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In this lecture 
 Concepts of planar graphs 

 Planar separator theorem 

 Its applications 



Planar Graphs 
 In graph theory, a planar graph is a graph that can be 

embedded in the plane, i.e. it can be drawn on the 
plane in such a way that no edges cross each other. 



Planar Graphs 
 In graph theory, a planar graph is a graph that can be 

embedded in the plane, i.e. it can be drawn on the 
plane in such a way that no edges cross each other. 

 A planar graph already drawn in the plane without 
edge intersections is called a plane graph or planar 
embedding of the graph 



Examples 
Planar Non-planar 
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Some facts about planar graph 
 Any n-vertex planar graph with n≥3 contains no more than 

3n-6 edges. 

 Why? 
 Euler’s Formula: v-e+f=2 

 Make every face a triangle, then 3f=2e 



Kuratowski’s thereom 
 A finite graph is planar if and only if it does not 

contain a subgraph that is a subdivision of K5 or K3,3. 
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Kuratowski’s thereom 
 A finite graph is planar if and only if it does not 

contain a subgraph that is a subdivision of K5 or K3,3. 

 

 Subdivision of G 

 insert vertices into edges: 



 Let G be any planar graph. Shrinking any edge of G to a 
single vertex preserves planarity 

 Intuitive result 

 Can be proved by Kuratowski’s theorem 



 Let G be any planar graph. Shrinking any edge of G to a 
single vertex preserves planarity 

 

 (Corollary) Let G be any planar graph. Shrinking any 
connected subgraph of G to a single vertex preserves 
planarity 



Separator 
 The vertices of G are partitioned into three sets: A,B,C, 

such that no edge joins a vertex in A with a vertex in B, then 
C is a separator. 

 Useful for “divide-and-conquer” method. 

 usually requires C is small and A,B are at most αn (α is a 
constant less than 1) 



Separator for Planar graph 
 In a planar graph, every cycle is a separator:  

 A: vertices inside the cycle 

 B: vertices outside the cycle 



Separator for Planar graph 
 n1/2-separator theorem: |A|,|B|≤⅔n, |C|≤2√2n1/2 



Preliminary theorem: 
 Let G be a planar graph with nonnegative vertex costs 

whose sum ≤1 

 If G has a spanning tree T of radius r, then G has a 
separator C, s.t. neither A nor B has total cost more than 
2/3, and C contains at most 2r+1 vertices. 



Proof 
 Assume no vertex has cost more than 1/3 

 First, make each face triangle by adding additional edges 
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Proof 
 First, make each face triangle by adding additional edges 

 Any non-tree edge forms a simple cycle with tree edges 

 forms a cycle of length at most 2r+1 

 divides the plane into two parts: inside and outside 

 we will show that there exists such a cycle separating the 
plane so that neither the inside nor the outside contains 
vertices with total cost more than 2/3. 



Proof 
 Just find the non-tree edge (x,z) such that its cycle 

separates the vertices most equally: 

 minimize the max{costs inside cycle, costs outside cycle} 

 break ties by choose the cycle with smallest number of faces 
on the “max” side 

 if ties remain, choose arbitrarily 

 

 So the cycle with (x,z) is what we want. 



 Assume the “max” side is the inside 

 If the total cost inside is ≤2/3, the claim is true. 

If G has a spanning tree T of radius r, then G has a separator C, 
s.t. neither A nor B has total cost more than 2/3, and C 
contains at most 2r+1 vertices. 



 Consider the total cost of vertices inside the cycle is >2/3 

 We will show that it contradicts the way we choose (x,z) 

If G has a spanning tree T of radius r, then G has a separator C, 
s.t. neither A nor B has total cost more than 2/3, and C 
contains at most 2r+1 vertices. 



 consider the triangular face which has (x,z) as a boundary 
edge and lies inside the cycle, let the third vertex by y 

 We study it case by case.  

 minimize the max{costs inside cycle, costs outside cycle} 

 break ties by choosing the cycle with smallest number of faces on the “max” 
side 



 1. Both (x,y) and (y,z) lies on the cycle, then the face (x,y,z) 
is the cycle, contradicting the inside is the “max” side. 

 since (x,y,z) is one face. 

 minimize the max{costs inside cycle, costs outside cycle} 

 break ties by choosing the cycle with smallest number of faces on the “max” 
side 



 2. One of (x,y) and (y,z) lies on the cycle, assume it is (x,y) 
 

 minimize the max{costs inside cycle, costs outside cycle} 

 break ties by choosing the cycle with smallest number of faces on the “max” 
side 



 2. One of (x,y) and (y,z) lies on the cycle, assume it is (x,y) 
 Then (y,z) is a non-tree edge defining a cycle with the same vertices 

on the “max” side but with one less face.  

 contradicting  

 minimize the max{costs inside cycle, costs outside cycle} 

 break ties by choosing the cycle with smallest number of faces on the “max” 
side 



 3. Neither (x,y) nor (y,z) lies on the cycle 

 It is impossible that both (x,y) and (y,z) are tree edges, since 
the tree contains no cycle 

 

 minimize the max{costs inside cycle, costs outside cycle} 

 break ties by choosing the cycle with smallest number of faces on the “max” 
side 



 3. Neither (x,y) nor (y,z) lies on the cycle 
 One of them is a tree edge, assume it is (x,y) 

 The cycle with (y,z) has one less vertex y and one less face inside 
than the cycle with (x,z) 

 minimize the max{costs inside cycle, costs outside cycle} 

 break ties by choosing the cycle with smallest number of faces on the “max” 
side 



 The cycle with (y,z) has one less vertex y and one less face inside than the 
cycle with (x.z) 

 If the cost inside the (y,z) is greater than the cost outside, (y,z) would have 
been chosen in place of (x,z) 

 minimize the max{costs inside cycle, costs outside cycle} 

 break ties by choosing the cycle with smallest number of faces on the “max” 
side 



 Otherwise: since the cost inside the (x,z) cycle is ≥2/3, and the cost of y is 
≤1/3, so the cost inside the (y,z) cycle is ≥1/3. 

 So (y,z) cycle would have been chosen instead of (x,z) 
 

 minimize the max{costs inside cycle, costs outside cycle} 

 break ties by choosing the cycle with smallest number of faces on the “max” 
side 



 3. Neither (x,y) nor (y,z) lies on the cycle 

 Neither of them is a tree edge, then each of (x,y) and (y,z) defines a cycle. 

 every vertex inside the (x,z) cycle would: inside the (x,y) cycle, inside the (y,z) 
cycle or on the boundary 

 minimize the max{costs inside cycle, costs outside cycle} 

 break ties by choosing the cycle with smallest number of faces on the “max” 
side 



 Neither of them is a tree edge, then each of (x,y) and (y,z) defines a cycle. 

 every vertex inside the (x,z) cycle would: inside the (x,y) cycle, inside the (y,z) 
cycle or on the boundary 

 Choose the cycle (say (x,y)-cycle) with more total cost inside, since the cost 
inside the (x,z) cycle >2/3, the total cost inside the (x,y)-cycle and itself >1/3, 
so the cost outside (x,y) cycle <2/3. 

 minimize the max{costs inside cycle, costs outside cycle} 

 break ties by choosing the cycle with smallest number of faces on the “max” 
side 



 Neither of them is a tree edge, then each of (x,y) and (y,z) defines a cycle. 

 every vertex inside the (x,z) cycle would: inside the (x,y) cycle, inside the (y,z) 
cycle or on the boundary 

 Choose the cycle (say (x,y)-cycle) with more total cost inside, since the cost 
inside the (x,z) cycle >2/3, the total cost inside the (x,y)-cycle and itself >1/3, 
so the cost outside (x,y) cycle <2/3. 

 If the cost inside (x,y) cycle is greater than outside, (x,y) would have been 
chosen since the cost inside (x,y) cycle is smaller than the cost inside (x,z) 
cycle. 

 Otherwise the cost inside the (x,y) cycle <1/2, so the (x,y) cycle is what we 
want. 

 minimize the max{costs inside cycle, costs outside cycle} 

 break ties by choosing the cycle with smallest number of faces on the “max” 
side 



We have proved: 
 Let G be a planar graph with nonnegative vertex costs 

whose sum ≤1 

 If G has a spanning tree T of radius r, then G has a 
separator C, s.t. neither A nor B has total cost more than 
2/3, and C contains at most 2r+1 vertices. 
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Main theorem: 
 Let G be a planar graph with nonnegative vertex costs 

whose sum ≤1 

 Then the vertices of G can be partitioned into A,B,C 

 no edge joins A and B 

 neither A nor B has total cost >2/3 

 |C|≤2√2n1/2 

 

 We first assume G is connected 



Proof 
 Partition the vertices into levels by the shortest path tree 

from some vertex v 

 there is no edges links levels not adjacent to each other 

 Let L(l) is the number of vertices on level l 

 r is the number of levels, so we have level 0, level 1,…, level r 



 Let i be the lowest level such that the total costs in level 0 to level i ≥1/2,  

 denote the number of vertices in level 0 to level i by p 

 Find j≤i and k≥i+1 such that: 

 |L(j)|+2(i-j)≤2p1/2 

 |L(k)|+2(k-i-1)≤2(n-p)1/2 
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i is ≥1/2,  

 denote the number of vertices in level 0 to level i by p 

 Find j≤i and k≥i+1 such that: 

 |L(j)|+2(i-j)≤2p1/2 

 |L(k)|+2(k-i-1)≤2(n-p)1/2 

 Then we will show that the conclusion follows by such j,k, and 
such j and k must exist 



 Let i be the lowest level such that the total costs in level 0 to level i ≥1/2,  

 denote the number of vertices in level 0 to level i by p 

 Find j≤i and k≥i+1 such that: 

 |L(j)|+2(i-j)≤2p1/2 

 |L(k)|+2(k-i-1)≤2(n-p)1/2 

 Consider the vertices in levels: [0,j-1], [j+1,k-1],[k+1,r]. 



 Consider the vertices in levels: [0,j-1], [j+1,k-1],[k+1,r]. 

 If the numbers of vertices in all of these sets are ≤2/3, then  

 C={vertices in levels j and k}, so |C|≤2√2n1/2 

 A=the biggest among these three sets 

 B=the union of the other two 

 

|L(j)|+2(i-j)≤2p1/2 

|L(k)|+2(k-i-1)≤2(n-p)1/2 



 Consider the vertices in levels: [0,j-1], [j+1,k-1],[k+1,r]. 

 If the number of vertices in one of these sets is ≤2/3, then  

 C={vertices in levels j and k}, so |C|≤2√2n1/2 

 By definition of level i, j, k, the only sets which can has cost >2/3 is the 
middle part [j+1,k-1] 

 Delete all vertices in levels [k,r] 

 Shrink all vertices in levels [0,j] to a single vertex with cost 0 

 This preserves planarity 

 By our preliminary theorem, this tree T has a separator of size 2(i-j-1)+1 
vertices with one root. 

 

 

If G has a spanning tree T of radius r, then G 
has a separator C, s.t. neither A nor B has 
total cost more than 2/3, and C contains at 
most 2r+1 vertices. 



 Consider the vertices in levels: [0,j-1], [j+1,k-1],[k+1,r]. 

 If the number of vertices in one of these sets is ≤2/3, then  

 C={vertices in levels j and k}, so |C|≤2√2n1/2 

 By definition of level i, j, k, the only sets which can has cost >2/3 is the 
middle part [j+1,k-1] 

 Delete all vertices in levels [k,r] 

 Shrink all vertices in levels [0,j] to a single vertex with cost 0 

 This preserves planarity 

 By our preliminary theorem, this tree T has a separator of size 2(i-j-1)+1 
vertices with one root. 

 So this separator with L(j) and L(k) will form a separator of size 
|L(j)|+|L(k)|+2(i-j-1)≤2√2n1/2 

 

 

|L(j)|+2(i-j)≤2p1/2 

|L(k)|+2(k-i-1)≤2(n-p)1/2 



 Let i be the lowest level such that the total costs in level 0 to level 
i is ≥1/2,  

 denote the number of vertices in level 0 to level i by p 

 Find j≤i and k≥i+1 such that: 

 |L(j)|+2(i-j)≤2p1/2 

 |L(k)|+2(k-i-1)≤2(n-p)1/2 

 Then we will show that the conclusion follows by such j,k, and 
such j and k must exist 



 Let i be the lowest level such that the total costs in level 0 to level 
i is ≥1/2,  

 denote the number of vertices in level 0 to level i by p 

 Find j≤i and k≥i+1 such that: 

 |L(j)|+2(i-j)≤2p1/2 

 |L(k)|+2(k-i-1)≤2(n-p)1/2 

 If such j does not exists, then for all h≤j, L(h)>2p1/2-2(i-h), and  

 L(0)=1, so i+1/2≥p1/2, so 

 

 

 

 We can prove k exists by a similar procedure. 
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h0

i

 2 p 2(i  h)  p
h0

i





Main theorem: 
 Let G be a planar graph with nonnegative vertex costs 

whose sum ≤1 

 Then the vertices of G can be partitioned into A,B,C 

 no edge joins A and B 

 neither A nor B has total cost >2/3 

 |C|≤2√2n1/2 

 

 We first assume G is connected 

 Otherwise, For each connected component, we can 
find a separator. 



Simpler version: 
 Then the vertices of G can be partitioned into A,B,C 

 no edge joins A and B 

 |A|, |B|≤⅔n 

 |C|≤2√2n1/2 

 

 By assign each vertex of G a cost of 1/n. 



Applications 
 Very useful in divide-and-conquer method 

 For A and B, recursively find separators in them 



Applications 
 Very useful in divide-and-conquer method 

 For A and B, recursively find separators in them 



Example 
 Data structure to store all-pair shortest paths 

 n×n table 

v1 v2 … vn 

v1 

v2 

… 

vn 



Distance structure for planar graph 
 The path between A and B must go through the separator C 



Distance structure for planar graph 
 The path between A and B must go through the separator C 

 So we store the distance of (u,v) where u∈C and v∈V 

 Space: O(n3/2) 



Distance structure for planar graph 
 The path between A and B must go through the separator C 

 So we store the distance of d(u,v) where u∈C and v∈V 

 Space: O(n3/2) 

 Note that the path between A and C may travel through B 



Distance structure for planar graph 
 The path between A and B must go through the separator C 

 So we store the distance of (u,v) where u∈C and v∈V 

 Space: O(n3/2) 

 For each of A and B, recursively construct the structure. 



Distance structure for planar graph 
 The path between A and B must go through the separator C 

 So we store the distance of (u,v) where u∈C and v∈V 

 Space: O(n3/2) 

 For each of A and B, recursively construct the structure. 

 For A, store the distances between all vertices of A and the 
vertices of separator of A, where the paths only travel within A 

 

 Total space:  



O n3 / 2 2
n
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 ...








O(n3 / 2)



Answering a query (u,v) 
 If u∈A and v∈B, then just find the minimum of: 

 min{d(u,w)+d(w,v)|w∈C}  

 Query time: O(n1/2) 



Answering a query (u,v) 
 If both u,v∈A but in different subparts, find the minimum of: 

 min{d(u,w)+d(w,v)|w∈C}, min{d(u,w’)+d(w’,v)|w’∈C’} 

 This will cover:  

 paths travels through C, paths within A 



Answering a query (u,v) 
 If both u,v∈A but in different subparts, find the minimum of: 

 min{d(u,w)+d(w,v)|w∈C}, min{d(u,w’)+d(w’,v)|w’∈C’} 

 This will cover:  

 paths travels through C, paths within A 

 Query time: O(n1/2) 



Answering a query (u,v) 
 Thus, for any u,v in some subpartition, we need to check the 

vertices on the borders: 

 Query time:  



O n 
n

2

n

4
 ...









O( n )



Distance structure for planar graphs 
 Instead of store an O(n2) table, we can construct a 

structure of space O(n3/2) with query time O(n1/2). 

 



 So most problems in graph theory have faster algorithms 
for planar graphs than for general graphs. 



 So most problems in graph theory have faster algorithms 
for planar graphs than for general graphs. 

 

 O(n1/2)-separator is more common, but the path separator 
is also useful: 
 “Compact oracles for reachability and approximate distances in 

planar digraphs” 

 Mikkel Thorup, 2004 

 



Preliminary theorem: 
 Let G be a planar graph with nonnegative vertex costs whose sum ≤1 

 If G has a spanning tree T of radius r, then G has a separator C, s.t. 
neither A nor B has total cost more than 2/3, and C contains at most 
2r+1 vertices. 



Preliminary theorem: 
 If G has a spanning tree T of radius r, then G has a separator C, s.t. 

neither A nor B has total cost more than 2/3, and C contains at most 
2r+1 vertices. 

 C is a cycle formed by the tree and a non-tree edge. 

 If the tree is a shortest path tree from or to the root, the separator C is 
on two paths.  




