# Planar Separator Theorem and Its applications Ran Duan

# In this lecture

- Concepts of planar graphs
- Planar separator theorem
- Its applications

# **Planar Graphs**

• In graph theory, a **planar graph** is a graph that can be embedded in the plane, i.e. it can be drawn on the plane in such a way that no edges cross each other.

# Planar Graphs

- In graph theory, a **planar graph** is a graph that can be embedded in the plane, i.e. it can be drawn on the plane in such a way that no edges cross each other.
- A planar graph already drawn in the plane without edge intersections is called a plane graph or planar embedding of the graph

# Examples

#### Planar





#### Non-planar







# Some facts about planar graph

- Any n-vertex planar graph with n≥3 contains no more than 3n-6 edges.
- Why?
  - Euler's Formula: v-e+f=2
  - Make every face a triangle, then 3f=2e



#### Kuratowski's thereom

 A finite graph is planar if and only if it does not contain a subgraph that is a subdivision of K<sub>5</sub> or K<sub>3,3</sub>.



#### Kuratowski's thereom

- A finite graph is planar if and only if it does not contain a subgraph that is a subdivision of K<sub>5</sub> or K<sub>3,3</sub>.
- Subdivision of G
  - insert vertices into edges:



- Let G be any planar graph. Shrinking any edge of G to a single vertex preserves planarity
  - Intuitive result
  - Can be proved by Kuratowski's theorem



- Let G be any planar graph. Shrinking any edge of G to a single vertex preserves planarity
- (Corollary) Let G be any planar graph. Shrinking any connected subgraph of G to a single vertex preserves planarity

# Separator

- The vertices of G are partitioned into three sets: A,B,C, such that no edge joins a vertex in A with a vertex in B, then C is a separator.
  - Useful for "divide-and-conquer" method.
  - usually requires C is small and A,B are at most  $\alpha n$  ( $\alpha$  is a constant less than 1)



# Separator for Planar graph

- In a planar graph, every cycle is a separator:
  - A: vertices inside the cycle
  - B: vertices outside the cycle



#### Separator for Planar graph

#### • $n^{1/2}$ -separator theorem: $|A|, |B| \leq \frac{2}{3}n, |C| \leq 2\sqrt{2n^{1/2}}$

#### Preliminary theorem:

- Let G be a planar graph with nonnegative vertex costs whose sum ≤1
- If G has a spanning tree T of radius r, then G has a separator C, s.t. neither A nor B has total cost more than 2/3, and C contains at most 2r+1 vertices.



- Assume no vertex has cost more than 1/3
- First, make each face triangle by adding additional edges



- First, make each face triangle by adding additional edges
- Any non-tree edge forms a simple cycle with tree edges



- First, make each face triangle by adding additional edges
- Any non-tree edge forms a simple cycle with tree edges



- First, make each face triangle by adding additional edges
- Any non-tree edge forms a simple cycle with tree edges
  - forms a cycle of length at most 2r+1
  - divides the plane into two parts: inside and outside



- First, make each face triangle by adding additional edges
- Any non-tree edge forms a simple cycle with tree edges
  - forms a cycle of length at most 2r+1
  - divides the plane into two parts: inside and outside
  - we will show that there exists such a cycle separating the plane so that neither the inside nor the outside contains vertices with total cost more than 2/3.

- Just find the non-tree edge (x,z) such that its cycle separates the vertices most equally:
  - minimize the max{costs inside cycle, costs outside cycle}
  - break ties by choose the cycle with smallest number of faces on the "max" side
  - if ties remain, choose arbitrarily
- So the cycle with (x,z) is what we want.

If G has a spanning tree T of radius r, then G has a separator C, s.t. neither A nor B has total cost more than 2/3, and C contains at most 2r+1 vertices.

- Assume the "max" side is the inside
- If the total cost inside is  $\leq 2/3$ , the claim is true.



If G has a spanning tree T of radius r, then G has a separator C, s.t. neither A nor B has total cost more than 2/3, and C contains at most 2r+1 vertices.

- Consider the total cost of vertices inside the cycle is >2/3
- We will show that it contradicts the way we choose (x,z)



- minimize the max{costs inside cycle, costs outside cycle}
- break ties by choosing the cycle with smallest number of faces on the "max" side
- consider the triangular face which has (x,z) as a boundary edge and lies inside the cycle, let the third vertex by y
- We study it case by case.



- minimize the max{costs inside cycle, costs outside cycle}
- break ties by choosing the cycle with smallest number of faces on the "max" side
- I. Both (x,y) and (y,z) lies on the cycle, then the face (x,y,z) is the cycle, contradicting the inside is the "max" side.
  - since (x,y,z) is one face.



- minimize the max{costs inside cycle, costs outside cycle}
- break ties by choosing the cycle with smallest number of faces on the "max" side
- 2. One of (x,y) and (y,z) lies on the cycle, assume it is (x,y)



- minimize the max{costs inside cycle, costs outside cycle}
- break ties by choosing the cycle with smallest number of faces on the "max" side
- 2. One of (x,y) and (y,z) lies on the cycle, assume it is (x,y)
  - Then (y,z) is a non-tree edge defining a cycle with the same vertices on the "max" side but with one less face.
  - contradicting



- minimize the max{costs inside cycle, costs outside cycle}
- break ties by choosing the cycle with smallest number of faces on the "max" side
- 3. Neither (x,y) nor (y,z) lies on the cycle
  - It is impossible that both (x,y) and (y,z) are tree edges, since the tree contains no cycle



- minimize the max{costs inside cycle, costs outside cycle}
- break ties by choosing the cycle with smallest number of faces on the "max" side
- 3. Neither (x,y) nor (y,z) lies on the cycle
  - One of them is a tree edge, assume it is (x,y)
  - The cycle with (y,z) has one less vertex y and one less face inside than the cycle with (x,z)



- minimize the max{costs inside cycle, costs outside cycle}
- break ties by choosing the cycle with smallest number of faces on the "max" side
- The cycle with (y,z) has one less vertex y and one less face inside than the cycle with (x.z)
- If the cost inside the (y,z) is greater than the cost outside, (y,z) would have been chosen in place of (x,z)



- minimize the max{costs inside cycle, costs outside cycle}
- break ties by choosing the cycle with smallest number of faces on the "max" side
- Otherwise: since the cost inside the (x,z) cycle is  $\ge 2/3$ , and the cost of y is  $\le 1/3$ , so the cost inside the (y,z) cycle is  $\ge 1/3$ .
- So (y,z) cycle would have been chosen instead of (x,z)



- minimize the max{costs inside cycle, costs outside cycle}
- break ties by choosing the cycle with smallest number of faces on the "max" side
- 3. Neither (x,y) nor (y,z) lies on the cycle
  - Neither of them is a tree edge, then each of (x,y) and (y,z) defines a cycle.
  - every vertex inside the (x,z) cycle would: inside the (x,y) cycle, inside the (y,z) cycle or on the boundary



- minimize the max{costs inside cycle, costs outside cycle}
- break ties by choosing the cycle with smallest number of faces on the "max" side
- Neither of them is a tree edge, then each of (x,y) and (y,z) defines a cycle.
- every vertex inside the (x,z) cycle would: inside the (x,y) cycle, inside the (y,z) cycle or on the boundary
- Choose the cycle (say (x,y)-cycle) with more total cost inside, since the cost inside the (x,z) cycle >2/3, the total cost inside the (x,y)-cycle and itself >1/3, so the cost outside (x,y) cycle <2/3.</li>



- minimize the max{costs inside cycle, costs outside cycle}
- break ties by choosing the cycle with smallest number of faces on the "max" side
- Neither of them is a tree edge, then each of (x,y) and (y,z) defines a cycle.
- every vertex inside the (x,z) cycle would: inside the (x,y) cycle, inside the (y,z) cycle or on the boundary
- Choose the cycle (say (x,y)-cycle) with more total cost inside, since the cost inside the (x,z) cycle >2/3, the total cost inside the (x,y)-cycle and itself >1/3, so the cost outside (x,y) cycle <2/3.</li>
- If the cost inside (x,y) cycle is greater than outside, (x,y) would have been chosen since the cost inside (x,y) cycle is smaller than the cost inside (x,z) cycle.
- Otherwise the cost inside the (x,y) cycle <1/2, so the (x,y) cycle is what we want.

#### We have proved:

- Let G be a planar graph with nonnegative vertex costs whose sum ≤1
- If G has a spanning tree T of radius r, then G has a separator C, s.t. neither A nor B has total cost more than 2/3, and C contains at most 2r+1 vertices.



#### Main theorem:

- Let G be a planar graph with nonnegative vertex costs whose sum ≤1
- Then the vertices of G can be partitioned into A,B,C
  - no edge joins A and B
  - neither A nor B has total cost >2/3
  - $|C| \leq 2\sqrt{2n^{1/2}}$

#### Main theorem:

- Let G be a planar graph with nonnegative vertex costs whose sum ≤1
- Then the vertices of G can be partitioned into A,B,C
  - no edge joins A and B
  - neither A nor B has total cost >2/3
  - $|C| \leq 2\sqrt{2n^{1/2}}$
- We first assume G is connected

- Partition the vertices into levels by the shortest path tree from some vertex v
  - there is no edges links levels not adjacent to each other
  - Let L(l) is the number of vertices on level l
  - r is the number of levels, so we have level o, level 1,..., level r



Let i be the lowest level such that the total costs in level 0 to level i  $\geq 1/2$ ,

- denote the number of vertices in level o to level i by p
- Find  $j \le i$  and  $k \ge i+1$  such that:
  - $|L(j)|+2(i-j) \le 2p^{1/2}$
  - $|L(k)|+2(k-i-1)\leq 2(n-p)^{1/2}$



Let i be the lowest level such that the total costs in level o to level i is  $\geq 1/2$ ,

- denote the number of vertices in level o to level i by p
- Find j≤i and k≥i+1 such that:
  - $|L(j)|+2(i-j) \le 2p^{1/2}$
  - $|L(k)|+2(k-i-1)\leq 2(n-p)^{1/2}$
- Then we will show that the conclusion follows by such j,k, and such j and k must exist

Let i be the lowest level such that the total costs in level 0 to level i  $\geq 1/2$ ,

- denote the number of vertices in level o to level i by p
- Find  $j \le i$  and  $k \ge i+1$  such that:
  - $|L(j)|+2(i-j) \le 2p^{1/2}$
  - $|L(k)|+2(k-i-1)\leq 2(n-p)^{1/2}$
- Consider the vertices in levels: [0,j-1], [j+1,k-1],[k+1,r].



Consider the vertices in levels: [0,j-1], [j+1,k-1],[k+1,r].

- If the numbers of vertices in all of these sets are  $\leq 2/3$ , then
  - C={vertices in levels j and k}, so  $|C| \le 2\sqrt{2n^{1/2}}$
  - A=the biggest among these three sets
  - B=the union of the other two



Consider the vertices in levels: [0,j-1], [j+1,k-1],[k+1,r].

- If the number of vertices in one of these sets is  $\leq 2/3$ , then
  - C={vertices in levels j and k}, so  $|C| \le 2\sqrt{2n^{1/2}}$
- By definition of level i, j, k, the only sets which can has cost >2/3 is the middle part [j+1,k-1]
  - Delete all vertices in levels [k,r]
  - Shrink all vertices in levels [0,j] to a single vertex with cost o
  - This preserves planarity
- By our preliminary theorem, this tree T has a separator of size 2(i-j-1)+1 vertices with one root.

If G has a spanning tree T of radius r, then G has a separator C, s.t. neither A nor B has total cost more than 2/3, and C contains at most 2r+1 vertices.

Consider the vertices in levels: [0,j-1], [j+1,k-1],[k+1,r].

- If the number of vertices in one of these sets is  $\leq 2/3$ , then
  - C={vertices in levels j and k}, so  $|C| \le 2\sqrt{2n^{1/2}}$
- By definition of level i, j, k, the only sets which can has cost >2/3 is the middle part [j+1,k-1]
  - Delete all vertices in levels [k,r]
  - Shrink all vertices in levels [0,j] to a single vertex with cost o
  - This preserves planarity
- By our preliminary theorem, this tree T has a separator of size 2(i-j-1)+1 vertices with one root.
  - So this separator with L(j) and L(k) will form a separator of size  $|L(j)|+|L(k)|+2(i-j-1) \le 2\sqrt{2n^{1/2}}$

 $|L(j)|+2(i-j) \le 2p^{1/2}$  $|L(k)|+2(k-i-1) \le 2(n-p)^{1/2}$ 

Let i be the lowest level such that the total costs in level o to level i is  $\geq 1/2$ ,

- denote the number of vertices in level o to level i by p
- Find j≤i and k≥i+1 such that:
  - $|L(j)|+2(i-j) \le 2p^{1/2}$
  - $|L(k)|+2(k-i-1)\leq 2(n-p)^{1/2}$
- Then we will show that the conclusion follows by such j,k, and such j and k must exist

- Let i be the lowest level such that the total costs in level o to level i is  $\geq 1/2$ ,
  - denote the number of vertices in level o to level i by p
- Find j≤i and k≥i+1 such that:
  - $|L(j)|+2(i-j) \le 2p^{1/2}$
  - $|L(k)|+2(k-i-1)\leq 2(n-p)^{1/2}$
- If such j does not exists, then for all  $h \le j$ ,  $L(h) > 2p^{1/2}-2(i-h)$ , and L(o)=1, so  $i+1/2 \ge p^{1/2}$ , so

$$p = \sum_{h=0}^{i} L(h) \ge \sum_{h=0}^{i} 2\sqrt{p} - 2(i-h) > p$$

• We can prove k exists by a similar procedure.

#### Main theorem:

- Let G be a planar graph with nonnegative vertex costs whose sum ≤1
- Then the vertices of G can be partitioned into A,B,C
  - no edge joins A and B
  - neither A nor B has total cost >2/3
  - $|C| \leq 2\sqrt{2n^{1/2}}$
- We first assume G is connected
- Otherwise, For each connected component, we can find a separator.

#### Simpler version:

- Then the vertices of G can be partitioned into A,B,C
  - no edge joins A and B
  - |A|, |B|≤⅔n
  - $|C| \le 2\sqrt{2n^{1/2}}$
  - By assign each vertex of G a cost of 1/n.

# Applications

- Very useful in divide-and-conquer method
- For A and B, recursively find separators in them



# Applications

- Very useful in divide-and-conquer method
- For A and B, recursively find separators in them



# Example

- Data structure to store all-pair shortest paths
- n×n table

|                | V <sub>1</sub> | <b>V</b> <sub>2</sub> | ••• | <b>v</b> <sub>n</sub> |
|----------------|----------------|-----------------------|-----|-----------------------|
| $\mathbf{V}_1$ |                |                       |     |                       |
| V <sub>2</sub> |                |                       |     |                       |
| •••            |                |                       |     |                       |
| v <sub>n</sub> |                |                       |     |                       |

#### • The path between A and B must go through the separator C



- The path between A and B must go through the separator C
- So we store the distance of (u,v) where  $u \in C$  and  $v \in V$ 
  - Space: O(n<sup>3/2</sup>)



- The path between A and B must go through the separator C
- So we store the distance of d(u,v) where u∈C and v∈V
  - Space: O(n<sup>3/2</sup>)
  - Note that the path between A and C may travel through B



- The path between A and B must go through the separator C
- So we store the distance of (u,v) where  $u \in C$  and  $v \in V$ 
  - Space: O(n<sup>3/2</sup>)
- For each of A and B, recursively construct the structure.



- The path between A and B must go through the separator C
- So we store the distance of (u,v) where u∈C and v∈V
  - Space: O(n<sup>3/2</sup>)
- For each of A and B, recursively construct the structure.
  - For A, store the distances between all vertices of A and the vertices of separator of A, where the paths only travel within A

• Total space: 
$$O\left(n^{3/2} + 2\left(\frac{n}{2}\right)^{3/2} + 4\left(\frac{n}{4}\right)^{3/2} + ...\right) = O(n^{3/2})$$

- If  $u \in A$  and  $v \in B$ , then just find the minimum of:
  - min{d(u,w)+d(w,v)|w\in C}
  - Query time: O(n<sup>1/2</sup>)



- If both u,v∈A but in different subparts, find the minimum of:
  - $\min\{d(u,w)+d(w,v)|w\in C\}, \min\{d(u,w')+d(w',v)|w'\in C'\}$
  - This will cover:
    - paths travels through C, paths within A



• If both u,v∈A but in different subparts, find the minimum of:

- $\min\{d(u,w)+d(w,v)|w\in C\}, \min\{d(u,w')+d(w',v)|w'\in C'\}$
- This will cover:
  - paths travels through C, paths within A
- Query time: O(n<sup>1/2</sup>)

• Thus, for any u,v in some subpartition, we need to check the vertices on the borders:

• Query time: 
$$O\left(\sqrt{n} + \sqrt{\frac{n}{2}} + \sqrt{\frac{n}{4}} + \dots\right) = O(\sqrt{n})$$



Instead of store an O(n<sup>2</sup>) table, we can construct a structure of space O(n<sup>3/2</sup>) with query time O(n<sup>1/2</sup>).

• So most problems in graph theory have faster algorithms for planar graphs than for general graphs.

- So most problems in graph theory have faster algorithms for planar graphs than for general graphs.
- O(n<sup>1/2</sup>)-separator is more common, but the path separator is also useful:
  - "Compact oracles for reachability and approximate distances in planar digraphs"
  - Mikkel Thorup, 2004

# Preliminary theorem:

- Let G be a planar graph with nonnegative vertex costs whose sum ≤1
- If G has a spanning tree T of radius r, then G has a separator C, s.t. neither A nor B has total cost more than 2/3, and C contains at most 2r+1 vertices.



#### Preliminary theorem:

- If G has a spanning tree T of radius r, then G has a separator C, s.t. neither A nor B has total cost more than 2/3, and C contains at most 2r+1 vertices.
- C is a cycle formed by the tree and a non-tree edge.
- If the tree is a shortest path tree from or to the root, the separator C is on two paths.



# Thank you!