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In this lecture 
 Concepts of planar graphs 

 Planar separator theorem 

 Its applications 



Planar Graphs 
 In graph theory, a planar graph is a graph that can be 

embedded in the plane, i.e. it can be drawn on the 
plane in such a way that no edges cross each other. 



Planar Graphs 
 In graph theory, a planar graph is a graph that can be 

embedded in the plane, i.e. it can be drawn on the 
plane in such a way that no edges cross each other. 

 A planar graph already drawn in the plane without 
edge intersections is called a plane graph or planar 
embedding of the graph 



Examples 
Planar Non-planar 

  K5 

 

 

 

 

 K3,3: 



Some facts about planar graph 
 Any n-vertex planar graph with n≥3 contains no more than 

3n-6 edges. 

 Why? 
 Euler’s Formula: v-e+f=2 

 Make every face a triangle, then 3f=2e 



Kuratowski’s thereom 
 A finite graph is planar if and only if it does not 

contain a subgraph that is a subdivision of K5 or K3,3. 

 K5 

 

 

 

 

 K3,3: 



Kuratowski’s thereom 
 A finite graph is planar if and only if it does not 

contain a subgraph that is a subdivision of K5 or K3,3. 

 

 Subdivision of G 

 insert vertices into edges: 



 Let G be any planar graph. Shrinking any edge of G to a 
single vertex preserves planarity 

 Intuitive result 

 Can be proved by Kuratowski’s theorem 



 Let G be any planar graph. Shrinking any edge of G to a 
single vertex preserves planarity 

 

 (Corollary) Let G be any planar graph. Shrinking any 
connected subgraph of G to a single vertex preserves 
planarity 



Separator 
 The vertices of G are partitioned into three sets: A,B,C, 

such that no edge joins a vertex in A with a vertex in B, then 
C is a separator. 

 Useful for “divide-and-conquer” method. 

 usually requires C is small and A,B are at most αn (α is a 
constant less than 1) 



Separator for Planar graph 
 In a planar graph, every cycle is a separator:  

 A: vertices inside the cycle 

 B: vertices outside the cycle 



Separator for Planar graph 
 n1/2-separator theorem: |A|,|B|≤⅔n, |C|≤2√2n1/2 



Preliminary theorem: 
 Let G be a planar graph with nonnegative vertex costs 

whose sum ≤1 

 If G has a spanning tree T of radius r, then G has a 
separator C, s.t. neither A nor B has total cost more than 
2/3, and C contains at most 2r+1 vertices. 



Proof 
 Assume no vertex has cost more than 1/3 

 First, make each face triangle by adding additional edges 
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Proof 
 First, make each face triangle by adding additional edges 

 Any non-tree edge forms a simple cycle with tree edges 

 forms a cycle of length at most 2r+1 

 divides the plane into two parts: inside and outside 



Proof 
 First, make each face triangle by adding additional edges 

 Any non-tree edge forms a simple cycle with tree edges 

 forms a cycle of length at most 2r+1 

 divides the plane into two parts: inside and outside 

 we will show that there exists such a cycle separating the 
plane so that neither the inside nor the outside contains 
vertices with total cost more than 2/3. 



Proof 
 Just find the non-tree edge (x,z) such that its cycle 

separates the vertices most equally: 

 minimize the max{costs inside cycle, costs outside cycle} 

 break ties by choose the cycle with smallest number of faces 
on the “max” side 

 if ties remain, choose arbitrarily 

 

 So the cycle with (x,z) is what we want. 



 Assume the “max” side is the inside 

 If the total cost inside is ≤2/3, the claim is true. 

If G has a spanning tree T of radius r, then G has a separator C, 
s.t. neither A nor B has total cost more than 2/3, and C 
contains at most 2r+1 vertices. 



 Consider the total cost of vertices inside the cycle is >2/3 

 We will show that it contradicts the way we choose (x,z) 

If G has a spanning tree T of radius r, then G has a separator C, 
s.t. neither A nor B has total cost more than 2/3, and C 
contains at most 2r+1 vertices. 



 consider the triangular face which has (x,z) as a boundary 
edge and lies inside the cycle, let the third vertex by y 

 We study it case by case.  

 minimize the max{costs inside cycle, costs outside cycle} 

 break ties by choosing the cycle with smallest number of faces on the “max” 
side 



 1. Both (x,y) and (y,z) lies on the cycle, then the face (x,y,z) 
is the cycle, contradicting the inside is the “max” side. 

 since (x,y,z) is one face. 

 minimize the max{costs inside cycle, costs outside cycle} 

 break ties by choosing the cycle with smallest number of faces on the “max” 
side 



 2. One of (x,y) and (y,z) lies on the cycle, assume it is (x,y) 
 

 minimize the max{costs inside cycle, costs outside cycle} 

 break ties by choosing the cycle with smallest number of faces on the “max” 
side 



 2. One of (x,y) and (y,z) lies on the cycle, assume it is (x,y) 
 Then (y,z) is a non-tree edge defining a cycle with the same vertices 

on the “max” side but with one less face.  

 contradicting  

 minimize the max{costs inside cycle, costs outside cycle} 

 break ties by choosing the cycle with smallest number of faces on the “max” 
side 



 3. Neither (x,y) nor (y,z) lies on the cycle 

 It is impossible that both (x,y) and (y,z) are tree edges, since 
the tree contains no cycle 

 

 minimize the max{costs inside cycle, costs outside cycle} 

 break ties by choosing the cycle with smallest number of faces on the “max” 
side 



 3. Neither (x,y) nor (y,z) lies on the cycle 
 One of them is a tree edge, assume it is (x,y) 

 The cycle with (y,z) has one less vertex y and one less face inside 
than the cycle with (x,z) 

 minimize the max{costs inside cycle, costs outside cycle} 

 break ties by choosing the cycle with smallest number of faces on the “max” 
side 



 The cycle with (y,z) has one less vertex y and one less face inside than the 
cycle with (x.z) 

 If the cost inside the (y,z) is greater than the cost outside, (y,z) would have 
been chosen in place of (x,z) 

 minimize the max{costs inside cycle, costs outside cycle} 

 break ties by choosing the cycle with smallest number of faces on the “max” 
side 



 Otherwise: since the cost inside the (x,z) cycle is ≥2/3, and the cost of y is 
≤1/3, so the cost inside the (y,z) cycle is ≥1/3. 

 So (y,z) cycle would have been chosen instead of (x,z) 
 

 minimize the max{costs inside cycle, costs outside cycle} 

 break ties by choosing the cycle with smallest number of faces on the “max” 
side 



 3. Neither (x,y) nor (y,z) lies on the cycle 

 Neither of them is a tree edge, then each of (x,y) and (y,z) defines a cycle. 

 every vertex inside the (x,z) cycle would: inside the (x,y) cycle, inside the (y,z) 
cycle or on the boundary 

 minimize the max{costs inside cycle, costs outside cycle} 

 break ties by choosing the cycle with smallest number of faces on the “max” 
side 



 Neither of them is a tree edge, then each of (x,y) and (y,z) defines a cycle. 

 every vertex inside the (x,z) cycle would: inside the (x,y) cycle, inside the (y,z) 
cycle or on the boundary 

 Choose the cycle (say (x,y)-cycle) with more total cost inside, since the cost 
inside the (x,z) cycle >2/3, the total cost inside the (x,y)-cycle and itself >1/3, 
so the cost outside (x,y) cycle <2/3. 

 minimize the max{costs inside cycle, costs outside cycle} 

 break ties by choosing the cycle with smallest number of faces on the “max” 
side 



 Neither of them is a tree edge, then each of (x,y) and (y,z) defines a cycle. 

 every vertex inside the (x,z) cycle would: inside the (x,y) cycle, inside the (y,z) 
cycle or on the boundary 

 Choose the cycle (say (x,y)-cycle) with more total cost inside, since the cost 
inside the (x,z) cycle >2/3, the total cost inside the (x,y)-cycle and itself >1/3, 
so the cost outside (x,y) cycle <2/3. 

 If the cost inside (x,y) cycle is greater than outside, (x,y) would have been 
chosen since the cost inside (x,y) cycle is smaller than the cost inside (x,z) 
cycle. 

 Otherwise the cost inside the (x,y) cycle <1/2, so the (x,y) cycle is what we 
want. 

 minimize the max{costs inside cycle, costs outside cycle} 

 break ties by choosing the cycle with smallest number of faces on the “max” 
side 



We have proved: 
 Let G be a planar graph with nonnegative vertex costs 

whose sum ≤1 

 If G has a spanning tree T of radius r, then G has a 
separator C, s.t. neither A nor B has total cost more than 
2/3, and C contains at most 2r+1 vertices. 



Main theorem: 
 Let G be a planar graph with nonnegative vertex costs 

whose sum ≤1 

 Then the vertices of G can be partitioned into A,B,C 

 no edge joins A and B 

 neither A nor B has total cost >2/3 

 |C|≤2√2n1/2 



Main theorem: 
 Let G be a planar graph with nonnegative vertex costs 

whose sum ≤1 

 Then the vertices of G can be partitioned into A,B,C 

 no edge joins A and B 

 neither A nor B has total cost >2/3 

 |C|≤2√2n1/2 

 

 We first assume G is connected 



Proof 
 Partition the vertices into levels by the shortest path tree 

from some vertex v 

 there is no edges links levels not adjacent to each other 

 Let L(l) is the number of vertices on level l 

 r is the number of levels, so we have level 0, level 1,…, level r 



 Let i be the lowest level such that the total costs in level 0 to level i ≥1/2,  

 denote the number of vertices in level 0 to level i by p 

 Find j≤i and k≥i+1 such that: 

 |L(j)|+2(i-j)≤2p1/2 

 |L(k)|+2(k-i-1)≤2(n-p)1/2 



 Let i be the lowest level such that the total costs in level 0 to level 
i is ≥1/2,  

 denote the number of vertices in level 0 to level i by p 

 Find j≤i and k≥i+1 such that: 

 |L(j)|+2(i-j)≤2p1/2 

 |L(k)|+2(k-i-1)≤2(n-p)1/2 

 Then we will show that the conclusion follows by such j,k, and 
such j and k must exist 



 Let i be the lowest level such that the total costs in level 0 to level i ≥1/2,  

 denote the number of vertices in level 0 to level i by p 

 Find j≤i and k≥i+1 such that: 

 |L(j)|+2(i-j)≤2p1/2 

 |L(k)|+2(k-i-1)≤2(n-p)1/2 

 Consider the vertices in levels: [0,j-1], [j+1,k-1],[k+1,r]. 



 Consider the vertices in levels: [0,j-1], [j+1,k-1],[k+1,r]. 

 If the numbers of vertices in all of these sets are ≤2/3, then  

 C={vertices in levels j and k}, so |C|≤2√2n1/2 

 A=the biggest among these three sets 

 B=the union of the other two 

 

|L(j)|+2(i-j)≤2p1/2 

|L(k)|+2(k-i-1)≤2(n-p)1/2 



 Consider the vertices in levels: [0,j-1], [j+1,k-1],[k+1,r]. 

 If the number of vertices in one of these sets is ≤2/3, then  

 C={vertices in levels j and k}, so |C|≤2√2n1/2 

 By definition of level i, j, k, the only sets which can has cost >2/3 is the 
middle part [j+1,k-1] 

 Delete all vertices in levels [k,r] 

 Shrink all vertices in levels [0,j] to a single vertex with cost 0 

 This preserves planarity 

 By our preliminary theorem, this tree T has a separator of size 2(i-j-1)+1 
vertices with one root. 

 

 

If G has a spanning tree T of radius r, then G 
has a separator C, s.t. neither A nor B has 
total cost more than 2/3, and C contains at 
most 2r+1 vertices. 



 Consider the vertices in levels: [0,j-1], [j+1,k-1],[k+1,r]. 

 If the number of vertices in one of these sets is ≤2/3, then  

 C={vertices in levels j and k}, so |C|≤2√2n1/2 

 By definition of level i, j, k, the only sets which can has cost >2/3 is the 
middle part [j+1,k-1] 

 Delete all vertices in levels [k,r] 

 Shrink all vertices in levels [0,j] to a single vertex with cost 0 

 This preserves planarity 

 By our preliminary theorem, this tree T has a separator of size 2(i-j-1)+1 
vertices with one root. 

 So this separator with L(j) and L(k) will form a separator of size 
|L(j)|+|L(k)|+2(i-j-1)≤2√2n1/2 

 

 

|L(j)|+2(i-j)≤2p1/2 

|L(k)|+2(k-i-1)≤2(n-p)1/2 



 Let i be the lowest level such that the total costs in level 0 to level 
i is ≥1/2,  

 denote the number of vertices in level 0 to level i by p 

 Find j≤i and k≥i+1 such that: 

 |L(j)|+2(i-j)≤2p1/2 

 |L(k)|+2(k-i-1)≤2(n-p)1/2 

 Then we will show that the conclusion follows by such j,k, and 
such j and k must exist 



 Let i be the lowest level such that the total costs in level 0 to level 
i is ≥1/2,  

 denote the number of vertices in level 0 to level i by p 

 Find j≤i and k≥i+1 such that: 

 |L(j)|+2(i-j)≤2p1/2 

 |L(k)|+2(k-i-1)≤2(n-p)1/2 

 If such j does not exists, then for all h≤j, L(h)>2p1/2-2(i-h), and  

 L(0)=1, so i+1/2≥p1/2, so 

 

 

 

 We can prove k exists by a similar procedure. 

 

p  L(h) 
h0

i

 2 p 2(i  h)  p
h0

i





Main theorem: 
 Let G be a planar graph with nonnegative vertex costs 

whose sum ≤1 

 Then the vertices of G can be partitioned into A,B,C 

 no edge joins A and B 

 neither A nor B has total cost >2/3 

 |C|≤2√2n1/2 

 

 We first assume G is connected 

 Otherwise, For each connected component, we can 
find a separator. 



Simpler version: 
 Then the vertices of G can be partitioned into A,B,C 

 no edge joins A and B 

 |A|, |B|≤⅔n 

 |C|≤2√2n1/2 

 

 By assign each vertex of G a cost of 1/n. 



Applications 
 Very useful in divide-and-conquer method 

 For A and B, recursively find separators in them 



Applications 
 Very useful in divide-and-conquer method 

 For A and B, recursively find separators in them 



Example 
 Data structure to store all-pair shortest paths 

 n×n table 

v1 v2 … vn 

v1 

v2 

… 

vn 



Distance structure for planar graph 
 The path between A and B must go through the separator C 



Distance structure for planar graph 
 The path between A and B must go through the separator C 

 So we store the distance of (u,v) where u∈C and v∈V 

 Space: O(n3/2) 



Distance structure for planar graph 
 The path between A and B must go through the separator C 

 So we store the distance of d(u,v) where u∈C and v∈V 

 Space: O(n3/2) 

 Note that the path between A and C may travel through B 



Distance structure for planar graph 
 The path between A and B must go through the separator C 

 So we store the distance of (u,v) where u∈C and v∈V 

 Space: O(n3/2) 

 For each of A and B, recursively construct the structure. 



Distance structure for planar graph 
 The path between A and B must go through the separator C 

 So we store the distance of (u,v) where u∈C and v∈V 

 Space: O(n3/2) 

 For each of A and B, recursively construct the structure. 

 For A, store the distances between all vertices of A and the 
vertices of separator of A, where the paths only travel within A 

 

 Total space:  



O n3 / 2 2
n

2











3 / 2

 4
n

4











3 / 2

 ...








O(n3 / 2)



Answering a query (u,v) 
 If u∈A and v∈B, then just find the minimum of: 

 min{d(u,w)+d(w,v)|w∈C}  

 Query time: O(n1/2) 



Answering a query (u,v) 
 If both u,v∈A but in different subparts, find the minimum of: 

 min{d(u,w)+d(w,v)|w∈C}, min{d(u,w’)+d(w’,v)|w’∈C’} 

 This will cover:  

 paths travels through C, paths within A 



Answering a query (u,v) 
 If both u,v∈A but in different subparts, find the minimum of: 

 min{d(u,w)+d(w,v)|w∈C}, min{d(u,w’)+d(w’,v)|w’∈C’} 

 This will cover:  

 paths travels through C, paths within A 

 Query time: O(n1/2) 



Answering a query (u,v) 
 Thus, for any u,v in some subpartition, we need to check the 

vertices on the borders: 

 Query time:  



O n 
n

2

n

4
 ...









O( n )



Distance structure for planar graphs 
 Instead of store an O(n2) table, we can construct a 

structure of space O(n3/2) with query time O(n1/2). 

 



 So most problems in graph theory have faster algorithms 
for planar graphs than for general graphs. 



 So most problems in graph theory have faster algorithms 
for planar graphs than for general graphs. 

 

 O(n1/2)-separator is more common, but the path separator 
is also useful: 
 “Compact oracles for reachability and approximate distances in 

planar digraphs” 

 Mikkel Thorup, 2004 

 



Preliminary theorem: 
 Let G be a planar graph with nonnegative vertex costs whose sum ≤1 

 If G has a spanning tree T of radius r, then G has a separator C, s.t. 
neither A nor B has total cost more than 2/3, and C contains at most 
2r+1 vertices. 



Preliminary theorem: 
 If G has a spanning tree T of radius r, then G has a separator C, s.t. 

neither A nor B has total cost more than 2/3, and C contains at most 
2r+1 vertices. 

 C is a cycle formed by the tree and a non-tree edge. 

 If the tree is a shortest path tree from or to the root, the separator C is 
on two paths.  




