 

 The tree will be split into two parts 

 We need to find other edges reconnecting these two parts 
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Dynamic Connectivity 

 Maintain the spanning forest dynamically 

 Deleting a tree edge (u,v): 

 The tree will be split into two parts 

 We need to find other edges reconnecting these two parts 



Holm, Lichtenberg & Thorup’s structure 

 O(log2n) amortized update time  

 Best amortized update time so far. 

 Appears in STOC’98 



High-level description 

 Each edge e is assigned a level l(e). (0≤l(e)≤lmax) 

 Ei={edges of level ≥ i} 

 So E=E0⊇E1⊇…⊇Elmax 

Level 2 

Level 1 

Level 0 

E0 

E1 

E2 



High-level description 

 We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax on 

E0,E1,…,Elmax  

 if e=(u,v) is a non-tree edge in Ei, u and v are connected in Fi 

 if e is a tree edge in Fi, it must be a tree edge in Fj (j<i) 

 Also, the number of vertices of a tree in Fi is at most n/2i 

 

 

 These properties are maintained throughout the 

algorithm. 



High-level description 

 We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax on 

E0,E1,…,Elmax  

 if e=(u,v) is a non-tree edge in Ei, u and v are connected in Fi 

 if e is a tree edge in Fi, it must be tree edge in Fj (j<i) 

 Also, the number of vertices of a tree in Fi is at most n/2i 

 The sizes of connected components decrease by a half when 

level increases 

 So lmax=O(log n) 

 These properties are maintained throughout the 

algorithm. 



Example 

 



Example – tree edge 

 level ≥2 

 level 1 

 level 0 



Remind 

 Inserting (u,v): 

 When u,v are in the same tree, F do not change 

 When u,v are not in the same tree, connect these trees to a 

bigger tree 

 Deleting a tree edge (u,v): 

 The tree will be split into two parts 

 We need to find other edges reconnecting these two parts 

 

 



Algorithm 

 Initially the graph is empty 

 Level of an edge only increases, never decreases 

 When we have checked the edge, its level increases 

 Only increases for lmax=O(log n) times 

 So the amortized time for an edge is very small.  



Algorithm 

 Insert(e): 

  l(e)=0, if its two ends are not connected in F0, e is added to F0 

 Delete(e): 

 If e is not a tree edge at level l(e), simply delete e 

 If e is a tree edge, delete it in F0, F1,…,Fl(e),  

 and call Reconnect(e, l(e)) 

 

 



Algorithm 

 Insert(e): 

  l(e)=0, if its two ends are not connected in F0, e is added to F0 

 Delete(e): 

 If e is not a tree edge at level l(e), simply delete e 

 If e is a tree edge, delete it in F0, F1,…,Fl(e),  

 and call Reconnect(e, l(e)) 

 

 Spanning forests F=F0⊇F1⊇…⊇Flmax on 

E0,E1,…,Elmax  

So when e is not a tree edge at its level l(e), 

it can not be a tree edge at other levels. 



Algorithm 

 Reconnect((u,v),i) – reconnect trees containing u and v by 

edges of level i 

 T– original tree in Fi containing (u,v),  

 T(u),T(v)– trees in Fi containing u,v after deletion of (u,v) 

 One of T(u),T(v) has at most a half as many vertices as T, 

assume it is T(u), move T(u) to level i+1 

 Check level i edges f incident to T(u) one by one, either: 

 f does not connect T(u) and T(v), then it must be included in T(u), 

increase its level to i+1 

 f connect T(u) and T(v), stop the search, and add f to F0, F1,…,Fi 

 If no such edges are found, call Reconnect((u,v),i-1) 

 If i=0, we conclude that there is no reconnecting edges. 

 

 



Algorithm 

 f does not connect T(u) and T(v), then it must be included in T(u), 

increase its level to i+1 (since |T(u)|≤½|T|) 

 f connect T(u) and T(v), stop the search, and add f to F0, F1,…,Fi 

 

 



 

Algorithm 

 f does not connect T(u) and T(v), then it must be included in T(u), 

increase its level to i+1 

 f connect T(u) and T(v), stop the search, and add f to F0, F1,…,Fi 

 

 



Algorithm 

 f does not connect T(u) and T(v), then it must be included in T(u), 

increase its level to i+1 

 f connect T(u) and T(v), stop the search, and add f to F0, F1,…,Fi 

 

 



Bound the reconnecting time 

 In one update we may need to check all the edges associated 

with a subtree T(u) 

 But after checking an edge, its level increases, so every edge 

can be checked O(log n) times 

 If initially the graph is empty, the number of edges is at most 

the number of update, so we need to check O(log n) edges 

per update. 



 We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax on 

E0,E1,…,Elmax  

 if e=(u,v) is a non-tree edge in Ei, u and v are connected in Fi 

 if e is a tree edge in Fi, it must be tree edge in Fj (j<i) 

 Also, the number of vertices of a tree in Fi is at most n/2i 

 

 

 These properties hold after the update algorithm 



Example 

 F0, F1, F2: (non-tree edges are shown only in their levels) 

 



Example 

 Deleting a tree edge: 



Example 

 Call Reconnect(e,l(e)) 



Example 

 Check for an edge whether it can reconnect them 



Example 

 Remove it to higher level 



Example 

 Call reconnect in lower level 



Implementation 

 We need to keep dynamic forest 

 Merge two tree by an edge 

 Split a tree into two subtrees 

 Find the tree containing a given vertex 

 Return the size of a tree 

 Min-key: returns the minimal key in a tree 

 

 These operations can all be done in O(log n) time. 



ET-trees 

 Euler Tour of T: 

 

 

 

 

 

 Every vertex can appear many times in the Euler Tour, but 

we only keep any one of them for each vertex to form a 

ET-list： 

 v1，v2，… vn 

 



When we delete a tree edge, the ET-list will be 

divided into ≤3 parts, and we need to merge two 

lists.  

v1，v2，v3，v4，v5，v6，v7，v8，v9，v10，v11 

 

(v1，v2，v3，v4，v5，v10，v11);  (v6，v7，v8，v9) 

 



When we connect two trees by an edge, we need 

to split the ET-lists of the two trees from the 

vertices on that edge …  

(v1，v2，v3，v4，v5),  (v6，v7) 
 

(u1),  (u2，u3，u4) 

 



When we connect two trees by an edge, we need 

to split the ET-lists of the two trees from the 

vertices on that edge, and merge them in the 

right order.  

(v1，v2，v3，v4，v5),  (v6，v7); (u1),  (u2，u3，u4) 
 

(v1，v2，v3，v4，v5，u2，u3，u4，u1，v6，v7) 

 



Euler Tour 

 Euler Tour of T: 

 

 

 

 

 

 So we only need O(1) link & cut operations to maintain the 

ET-lists per tree merging or splitting. 

 However, we need balanced binary trees to keep the ET-lists, 

so it takes O(log n) time to rebalancing after a update, 



Self-balancing binary search tree 

 Automatically keep its height O(log n) 



Self-balancing binary search tree 

 Need O(log n) time to rebalancing 

 O(log n) time to find the root from a vertex 

 Every vertex can store the size or min-key of its subtree, 

so these information can be maintained in O(log n) time 

per update. 



ET-tree 

 We need to keep dynamic forest 

 Merge two tree by an edge 

 Split a tree into two subtrees 

 Find the tree containing a given vertex 

 Return the size of a tree 

 Min-key: returns the minimal key in a tree 

 

 These operations can all be done in O(log n) time. 



Back to dynamic connectivity 

 If initially the graph is empty, the number of edges is at 

most the number of update, so we need to check O(log n) 

edges per update. 

 Since merging two trees takes O(log n) time, and an edge 

can merge trees in O(log n) levels, so the amortized 

update time is O(log2n) 



Back to dynamic connectivity 

 If initially the graph is empty, the number of edges is at 

most the number of update, so we need to check O(log n) 

edges per update. 

 Since merging two trees takes O(log n) time, and an edge 

can merge trees in O(log n) levels, so the amortized 

update time is O(log2n). 

 Deletion can cost O(log2n) time. 

 Delete an edge in lmax trees 

 

 Query time: O(log n/loglog n) 

 Space: O(m+nlog n) (almost linear) 



Dynamic Minimum Spanning Tree 

 Much more complicated since we need to consider the 

order of edges 

 Decremental minimum spanning tree 

 Only a modification from dynamic connectivity structure 

 Only support deletions 



Algorithm 

 Originally we have a MST F0 at level 0 

 Delete(e): 

 If e is not a tree edge at level l(e), simply delete e 

 If e is a tree edge, delete it in F0, F1,…,Fl(e),  

 and call Reconnect(e, l(e)) 

 

 

Spanning forests F=F0⊇F1⊇…⊇Flmax on 

E0,E1,…,Elmax  

So when e is not a tree edge at level l(e), it 

can not be a tree edge at other levels. 



Algorithm 

 Reconnect((u,v),i) – reconnect trees containing u and v by 

edges of level i 

 T– original tree containing (u,v),  

 T(u),T(v)– trees containing u,v after deletion of (u,v) 

 One of T(u),T(v) has at most a half as many vertices as T, 

assume it is T(u), move T(u) to level i+1 

 Check level i edges f incident to T(u) in increasing order,  

 f does not connect T(u) and T(v), then it must be included in T(u), 

increase its level to i+1 

 f connect T(u) and T(v), stop the search, and add f to F0, F1,…,Fi 

 If no such edges are found, call Reconnect((u,v),i-1) 

 If i=0, we conclude that there is no reconnecting edges. 

 

 



Algorithm 

 Reconnect((u,v),i) – reconnect trees containing u and v by 
edges of level i 

 T– original tree containing (u,v),  

 T(u),T(v)– trees containing u,v after deletion of (u,v) 

 One of T(u),T(v) has at most a half as many vertices as T, 
assume it is T(u), move T(u) to level i+1 

 Check level i edges f incident to T(u) in increasing order,  

 f does not connect T(u) and T(v), then it must be included in T(u), 
increase its level to i+1 

 f connect T(u) and T(v), stop the search, and add f to F0, F1,…,Fi 

 If no such edges are found, call Reconnect((u,v),i-1) 

 If i=0, we conclude that there is no reconnecting edges. 

 

 Intuitively, we can see we find the minimum edge which reconnects the 
two subtrees. 

 

 



Example 
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Invariants 

1. We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax 

on E0,E1,…,Elmax  

2. The number of vertices of a tree in Fi is at most n/2i 

3. Every cycle C has a non-tree edge e with: 
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Proof of correctness 

 Assume (3), the lightest replacement edge is on the 

maximum level 

 

 

 

 The algorithm maintains (3) 



Proof of correctness 

 Assume (3), the lightest replacement edge is on the 

maximum level 

 Compare two replacement edges e1, e2, if w(e1)≤w(e2), we 

need to prove l(e1)≥l(e2) 

 e1, e2 can form cycles C1, C2 with the original tree 



Proof of correctness 

 Assume (3), the lightest replacement edge is on the 

maximum level 

 Compare two replacement edges e1, e2, if w(e1)≤w(e2), we 

need to prove l(e1)≥l(e2) 

 e1, e2 can form cycles C1, C2 with the original tree 

 e1, e2 must be largest edges in C1, C2, resp. Otherwise original tree is 

not minimum  



 Assume (3), the lightest replacement edge is on the 

maximum level 

 Compare two replacement edges e1, e2, if w(e1)<w(e2), we 

need to prove l(e1)≥l(e2) 

 e1, e2 can form cycles C1, C2 with the original tree 

 e1, e2 must be largest edges in C1, C2, resp. Otherwise original tree is 

not minimum  

 C=C1⊕C2 is also a cycle with e1 and e2,  and w(e2) is the 

largest in C,  so l(e2) is lowest. 

(3) Every cycle C has a non-tree edge e with largest weight and lowest level 



Proof of correctness 

 The algorithm maintains (3): 

 

 When the level of e increases, e is in T(u)  

 Assume e is the unique lowest largest edge on some cycle C 

 

 All other edges of C incident to T(u) have level >l(e) 

 C cannot leave T(u) 

 So all other edges in C have level >l(e), so (3) is maintained when l(e) 

increases by 1 

 

(3) Every cycle C has a non-tree edge e with largest weight and lowest level 



Proof of correctness 

 The algorithm maintains (3): 

 

 When the level of e increases, e is in T(u)  

 Assume e is the unique lowest largest edge on some cycle C 

 

 All other edge of C incident to T(u) have level >l(e) 

 C cannot leave T(u) (Otherwise there will be a replacement found.) 

 So all other edges in C have level >l(e), so (3) is maintained when l(e) 

increases by 1 

 

(3) Every cycle C has a non-tree edge e with largest weight and lowest level 



Update time 

 Only need to maintain min-key in ET-tree structure 

 

 Update time for this decremental MST is still O(log2n) 



Discussion 

 Why is it hard to extend this to fully dynamic MST? 

 Unlike connectivity structures, we may need to change the 

forest when inserting an edge. 

 Totally breaking the order of the structure 



Invariants 

1. We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax on E0,E1,…,Elmax  

2. The number of vertices of a tree in Fi is at most n/2i 

3. Every cycle C has a non-tree edge e with: 

 

 

 

 If we insert an edge with very small weight: 



w(e) max fC w( f )

l(e) max fC l( f )
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 If we insert an edge with very small weight: 

 The MST will change, so as MST in higher 

 levels 



w(e) max fC w( f )

l(e) max fC l( f )



Invariants 

1. We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax on E0,E1,…,Elmax  

2. The number of vertices of a tree in Fi is at most n/2i 

3. Every cycle C has a non-tree edge e with: 

 

 

 

 If we insert an edge with very small weight: 

 The MST will change, so as MST in higher 

 levels 

 Level decreasing will destroy the hierarchy 



w(e) max fC w( f )

l(e) max fC l( f )

Too large for this 

level if we add the 

new edge here. 

Originally this edge at level 

2, but we need to decrease 

this level after update 



Fully dynamic MST 

 An O(log4n) amortized update time structure is given in: 

 “Poly-logarithmic deterministic fully-dynamic algorithms for 

connectivity, minimum spanning tree, 2-edge, and biconnectivity” 

 By Holm, Lichtenberg, Thorup, Jounral of ACM 2001 

 

 Construct smaller decremental structure every time 

 Complicated analysis 



Overview of Dynamic Connectivity Results 

 Edge update—amortized time 

 Holm, Lichtenberg, and Thorup: O(log2n) 

 

 Edge update—worst-case 

 Frederickson, Eppstein et al: O(n1/2) 

 

 

 

 



Dynamic Subgraph Model 

 There is a fixed underlying graph G, every vertex in G is 

in one of the two states “on” and “off”.  

 Construct a dynamic data structure: 

 Update: Switch a vertex “on” or “off”. 

 Query: For a pair (u,v), answer connectivity/shortest path 

between u and v in the subgraph of G induced by the “on” 

vertices. 

 



Dynamic Connectivity 

Edge Updates Vertex Updates (Subgraph) 

Amortized O(log2n) 
[Holm, Lichtenberg & Thorup 
’1998] 

Õ(m2/3), with query time Õ(m1/3) 
[Chan, Pâtraşcu & Roditty ‘2008] 

Worst-Case O(n1/2) 
[O(m1/2) by Frederickson ’1985] 
[Improved by Eppstein, Galil, 
Italiano, Nissenzweig ‘1992] 

Õ(m4/5), with query time Õ(m1/5) 
[Duan 2010] 



d-failure Model 

 d-failure model: 

 The number of “failed” vertices/edges is bounded by d 

 It can be seen as a static structure, in which the query (u,v) is 

given with a set D of “failed” vertices/edges and |D|≤ d 

 



Next lecture 

 Worst-case dynamic connectivity 


