Dynamic Connectivity II

Ran Duan

In this lecture

- Worst-case dynamic connectivity in $\tilde{O}(m^{1/2})$
- Improves to $\tilde{O}(n^{1/2})$ by sparsification
- Subgraph connectivity in amortized $\tilde{O}(m^{2/3})$ update time

Õ(•) hides poly-logarithmic factors
 For example, Õ(n²) means O(n²•log^kn) for some constant k.

About dynamic algorithms

- Measures of complexity:
 - Memory space to store the required data structures
 - Initial construction time for the data structure
 - Insertion/deletion time: time required to modify the data structure
 - Update time
 - Query time: time needed to answer an query

Overview of Dynamic Connectivity Results

Edge update—amortized time

• Holm, Lichtenberg, and Thorup '1998: O(log²n)

Edge update—worst-case

- Frederickson '1983: $\tilde{O}(m^{1/2})$
- Eppstein, Galil, Italiano, Nissenzweig '1992: Õ(n^{1/2})
- Not improved for 20 years, still a large gap to the amortized bound
- Major challenge in dynamic algorithms

Overview of Frederickson's algorithm

- Make G degree-bounded
- Partition T into components with O(z) vertices
- Maintain the set of edges between every pair of components

Degree-bounded

- Make the degree of every vertex no greater than 3
- By adding O(m) vertices
- Now |V|,|E| are both O(m)

Degree-bounded

- Make the degree of every vertex no greater than 3
- By adding O(m) vertices
- Updating an edge in original graph only affects O(1) vertices and edges.

Partition of the spanning tree

- For a spanning tree T, find an edge set E' whose removal from T leaves subtrees with [z,3z-2] vertices.
 - ▶ So the number of such subtrees is O(m/z)

- O(m) time algorithm:
 - Starting from any leaf vertex r, call it the "root"
 - Run the depth-first search:

```
Search(v)
    clust={v}
    for each child w of v do
        clust:=clustUSearch(w)
    endfor
    if |clust|<z then return(clust)
        else output(clust); return(Ø)
    endif</pre>
```

- O(m) time algorithm:
 - Starting from any leaf vertex r, call it the "root"
 - Run the depth-first search:

```
Search(v)
    clust={v}
    for each child w of v do
        clust:=clustUSearch(w)
    endfor
    if |clust|<z then return(clust)
        else output(clust); return(Ø)
    endif</pre>
```


- O(m) time algorithm:
 - Starting from any leaf vertex r, call it the "root"
 - Run the depth-first search:

```
Search(v)
    clust={v}
    for each child w of v do
        clust:=clustUSearch(w)
    endfor
    if |clust|<z then return(clust)
        else output(clust); return(Ø)
    endif</pre>
```


- O(m) time algorithm:
 - Starting from any leaf vertex r, call it the "root"
 - Run the depth-first search:

```
Search(v)
    clust={v}
    for each child w of v do
        clust:=clustUSearch(w)
    endfor
    if |clust|<z then return(clust)
        else output(clust); return(Ø)
    endif</pre>
```


- O(m) time algorithm:
 - Starting from any leaf vertex r, call it the "root"
 - Run the depth-first search:

```
Search(v)

clust={v}

for each child w of v do

clust:=clust∪Search(w)

endfor

if |clust| <z then return(clust)

else output(clust); return(Ø)

endif
```


- O(m) time algorithm:
 - Starting from any leaf vertex r, call it the "root"
 - Run the depth-first search:

```
Search(v)
    clust={v}
    for each child w of v do
        clust:=clustUSearch(w)
    endfor
    if |clust|<z then return(clust)
        else output(clust); return(Ø)
    endif</pre>
```


- O(m) time algorithm:
 - Starting from any leaf vertex r, call it the "root"
 - Run the depth-first search:

```
Search(v)
    clust={v}
    for each child w of v do
        clust:=clustUSearch(w)
    endfor
    if |clust|<z then return(clust)
        else output(clust); return(Ø)
    endif</pre>
```

If the procedure Search(r) finally return
 a non-empty set of size <z, union it with
 the last output set.

Correctness

```
Search(v)
    clust={v}
    for each child w of v do
        clust:=clustUSearch(w)
    endfor
    if |clust|<z then return(clust)
        else output(clust); return(Ø)
    endif</pre>
```


- Since we start from a leaf, and the graph has degree bound 3, every vertex has at most 2 children
- The function Search(v) will always return a set of size $\leq z I$
- ► So the output set has at most 2(z-1)+1=2z-1 vertices

Correctness

```
Search(v)
    clust={v}
    for each child w of v do
        clust:=clustUSearch(w)
    endfor
    if |clust|<z then return(clust)
        else output(clust); return(Ø)
    endif</pre>
```


- Since we start from a leaf, and the graph has degree bound 3, every vertex has at most 2 children
- The function Search will always return a set of size $\leq z-1$
- So the output set has at most 2(z-1)+1=2z-1 and at least z vertices
- If the procedure Search(r) finally return a non-empty set of size <z, union it with the last output set.</p>
- The bound of this set is (z-1)+(2z-1)=3z-2

Partition of the spanning tree

- Thus for a spanning tree T, in O(m) time, we can find an edge set E' whose removal from T leaves vertex sets of size [z,3z-2]
 - ▶ So the number of such subtrees is O(m/z)
 - Topological partition of order z
- Let E_{ij} be the set of non-tree edges connecting sets V_i and V_j
 The number of such edge sets is O(m²/z²)
 |U_i E_{ij}| = O(z)

- Insertion is trivial
- When deleting a tree edge e=(x,y)
 - If x,y are not in the same set, then we need to check all the edge set E_{ij} where V_i and V_j are in different subtrees

- When deleting a tree edge e=(x,y)
 - If x,y are not in the same set, then we need to check all the edge set E_{ij} where V_i and V_j are in different subtrees
 - The number of such E_{ij} is $O(m^2/z^2)$

- When deleting a tree edge e=(x,y)
 - If x,y are in the same set V_i , then V_i will be divided into two parts
 - Then we need to check all edges in E_{ii} and check E_{ii} for every V_i

- When deleting a tree edge e=(x,y)
 - If x,y are in the same set V_i , then V_i will be divided into two parts
 - Then we need to check all edges in E_{ii} and check E_{ii} for every V_i

- When deleting a tree edge e=(x,y)
 - If x,y are in the same set V_i , then V_i will be divided into two parts
 - Then we need to check all edges in E_{ii} and check E_{ij} for every V_j, and also other edge sets connecting two subtrees
 - ▶ Time needed: O(z+m²/z²)

- We can see the two sets V' and V'' split from V_i may have <z vertices.</p>
- Rearrange: Combine each of them with one adjacent vertex set and perform the topological partition.

- We can see the two sets V' and V'' split from V_i may have <z vertices.</p>
- Rearrange: Combine each of them with one adjacent vertex set and perform the topological partition.
 - The bound for the combined set: $\leq 4z-3$

- We can see the two sets V' and V'' split from V_i may have <z vertices.</p>
- Rearrange: Combine each of them with one adjacent vertex set and perform the topological partition.
 - The bound for the combined set: $\leq 4z-3$

- We can see the two sets V' and V'' split from V_i may have <z vertices.</p>
- Rearrange: Combine each of them with one adjacent vertex set and perform the topological partition.
 - The bound for the combined set: \leq 4z-3
 - Also rearrange all the edge
 sets associated with these vertex
 sets
 - Since the graph has degree
 bound 3, the number of such edges
 is still O(z)
 - ► Time needed: O(z)

Running time

- $O(z+m^2/z^2)$ to find a replacement edge
- O(z) to rearrange so that each set still has [z,3z-2]vertices
- When balancing these two, we get z=m^{2/3}, and the running time is O(m^{2/3}).

Improving it to $O(m^{1/2}\log n)$

- In the previous algorithm we need to check every pair of vertex sets between two split trees.
- We can store all the edges from a vertex set to the other sets in the tree in one structure
 - Use the ET-tree structure
 - In Frederickson's old paper (1983), they describe another structure called "topology trees" with similar functions.

ET-tree

- We need to keep dynamic forest
 - Merge two tree by an edge
 - Split a tree into two subtrees
 - Find the tree containing a given vertex
 - Return the size of a tree
 - Min-key: returns the minimal key in a tree
- These operations can all be done in O(log n) time.

ET-trees

• Euler Tour of T:

Every vertex can appear many times in the Euler Tour, but we only keep any one of them for each vertex to form a ET-list:

$$v_1, v_2, \dots v_n$$

Euler Tour

• Euler Tour of T:

- So we only need O(I) link & cut operations to maintain the ET-lists per tree merging or splitting.
- We need balanced binary trees to keep the ET-lists.

ET-tree structure

D

Euler Tour of a tree
 Binary tree for the ET-list

ET-tree structure

- Euler Tour of a tree
 - If some edges are connected to a component
- Binary tree for the ET-list
 - Then we can easily check whether there is an edge from this tree to that component

Updating ET-tree structure

- Euler Tour of a tree
 - When we update an edge

- Binary tree for the ET-list
 - We just need to updateO(log n) nodes in the binary tree

Represent tree of components

Components on vertex sets
 Tree of components

Store E_{ij} for all V_j in the tree

Components on vertex sets
 Tree of components

Store E_{ij} for all V_j in the tree

Components on vertex sets

 Binary tree used to represent edges connecting V₃ to other sets

• We call this structure $H(V_i, T)$

Euler Tour

- We only need O(I) link & cut operations to maintain the ETlists per tree merging or splitting.
- It takes O(log n) time to rebalancing the binary tree after a update,
- So when we merging or splitting trees, the time needed to maintain H(V_i,T) for a set V_i is O(log n).
 - Total time: $O(k \bullet \log n)$ for all V_1, \dots, V_k

Update

- When deleting a tree edge e=(x,y)
 - If x,y are not in the same set, then first we split the tree into two parts
 - This will need O(1) links and cuts to ET-lists,
 - So O(m/z•log n) operations to update H(V_i,T₁) and H(V_i,T₂) for all sets V_i
 - Then we need to check all structure $H(V_i, T_1)$ for V_i in T_2 or $H(V_i, T_2)$ for V_i in T_1
 - The number of such H-structures is O(m/z)

Deleting an edge inside one component

- Then we need to check all edges in E_{ii} and E_{ij} for every V_j, and also other Hstructures connecting two subtrees
- We can see the two sets V' and V'' split from V_i may have < z vertices.
- Rearrange: Combine each of them with one adjacent vertex set and perform the topological partition.
- When rearranging a non-tree edge from V_i to V_j , we need to update O(log n) nodes in H(V_i ,T), H(V_j ,T)
- Total time: O(m/z•log n+z•log n)

Running time

- O(z+m/z•log n) to find a replacement edge
- O(z•log n) to rearrange and update H-structures
- When balancing these two, we get z=m^{1/2}, and the running time is Õ(m^{1/2}).

Dynamic minimum spanning tree

- This Õ(m^{1/2}) structure can be easily extended to dynamic minimum spanning tree structure:
 - Sort all the edges in every E_{ij}
 - Maintain the min-key in every $H(V_i,T)$

• • • •

Improve Frederickson's algorithm to $\tilde{O}(n^{1/2})$

Sparsification:

- "Sparsification A technique for speeding up dynamic graph algorithms"
- By Eppstein, Galil, Italiano, Nissenzweig, Journal of ACM 1997

Improve Frederickson's algorithm to $\tilde{O}(n^{1/2})$

Sparsification:

- "Sparsification A technique for speeding up dynamic graph algorithms"
- By Eppstein, Galil, Italiano, Nissenzweig, Journal of ACM 1997

- They divide the edge set E into subsets {E_i}
- Maintain spanning trees T_i on {E_i}
- Maintain spanning trees on the union of some T_i

Partition E into sets of n edges:

- ► { $E_1, E_2, ..., E_k$ }, where k≤[m/n], and | E_i |=n for i=1,...,k-1
- When inserting an edge e,
 - Insert e to E_k if $|E_k| < n$
 - Otherwise create a new set E_{k+1}
- When deleting an edge from E_i
 - Move one edge of E_k to Ei
 - If E_k becomes empty, remove E_k

- Assume a dynamic connectivity structure of update time f(n,m)
- Maintain spanning forests F_i in $G_i = (V, E_i)$

- Assume a dynamic connectivity structure of update time f(n,m)
- Maintain spanning forests F_i in $G_i = (V, E_i)$

- Assume a dynamic connectivity structure of update time f(n,m)
- Maintain spanning forests F_i in $G_i = (V, E_i)$
- In the graph $G_{12}=(V,F_1\cup F_2)$, maintain a spanning forest
 - G₁₂ also has O(n) edges
 - It maintains the connectivity of $(V, E_1 \cup E_2)$

▶ F is a strong certificate of connectivity for G:

• If F_1 , F_2 are spanning forests on G_1 , G_2 , then u,v are connected in $F_1 \cup F_2$ if they are connected in $G_1 \cup G_2$.

- F is a strong certificate of connectivity for G:
 - If F_1 , F_2 are spanning forests on G_1 , G_2 , then u,v are connected in $F_1 \cup F_2$ if they are connected in $G_1 \cup G_2$.
 - Proof: Consider the path from u to v in $G_1 \cup G_2$:
 - edges of G₁
 - edges of G₂

- F is a strong certificate of connectivity for G:
 - If F_1 , F_2 are spanning forests on G_1 , G_2 , then u,v are connected in $F_1 \cup F_2$ if they are connected in $G_1 \cup G_2$.
 - Proof: Consider the path from u to v in $G_1 \cup G_2$:
 - edges of GI, edges of G₂
 - (dash lines: edges in F₁ and F₂)

F is a strong certificate of connectivity for G:

• If F_1 , F_2 are spanning forests on G_1 , G_2 , then u,v are connected in $F_1 \cup F_2$ if they are connected in $G_1 \cup G_2$.

F is stable:

 We only need to update O(1) edges in F when updating an edge of G

Maintain the structure on a binary tree

- Each node represents a subgraph of G
 - The edges of each node is the union of the spanning forests of its children.
 - The number of levels: O(log k)=O(log(m/n))
 - The number of edges in each node: O(n)
 - Finally we can check the connectivity in the root node

Maintain the structure on a binary tree

- When updating an edge in G_i, we only need to update at most
 2 edges in G_i's ancestors.
 - Since the number of levels is O(log k)=O(log(m/n)) and the number of edges in each node is O(n)
 - Update time is f(n,O(n))•O(log(m/n)) using a structure with f(n,m) update time.

Maintain the structure on a binary tree

- When updating an edge in G_i, we only need to update at most
 2 edges in G_i's ancestors.
 - Since the number of levels is O(log k)=O(log(m/n)) and the number of edges in each node is O(n)
 - Update time is f(n,O(n))•O(log(m/n)) using a structure with f(n,m) update time
 - By the Frederickson's structure of update time $\tilde{O}(m^{1/2})$,
 - We get a dynamic connectivity structure of update time $\tilde{O}(n^{1/2})$.

Summary of Dynamic Connectivity Results

- Edge update—amortized time
 - ▶ Holm, Lichtenberg, and Thorup: O(log²n)
- Edge update—worst-case
 - Frederickson, Eppstein et al: $\tilde{O}(n^{1/2})$

Dynamic Subgraph Model

- There is a fixed underlying graph G, every vertex in G is in one of the two states "on" and "off".
- Construct a dynamic data structure:
 - Update: Switch a vertex "on" or "off".
 - Query: For a pair (u,v), answer connectivity/shortest path between u and v in the subgraph of G induced by the "on" vertices.

Dynamic Connectivity

	Edge Updates	Vertex Updates (Subgraph)
Amortized	O(log ² n) [Holm, Lichtenberg & Thorup '1998]	Õ(m ^{2/3}), with query time Õ(m ^{1/3}) [Chan, Pâtraşcu & Roditty '2008]
Worst-Case	O(n ^{1/2}) [O(m ^{1/2}) by Frederickson '1985] [Improved by Eppstein, Galil, Italiano, Nissenzweig '1992]	Õ(m ^{4/5}), with query time Õ(m ^{1/5}) [Duan 2010]

Dynamic Subgraph Connectivity (Optional)

- Dynamic subgraph connectivity with Õ(m^{2/3}) amortized pdate time and Õ(m^{1/3}) query time.
 - "Dynamic Connectivity: Connecting to Networks and Geometry"
 - By Chan, Pâtraşcu & Roditty '2008
- Do not maintain a spanning forest for the whole graph.

Trivial Algorithm

Since a vertex can associate with at most n-1 edges, so by the edge connectivity structure, we can get a vertex connectivity structure of amortized update time Õ(n) and query time O(1).

Preprocessing

Maintain two sets of active vertices: P,Q

- Initially all active vertices are in P
- We only delete vertices from P
- When we turn a vertex on, we add it into Q

Thus,

- P just supports deletions (decremental structure)
- Q supports both insertions and deletions

Preprocessing

Maintain two sets of active vertices: P,Q

- Initially all active vertices are in P
- We only delete vertices from P
- When we turn a vertex on, we add it into Q

Thus,

- P just supports deletions (decremental structure)
- Q supports both insertions and deletions
- Reinitialize after q=m^{2/3} updates.
- So the size of Q is at most $m^{2/3}$.

High and low components

- Maintain the decremental connectivity structure with edge updates in P.
- For a connected component in P, if the sum of its degrees exceeds m^{1/3}, it is called a high component, otherwise it is a low component.
- The number of high components is bounded by $O(m^{2/3})$.

Maintain a new graph

- Maintain a graph G^* of vertices $O(m^{2/3})$:
 - Vertices of Q
 - Vertices set H where each vertex represents a high component in P
 - And the original edges in G connecting those vertices and components.

The sets P and Q:

The graph G*

Note that there is no edges connecting these components

But what if two vertices of Q can be connected by a low component?

The Edge Set Γ

- We construct a edge set Γ on the vertices in G
- If both u and v are adjacent to the same low component in P, then there is an edge (u,v) in Γ.
- There can be multiple edges between u and v.

Example

The size of Γ

- For every edge connecting a low component and a vertex, since the number of edges associate with that low component is at most m^{1/3}, so the number of edges in Γ generated by this edge is at most m^{1/3}.
- So the total number of edges in Γ is at most m^{4/3}.

Maintain a new graph

- Maintain a graph G^* of vertices $O(m^{2/3})$:
 - Vertices of Q
 - Vertices set H where each vertex represents a high component in P
 - And the original edges in G connecting those vertices and components.
 - Include the edges of Γ into G^*
- It is easy to check that for every pair of active vertices in Q, they are connected in G iff they are connected in G*

D

The sets P and Q:

The graph G*

Maintain G* in an edge connectivity oracle.
Query

- It takes O(log n) time to find a vertex in Q which component it is in.
- For vertices in high components:
 - Find the vertex in G* which represents that component
- For vertices in low components:
 - Search for an active vertex of Q adjacent to the component.
 - If it does not exist, the component is isolated.
 - Query time: Õ(m^{1/3}), since the edges associated with a low component is O(m^{1/3}).

Preprocessing Time

- Initializing G* and Γ takes $\tilde{O}(m^{4/3})$ time.
- Since we will reinitialize after m^{2/3} updates, so the amortized cost for every update is Õ(m^{2/3}).

- Initially all active vertices are in P, and Q is empty.
- P -- deletion only

- When update (insert/delete) a vertex v from Q
 - Update G*: check for every vertex in G* whether it is adjacent to v, update those edges
 - ► Time: Õ(m^{2/3}).

When deleting a vertex of a low component in P:

- \blacktriangleright Recompute the edges in Γ generated by it.
- Update those edges in G*

When deleting a vertex of a low component in P:

- \blacktriangleright Recompute the edges in Γ generated by it.
- Update those edges in G*

When deleting a vertex of a low component in P:

- \blacktriangleright Recompute the edges in Γ generated by it.
- Update those edges in G*

When deleting a vertex of a low component in P:

Since the number of edges associate with that low component is at most $m^{1/3}$, we may need to update $O(m^{2/3})$ edges in G^{*}, thus will take $\tilde{O}(m^{2/3})$ time.

- When deleting a vertex of a high component in P:
 - > The new components it generates may be high or low.
 - Rank the new components by the sum of degrees: $R_1, R_2, ..., R_k$ (from high to low).
 - Consider the new high components

Example

Example

Cost of deleting edges in P: In total of one phase is $\tilde{O}(m)$, so it is $\tilde{O}(m^{1/3})$ per updates.

Example

Cost of deleting edges in P: In total of one phase is $\tilde{O}(m)$, so it is $\tilde{O}(m^{1/3})$ per updates.

Time needed to update G*: $O(deg(R_2)+deg(R_3)+...+deg(R_k))$ Since $deg(R_2),deg(R_3),...,deg(R_k)$ are at most half of deg(r), every edge can be moved at most *log*n times, so the total time per phase is still $\tilde{O}(m)$.

For the new low components:

- Compute the edges of Γ generated by them.
- Since an edge can be in a new low component from a high component only once, so the total cost of time is also Õ(m^{4/3}), absorbed by the preprocess cost.

Conclusion

- Preprocessing Time: Õ(m^{4/3}).
- Amortized Update Time: Õ(m^{2/3}).
- Query Time: Õ(m^{1/3})
- Space: $\tilde{O}(m^{4/3})$ (The space needed to store Γ).

Conclusion

- Preprocessing Time: Õ(m^{4/3}).
- Amortized Update Time: Õ(m^{2/3}).
- Query Time: Õ(m^{1/3})
- ▶ Space: Õ(m^{4/3}) (We have improved it to O(m)).

Thank you!