
Algorithmic Game Theory
and Internet Computing

Combinatorial Algorithms for

Linear Fisher Markets

In this talk

  Fisher market model and Arrow-Debreu market
model

  Combinatorial algorithm solving linear Fisher market
 Similar to matching and maximum flow

  Not in exam

Irving Fisher, 1891

 Defined a fundamental
 market model

 Special case of Walras’
 model

Several buyers with
different utility functions and moneys.

Several buyers with
different utility functions and moneys.

Find equilibrium prices.

Linear Fisher Market

  B = n buyers, money mi for buyer i
  G = g goods, w.l.o.g. unit amount of each good

Linear Fisher Market

  B = n buyers, money mi for buyer i
  G = g goods, w.l.o.g. unit amount of each goods
  : utility derived by i
 on obtaining one unit of j

 Desirability

Linear Fisher Market

  B = n buyers, money mi for buyer i
  G = g goods, w.l.o.g. unit amount of each good
  : utility derived by i
 on obtaining one unit of j
  Total utility of i,

Linear Fisher Market

  B = n buyers, money mi for buyer i
  G = g goods, w.l.o.g. unit amount of each good
  : utility derived by i
 on obtaining one unit of j
  Total utility of i,

  Find market clearing prices.

Market clearing allocation
  Budget constraint

 
 The buyer cannot spend more than what he has

  Optimality
 x maximize for every buyer i
 no other bundle of goods that satisfies the budget constraint

is more desirable

  Market clearing
 There is neither deficiency nor surplus of any goods:

People Goods

$100

$60

$20

$140

Prices and utilities

$100

$60

$20

$140

$20

$40

$10

$60

10

20

4

2

utilities

Price

Bang per buck

$100

$60

$20

$140

$20

$40

$10

$60

10

20

4

2

10/20

20/40

4/10

2/60

Bang per buck

 Utility of $1 worth of goods

 Buyers will only buy goods providing
 maximum bang per buck

Equality subgraph

$100

$60

$20

$140

$20

$40

$10

$60

10

20

4

2

10/20

20/40

4/10

2/60

$100 can get utility of 50

Arrow-Debreu market

  Each agent is assigned a bundle of goods instead of
an amount of money

  They sell their own goods to other agents then buy
their desirable goods

  Fisher market can be seen as a special case of AD
market
 Money can be seen as a kind of goods

Arrow-Debreu Theorem, 1954

  Established existence of market equilibrium under
 very general conditions using a deep theorem from
 topology - Kakutani fixed point theorem.

  Provides a mathematical ratification of
 Adam Smith’s “invisible hand of the market”.

Need algorithmic ratification!!

Linear Fisher Market

  B = n buyers, money mi for buyer i
  G = g goods, w.l.o.g. unit amount of each good
  : utility derived by i
 on obtaining one unit of j
  Total utility of i,

  Find market clearing prices.

Can equilibrium allocations be
 captured via an LP?

  Set of feasible allocations:

Does equilibrium optimize a
global objective function?

  Guess 1: Maximize sum of utilities, i.e.,

  Problem: and

 are equivalent utility functions.

However,

Guess 2: Product of utilities.

 However, suppose a buyer with $200 is

split into two buyers with $100 each

And same utility function.

 Clearly, equilibrium should not change.

However,

 Money of buyers is relevant.

 Assume a utility function is written on
 each dollar in market

Guess 3: Product of utilities
 over all dollars

Eisenberg-Gale Program, 1959

This can be solved in polynomial time
However, we want combinatorial algorithms

An easier question

 Given prices p, are they equilibrium prices?

  If so, find equilibrium allocations.

  At prices p, buyer i’s most
 desirable goods, Si =

  Any goods from Si worth m(i)
 constitute i’s optimal bundle

Bang-per-buck

m(1)

m(2)

m(3)

m(4)

p(1)

p(2)

p(3)

p(4)

For each buyer, most desirable goods, i.e.

Network N(p)

m(1)

m(2)

m(3)

m(4)

p(1)

p(2)

p(3)

p(4)

infinite capacities

s
t

Max flow in N(p)

m(1)

m(2)

m(3)

m(4)

p(1)

p(2)

p(3)

p(4)

p: equilibrium prices iff both cuts saturated

Idea of algorithm

  “primal” variables: allocations

  “dual” variables: prices of goods

 Approach equilibrium prices from below:
 start with very low prices; buyers have surplus money
 iteratively keep raising prices
 and decreasing surplus

An important consideration

 The price of a good never exceeds
 its equilibrium price

 Invariant: s is a min-cut

Invariant: s is a min-cut in N(p)

m(1)

m(2)

m(3)

m(4)

p(1)

p(2)

p(3)

p(4)

p: low prices

s

Idea of algorithm

  Iterations:
 execute primal & dual improvements

Allocations Prices

Key Algorithmic Idea

 Dual variables (prices) are raised greedily

 Yet, primal objects go tight and loose

 Balanced Flows: For limiting no. of such events

Max-flow in N

m p

W.r.t. max-flow f, surplus(i) = m(i) – f(i,t)

i

t s

Max-flow in N

m p

surplus vector = vector of surpluses w.r.t. f

i

Obvious potential function

 Total surplus money = l1 norm of surplus vector

 Reduce l1 norm of surplus vector by
 inverse polynomial fraction in each iteration

€

l1(s1,s2,…,sn) =| s1 |+ | s2 |+…+ | sn |

Balanced flow

 A max-flow that
 minimizes l2 norm of surplus vector.

 Makes surpluses as equal as possible.

€

l2(s1,s2,…,sn) = s1
2 + s2

2 +…+ sn
2

Balanced flow

 A max-flow that
 minimizes l2 norm of surplus vector.

 Makes surpluses as equal as possible.

 All balanced flows have same surplus vector.

Our algorithm

 Reduces l2 norm of surplus vector by
 inverse polynomial fraction in each iteration.

Property 1

  f: max-flow in N.

 R: residual graph w.r.t. f.

  If surplus (i) < surplus(j) then there is no
 path from i to j in R.

Property 1

i

j

R:

 surplus(i) < surplus(j)

Property 1

i

 surplus(i) < surplus(j)

j

R:

Property 1

i

 Circulation gives a more balanced flow.

j

R:

Property 1

 Theorem: A max-flow is balanced iff
 it satisfies Property 1.

 Construct N’(I, J)

 Raise prices in J

 New edge enters N

 OR a subset in I becomes tight

Algorithm for an iteration

Network N(p)

m p

buyers goods

bang-per-buck
edges

 Construct N’(I, J)
 Find a balanced flow in N(p)
 Let d = max surplus w.r.t. balanced flow
 I = buyers with surplus d
 J = goods desired by I

 Raise prices in J

 New edge enters N

 OR a subset in I becomes tight

Network N(p)

N’(I, J) I J

N - N’

Network N(p)

N’(I, J) I J

N - N’

 Construct N’(I, J)

 Raise prices in J
  N’ is decoupled from N - N’

 New edge enters N

 OR a subset in I becomes tight

Network N(p)

N’(I, J) I J

N - N’

Network N(p)

N’(I, J) I J

N - N’

By Property 1, this edge did not carry any flow.

Network N(p)

N’(I, J) I J

N - N’

Hence Invariant is not violated by its removal.

Raise prices in J

  proportionately, so that
 edges in N’ don’t change.

  p . x, for each p in J
  initialize x = 1
 raise x

 Construct N’(I, J)

 Raise prices in J

 New edge enters N

 OR a subset in I becomes tight

Network N(p)

N’(I, J) I J

N - N’

 Construct N’(I, J)

 Raise prices in J

 New edge enters N
 Recompute balanced flow
 Buyers in N - N’ having residual paths to N’
 Move to N’

 OR a subset in I becomes tight

Network N(p)

N’(I, J) I J

N - N’

Network N(p)

N’(I, J) I J

N - N’

Network N(p)

N’(I, J) I J

N - N’

 Construct N’(I, J)

 Raise prices in J

 New edge enters N
 Recompute balanced flow
 Buyers moved to N’ will have
 sufficiently large surplus

 OR a subset in I becomes tight

 Construct N’(I, J)

 Raise prices in J

 New edge enters N

 OR a subset in I becomes tight

Algorithm for an iteration

Tight set: p(S) = m(T)

N’(I, J)

T S

N - N’

  Surplus of buyers in T drops to 0

 Assume k sub-iterations.

 Let d0 = d. At the end of lth sub-iteration,

 dl = min {surplus(i) | i is in I}. So, dk = 0.

Network N(p)

N’(I, J) I J

N - N’

 Construct N’(I, J)

 Raise prices in J

 New edge enters N
 Recompute balanced flow
 Move buyers in N - N’ having residual paths to N’

  will have sufficiently large surplus

 OR a subset in I becomes tight

Network N(p)

N’(I, J) I J

N - N’

 Assume k sub-iterations.

 Let d0 = d. At the end of lth sub-iteration,

 dl = min {surplus(i) | i is in I}. So, dk = 0.

 Decrease in l1 norm in sub-iteration l
 is at least (dl-1 – dl)

 Decrease in l2
2

 norm in sub-iteration l
 is at least (dl-1 – dl)2

Our algorithm

 Reduces l2 norm of surplus vector by
 1/n2 fraction in each iteration

  Polynomial time algorithm

An improved algorithm by Orlin ‘10

 More intuitive
  Scaling algorithm
  Similar to Hungarian algorithm for matchings

The residual network N(p)

  In the bipartite graph from buyer to goods

  For each equality edge (i,j), (i,j)∈N(p)

  For every (i,j) with xij>0, there is an arc (j,i)∈N(p)

An example

For an augmenting path connecting a buyer and
a goods both with surplus

For an augmenting path connecting a buyer and
a goods both with surplus

  In each scale, we maintain:
 The surplus of every buyer ≥0
 The surplus of every goods between [0,Δ]
 All xij are multiples of Δ

 Our aim in each scale:
 The surplus of every buyer <Δ

 After that reduce Δ by one half

  In each phase, start from buyers with surplus ≥Δ
  Find augmenting paths to goods with surplus ≥Δ

  If there is no such augmenting paths,
 Define the ActiveSet to be the vertices reachable

from buyers with surplus ≥Δ
 Multiply the prices of goods in ActiveSet by the same

factor q
 Until ActiveSet becomes larger or some goods in

ActiveSet has surplus ≥Δ

 ActiveSet can become larger, since the goods not
in it becomes more attractive

  It takes O(m+nlog n) to find an augmenting path from a
buyer

  In each phase, the sum of all surplus is O(nΔ), so we just
need to find O(n) augmenting paths
 Because we start from the allocation of the previous phase with

2Δ

  Total running time: O(n(m+nlog n)(mmax+nlog Umax))
 Δ begins with mmax/n, and ends with 1/(8n2Umax)

Arrow-Debreu market

  Each agent is assigned a bundle of goods instead of
an amount of money

  They sell their own goods to other agents then buy
their desirable goods

  Fisher market can be seen as a special case of AD
market

  Still no combinatorial polynomial algorithms!

