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In this lecture

Concepts of planar graphs
Planar separator theorem
Its applications
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Planar Graphs

In graph theory, a planar graph is a graph that can be
embedded in the plane, i.e. it can be drawn on the
plane in such a way that no edges cross each other.
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Planar Graphs

In graph theory, a planar graph is a graph that can be
embedded in the plane, i.e. it can be drawn on the
plane in such a way that no edges cross each other.

A planar graph already drawn in the plane without
edge intersections is called a plane graph or planar
embedding of the graph
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Planar Non-planar
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Some facts about planar graph

Any n-vertex planar graph with n>3 contains no more than
3n-6 edges.
Why?

e Euler’s Formula: v-e+f=2

e Make every face a triangle, then 3f=2e



" Kuratowski’s thereom

A finite graph is planar if and only if it does not
contain a subgraph that is a subdivision of K, or K, ..
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Kuratowski’s thereom

A finite graph is planar if and only if it does not
contain a subgraph that is a subdivision of K, or K, ..

Subdivision of G

e insert vertices into edges:

>l
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Let G be any planar graph. Shrinking any edge of G to a
single vertex preserves planarity

e Intuitive result

e Can be proved by Kuratowski’s theorem

P8
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Let G be any planar graph. Shrinking any edge of G to a
single vertex preserves planarity

(Corollary) Let G be any planar graph. Shrinking any
connected subgraph of G to a single vertex preserves
planarity
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Separator

The vertices of G are partitioned into three sets: A,B,C,
such that no edge joins a vertex in A with a vertex in B, then
C is a separator.

e Useful for “divide-and-conquer” method.

e usually requires C is small and A,B are at most on (o is a
constant less than 1)




Séparator for Planar graph

In a planar graph, every cycle is a separator:
e A:vertices inside the cycle
e B:vertices outside the cycle



Sﬁeparator for Planar graph

* n'/2-geparator theorem: |A|,|B|<%n, |C|<2V2n">



/ |

Preliminary theorem:

Let G be a planar graph with nonnegative vertex costs
whose sum <1

If G has a spanning tree T of radius r, then G has a
separator C, s.t. neither A nor B has total cost more than
2/3, and C contains at most 2r+1 vertices.
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" Proof

Assume no vertex has cost more than 1/3
First, make each face triangle by adding additional edges
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" Proof

First, make each face triangle by adding additional edges
Any non-tree edge forms a simple cycle with tree edges
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" Proof

First, make each face triangle by adding additional edges
Any non-tree edge forms a simple cycle with tree edges
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Proof

First, make each face triangle by adding additional edges

Any non-tree edge forms a simple cycle with tree edges
e forms a cycle of length at most 2r+1
e divides the plane into two parts: inside and outside
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First, make each face triangle by adding additional edges

Any non-tree edge forms a simple cycle with tree edges
e forms a cycle of length at most 2r+1
e divides the plane into two parts: inside and outside

e we will show that there exists such a cycle separating the
plane so that neither the inside nor the outside contains
vertices with total cost more than 2/3.



Proof

Just find the non-tree edge (x,z) such that its cycle
separates the vertices most equally:

e minimize the max{costs inside cycle, costs outside cycle}

 break ties by choose the cycle with smallest number of faces
on the “max” side

e if ties remain, choose arbitrarily

So the cycle with (x,z) is what we want.



/

If G has a spanning tree T of radius r, then G has a separator C,
s.t. neither A nor B has total cost more than 2/3, and C
contains at most 2r+1 vertices.

Assume the “max’ side is the inside

If the total cost inside is <2/3, the claim is true.
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If G has a spanning tree T of radius r, then G has a separator C,
s.t. neither A nor B has total cost more than 2/3, and C
contains at most 2r+1 vertices.

Consider the total cost of vertices inside the cycle is >2/3
We will show that it contradicts the way we choose (x,z)
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* minimize the max{costs inside cycle, costs outside cycle}

» break ties by choosing the cycle with smallest number of faces on the “max”
side

consider the triangular face which has (x,z) as a boundary
edge and lies inside the cycle, let the third vertex by y

We study it case by case.
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* minimize the max{costs inside cycle, costs outside cycle}

» break ties by choosing the cycle with smallest number of faces on the “max”
side

1. Both (x,y) and (y,z) lies on the cycle, then the face (x,y,z)
is the cycle, contradicting the inside is the “max” side.

e since (x,y,z) is one face.

KQ"
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* minimize the max{costs inside cycle, costs outside cycle}
» break ties by choosing the cycle with smallest number of faces on the “max”
side

2. One of (x,y) and (y,z) lies on the cycle, assume it is (x,y)

X
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* minimize the max{costs inside cycle, costs outside cycle}

» break ties by choosing the cycle with smallest number of faces on the “max”
side

2. One of (x,y) and (y,z) lies on the cycle, assume it is (x,y)

e Then (y,z) is a non-tree edge defining a cycle with the same vertices
on the “max” side but with one less face.

e contradicting
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* minimize the max{costs inside cycle, costs outside cycle}
» break ties by choosing the cycle with smallest number of faces on the “max”
side

3. Neither (x,y) nor (y,z) lies on the cycle

e It is impossible that both (x,y) and (y,z) are tree edges, since
the tree contains no cycle
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* minimize the max{costs inside cycle, costs outside cycle}

» break ties by choosing the cycle with smallest number of faces on the “max”
side

3. Neither (x,y) nor (y,z) lies on the cycle
e One of them is a tree edge, assume it is (x,y)

* The cycle with (y,z) has one less vertex y and one less face inside
than the cycle with (x,z)
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* minimize the max{costs inside cycle, costs outside cycle}

» break ties by choosing the cycle with smallest number of faces on the “max”
side

e The cycle with (y,z) has one less vertex y and one less face inside than the
cycle with (x.z)

e If the cost inside the (y,z) is greater than the cost outside, (y,z) would have
been chosen in place of (x,z)




/
* minimize the max{costs inside cycle, costs outside cycle}

» break ties by choosing the cycle with smallest number of faces on the “max”
side

Otherwise: since the cost inside the (x,z) cycle is =2/3, and the cost of y is
<1/3, so the cost inside the (y,z) cycle is =1/3.

So (y,z) cycle would have been chosen instead of (x,z)
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* minimize the max{costs inside cycle, costs outside cycle}

» break ties by choosing the cycle with smallest number of faces on the “max”
side

3. Neither (x,y) nor (y,z) lies on the cycle
* Neither of them is a tree edge, then each of (x,y) and (y,z) defines a cycle.

 every vertex inside the (x,z) cycle would: inside the (x,y) cycle, inside the (y,z)
cycle or on the boundary
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* minimize the max{costs inside cycle, costs outside cycle}

» break ties by choosing the cycle with smallest number of faces on the “max”
side

* Neither of them is a tree edge, then each of (x,y) and (y,z) defines a cycle.

 every vertex inside the (x,z) cycle would: inside the (x,y) cycle, inside the (y,z)
cycle or on the boundary

e Choose the cycle (say (x,y)-cycle) with more total cost inside, since the cost
inside the (x,z) cycle >2/3, the total cost inside the (x,y)-cycle and itself >1/3,
so the cost outside (x,y) cycle <2/3.




//

* minimize the max{costs inside cycle, costs outside cycle}

» break ties by choosing the cycle with smallest number of faces on the “max”
side

Neither of them is a tree edge, then each of (x,y) and (y,z) defines a cycle.

every vertex inside the (x,z) cycle would: inside the (x,y) cycle, inside the (y,z)
cycle or on the boundary

Choose the cycle (say (x,y)-cycle) with more total cost inside, since the cost
inside the (x,z) cycle >2/3, the total cost inside the (x,y)-cycle and itself >1/3,
so the cost outside (x,y) cycle <2/3.

If the cost inside (x,y) cycle is greater than outside, (x,y) would have been
chosen since the cost inside (x,y) cycle is smaller than the cost inside (x,z)
cycle.

Otherwise the cost inside the (x,y) cycle <1/2, so the (x,y) cycle is what we
want.
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We have proved:

Let G be a planar graph with nonnegative vertex costs
whose sum <1

If G has a spanning tree T of radius r, then G has a
separator C, s.t. neither A nor B has total cost more than
2/3, and C contains at most 2r+1 vertices.
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Main theorem:

Let G be a planar graph with nonnegative vertex costs
whose sum <1
Then the vertices of G can be partitioned into A,B,C

e no edge joins A and B

e neither A nor B has total cost >2/3
e |C|=2v2n"?
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Main theorem:

Let G be a planar graph with nonnegative vertex costs
whose sum <1

Then the vertices of G can be partitioned into A,B,C
e no edge joins A and B

e neither A nor B has total cost >2/3
e |C|=2v2n"?

We first assume G is connected



Proof

Partition the vertices into levels by the shortest path tree
from some vertex v

e there is no edges links levels not adjacent to each other
e Let L(l) is the number of vertices on level |

e ris the number of levels, so we have level o, level 1,..., level r

\

level 0

level 1

level 2

level r



et 1 be the lowest level such that the total costs in level o to level i =1/2,
e denote the number of vertices in level o to level i by p
* Find j<i and k=i+1 such that:
o LG #2(icf)<2p
o |L(k)|+2(k-i-1)<2(n-p)">

- y level j

- level i

- level k
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Let i be the lowest level such that the total costs in level o to level
11s =1/2,

e denote the number of vertices in level o to level i by p
Find j<i and k=i+1 such that:

* |L(j)|+2(i-j)=2p*

o |L(k)|+2(k-i-1)=2(n-p)">
Then we will show that the conclusion follows by such j,k, and
such j and k must exist



Let i be the lowest level such that the total costs in level o to level i =1/2,
e denote the number of vertices in level o to level i by p
* Find j<i and k=i+1 such that:
* |L(j)[+2(i-j)=2p*
o |L(k)|+2(k-i-1)<2(n-p)">
* Consider the vertices in levels: [0,j-1], [j+1,k-1],[k+1,1].

A"
0
_____________________________ level j
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___________________________________ " level k
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“Consider the vertices in levels: [o0,j-1], [j+1,k-1],[k+1,r].
» If the numbers of vertices in all of these sets are <2/3, then
o C={vertices in levels j and k}, so |C|<2V2n">

e A=the biggest among these three sets

e B=the union of the other two

v
)
________________________ s » ! evell IL(j)|+2(i-j)=2p">
|L(k) |+2(k-i-1)<2(n-p)"/>
() () () () e -
AR W
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Consider the vertices in levels: [0,j-1], [j+1,k-1],[k+1,r].
If the number of vertices in one of these sets is <2/3, then

o C={vertices in levels j and k}, so |C|<2V2n">
By definition of level i, j, k, the only sets which can has cost >2/3 is the
middle part [j+1,k-1]

e Delete all vertices in levels [k,r]

 Shrink all vertices in levels [0,j] to a single vertex with cost o

e This preserves planarity
By our preliminary theorem, this tree T has a separator of size 2(i-j-1)+1
vertices with one root.

If G has a spanning tree T of radius r, then G
has a separator C, s.t. neither A nor B has
total cost more than 2/3, and C contains at
most 2r+1 vertices.
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Consider the vertices in levels: [0,j-1], [j+1,k-1],[k+1,r].
If the number of vertices in one of these sets is <2/3, then

o C={vertices in levels j and k}, so |C|<2V2n">
By definition of level i, j, k, the only sets which can has cost >2/3 is the
middle part [j+1,k-1]

e Delete all vertices in levels [k,r]

 Shrink all vertices in levels [0,j] to a single vertex with cost o

e This preserves planarity
By our preliminary theorem, this tree T has a separator of size 2(i-j-1)+1
vertices with one root.

 So this separator with L(j) and L(k) will form a separator of size
| L(]) |+ | L(k) |+2(i—j—1)52\/2n1/z

IL(j)|+2(i-j)<2p*>
|IL(K) |+2(k-i-1)<2(n-p)¥/>
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Let i be the lowest level such that the total costs in level o to level
11s =1/2,

e denote the number of vertices in level o to level i by p
Find j<i and k=i+1 such that:

* |L(j)|+2(i-j)=2p*

o |L(k)|+2(k-i-1)=2(n-p)">
Then we will show that the conclusion follows by such j,k, and
such j and k must exist
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Let i be the lowest level such that the total costs in level o to level
11s =1/2,

e denote the number of vertices in level o to level i by p
Find j<i and k=i+1 such that:

o [LG)|+2(i)<2p

o |L(k)|+2(k-i-1)=2(n-p)">
If such j does not exists, then for all h<j, L(h)>2p“?-2(i-h), and
L(o)=1, so i+1/2=p"?, so

p=2L(h) 2D 2\[p-2-h)>p

We can prove k exists by a similar procedure.



Let G be a planar graph with nonnegative vertex costs
whose sum <1
Then the vertices of G can be partitioned into A,B,C

e no edge joins A and B

e neither A nor B has total cost >2/3

e |C|=2v2n"?

Otherwise, For each connected component, we can
find a separator.



Simpler version:

Then the vertices of G can be partitioned into A,B,C
e no edge joins A and B
e |A|, |B|=%n
o |C|<2V2n'>

e By assign each vertex of G a cost of 1/n.



Very useful in divide-and-conquer method
For A and B, recursively find separators in them




Very useful in divide-and-conquer method
For A and B, recursively find separators in them
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Example

* Data structure to store all-pair shortest paths

* nxn table

I O N
Vl

Vs,
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Distance structure for planar graph

* The path between A and B must go through the separator C




- Distance structure for planar graph

The path between A and B must go through the separator C

So we store the distance of (u,v) where ueC and véeV
e Space: O(n3?)




- Distance structure for planar graph

The path between A and B must go through the separator C
So we store the distance of d(u,v) where u€C and veV

e Space: O(n3?)

e Note that the path between A and C may travel through B




- Distance structure for planar graph

The path between A and B must go through the separator C
So we store the distance of (u,v) where ueC and véeV

e Space: O(n3?)
For each of A and B, recursively construct the structure.
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Distance structure for planar graph

The path between A and B must go through the separator C
So we store the distance of (u,v) where ueC and véeV

e Space: O(n3?)
For each of A and B, recursively construct the structure.

e For A, store the distances between all vertices of A and the
vertices of separator of A, where the paths only travel within A

3/2 RS
Total space: 0{n3/2+2@j +4(§j +---]=0(n3/2)
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Answering a query (u,v)
* If u€eA and veB, then just find the minimum of:
e min{d(u,w)+d(w,v)|weC}
e Query time: O(n"?)
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Answering a query (u,v)

 If both u,v€A but in different subparts, find the minimum of:
e min{d(u,w)+d(w,v)|weC}, min{d(u,w’)+d(w’,v)|w'eC’}
e This will cover:
« paths travels through C, paths within A
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Answering a query (u,v)

* If both u,veA but in different subparts, find the minimum of:
e min{d(u,w)+d(w,v)|weC}, min{d(u,w’)+d(w’,v)|w'eC’}
e This will cover:
« paths travels through C, paths within A
e Query time: O(n"?)
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Answering a query (u,v)

Thus, for any u,v in some subpartition, we need to check the
vertices on the borders:

ueny fime ({\/; +\/§ +\/% +J =O0(/n)
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Distance structure for planar graphs

Instead of store an O(n2?) table, we can construct a
structure of space O(n3/2) with query time O(n"?).
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So most problems in graph theory have faster algorithms
for planar graphs than for general graphs.



So most problems in graph theory have faster algorithms
for planar graphs than for general graphs.

O(nY?)-separator is more common, but the path separator
is also useful:

e “Compact oracles for reachability and approximate distances in
planar digraphs”

e Mikkel Thorup, 2004



Pfeliminary theorem:

Let G be a planar graph with nonnegative vertex costs whose sum <1

If G has a spanning tree T of radius r, then G has a separator C, s.t.
neither A nor B has total cost more than 2/3, and C contains at most
2T+1 vertices.




Pfeliminary theorem:

If G has a spanning tree T of radius r, then G has a separator C, s.t.
neither A nor B has total cost more than 2/3, and C contains at most
2T+1 vertices.

C is a cycle formed by the tree and a non-tree edge.

If the tree is a shortest path tree from or to the root, the separator C is
on two paths.







