
Algorithmic Game Theory
and Internet Computing

Combinatorial Algorithms for

Linear Fisher Markets

In this talk

  Fisher market model and Arrow-Debreu market
model

  Combinatorial algorithm solving linear Fisher market
 Similar to matching and maximum flow

  Not in exam

Irving Fisher, 1891

 Defined a fundamental
 market model

 Special case of Walras’
 model

Several buyers with
different utility functions and moneys.

Several buyers with
different utility functions and moneys.

Find equilibrium prices.

Linear Fisher Market

  B = n buyers, money mi for buyer i
  G = g goods, w.l.o.g. unit amount of each good

Linear Fisher Market

  B = n buyers, money mi for buyer i
  G = g goods, w.l.o.g. unit amount of each goods
  : utility derived by i
 on obtaining one unit of j

 Desirability

Linear Fisher Market

  B = n buyers, money mi for buyer i
  G = g goods, w.l.o.g. unit amount of each good
  : utility derived by i
 on obtaining one unit of j
  Total utility of i,

Linear Fisher Market

  B = n buyers, money mi for buyer i
  G = g goods, w.l.o.g. unit amount of each good
  : utility derived by i
 on obtaining one unit of j
  Total utility of i,

  Find market clearing prices.

Market clearing allocation
  Budget constraint

 
 The buyer cannot spend more than what he has

  Optimality
 x maximize for every buyer i
 no other bundle of goods that satisfies the budget constraint

is more desirable

  Market clearing
 There is neither deficiency nor surplus of any goods:

People Goods

$100

$60

$20

$140

Prices and utilities

$100

$60

$20

$140

$20

$40

$10

$60

10

20

4

2

utilities

Price

Bang per buck

$100

$60

$20

$140

$20

$40

$10

$60

10

20

4

2

10/20

20/40

4/10

2/60

Bang per buck

 Utility of $1 worth of goods

 Buyers will only buy goods providing
 maximum bang per buck

Equality subgraph

$100

$60

$20

$140

$20

$40

$10

$60

10

20

4

2

10/20

20/40

4/10

2/60

$100 can get utility of 50

Arrow-Debreu market

  Each agent is assigned a bundle of goods instead of
an amount of money

  They sell their own goods to other agents then buy
their desirable goods

  Fisher market can be seen as a special case of AD
market
 Money can be seen as a kind of goods

Arrow-Debreu Theorem, 1954

  Established existence of market equilibrium under
 very general conditions using a deep theorem from
 topology - Kakutani fixed point theorem.

  Provides a mathematical ratification of
 Adam Smith’s “invisible hand of the market”.

Need algorithmic ratification!!

Linear Fisher Market

  B = n buyers, money mi for buyer i
  G = g goods, w.l.o.g. unit amount of each good
  : utility derived by i
 on obtaining one unit of j
  Total utility of i,

  Find market clearing prices.

Can equilibrium allocations be
 captured via an LP?

  Set of feasible allocations:

Does equilibrium optimize a
global objective function?

  Guess 1: Maximize sum of utilities, i.e.,

  Problem: and

 are equivalent utility functions.

However,

Guess 2: Product of utilities.

 However, suppose a buyer with $200 is

split into two buyers with $100 each

And same utility function.

 Clearly, equilibrium should not change.

However,

 Money of buyers is relevant.

 Assume a utility function is written on
 each dollar in market

Guess 3: Product of utilities
 over all dollars

Eisenberg-Gale Program, 1959

This can be solved in polynomial time
However, we want combinatorial algorithms

An easier question

 Given prices p, are they equilibrium prices?

  If so, find equilibrium allocations.

  At prices p, buyer i’s most
 desirable goods, Si =

  Any goods from Si worth m(i)
 constitute i’s optimal bundle

Bang-per-buck

m(1)

m(2)

m(3)

m(4)

p(1)

p(2)

p(3)

p(4)

For each buyer, most desirable goods, i.e.

Network N(p)

m(1)

m(2)

m(3)

m(4)

p(1)

p(2)

p(3)

p(4)

infinite capacities

s
t

Max flow in N(p)

m(1)

m(2)

m(3)

m(4)

p(1)

p(2)

p(3)

p(4)

p: equilibrium prices iff both cuts saturated

Idea of algorithm

  “primal” variables: allocations

  “dual” variables: prices of goods

 Approach equilibrium prices from below:
 start with very low prices; buyers have surplus money
 iteratively keep raising prices
 and decreasing surplus

An important consideration

 The price of a good never exceeds
 its equilibrium price

 Invariant: s is a min-cut

Invariant: s is a min-cut in N(p)

m(1)

m(2)

m(3)

m(4)

p(1)

p(2)

p(3)

p(4)

p: low prices

s

Idea of algorithm

  Iterations:
 execute primal & dual improvements

Allocations Prices

Key Algorithmic Idea

 Dual variables (prices) are raised greedily

 Yet, primal objects go tight and loose

 Balanced Flows: For limiting no. of such events

Max-flow in N

m p

W.r.t. max-flow f, surplus(i) = m(i) – f(i,t)

i

t s

Max-flow in N

m p

surplus vector = vector of surpluses w.r.t. f

i

Obvious potential function

 Total surplus money = l1 norm of surplus vector

 Reduce l1 norm of surplus vector by
 inverse polynomial fraction in each iteration

€

l1(s1,s2,…,sn) =| s1 |+ | s2 |+…+ | sn |

Balanced flow

 A max-flow that
 minimizes l2 norm of surplus vector.

 Makes surpluses as equal as possible.

€

l2(s1,s2,…,sn) = s1
2 + s2

2 +…+ sn
2

Balanced flow

 A max-flow that
 minimizes l2 norm of surplus vector.

 Makes surpluses as equal as possible.

 All balanced flows have same surplus vector.

Our algorithm

 Reduces l2 norm of surplus vector by
 inverse polynomial fraction in each iteration.

Property 1

  f: max-flow in N.

 R: residual graph w.r.t. f.

  If surplus (i) < surplus(j) then there is no
 path from i to j in R.

Property 1

i

j

R:

 surplus(i) < surplus(j)

Property 1

i

 surplus(i) < surplus(j)

j

R:

Property 1

i

 Circulation gives a more balanced flow.

j

R:

Property 1

 Theorem: A max-flow is balanced iff
 it satisfies Property 1.

 Construct N’(I, J)

 Raise prices in J

 New edge enters N

 OR a subset in I becomes tight

Algorithm for an iteration

Network N(p)

m p

buyers goods

bang-per-buck
edges

 Construct N’(I, J)
 Find a balanced flow in N(p)
 Let d = max surplus w.r.t. balanced flow
 I = buyers with surplus d
 J = goods desired by I

 Raise prices in J

 New edge enters N

 OR a subset in I becomes tight

Network N(p)

N’(I, J) I J

N - N’

Network N(p)

N’(I, J) I J

N - N’

 Construct N’(I, J)

 Raise prices in J
  N’ is decoupled from N - N’

 New edge enters N

 OR a subset in I becomes tight

Network N(p)

N’(I, J) I J

N - N’

Network N(p)

N’(I, J) I J

N - N’

By Property 1, this edge did not carry any flow.

Network N(p)

N’(I, J) I J

N - N’

Hence Invariant is not violated by its removal.

Raise prices in J

  proportionately, so that
 edges in N’ don’t change.

  p . x, for each p in J
  initialize x = 1
 raise x

 Construct N’(I, J)

 Raise prices in J

 New edge enters N

 OR a subset in I becomes tight

Network N(p)

N’(I, J) I J

N - N’

 Construct N’(I, J)

 Raise prices in J

 New edge enters N
 Recompute balanced flow
 Buyers in N - N’ having residual paths to N’ 
 Move to N’

 OR a subset in I becomes tight

Network N(p)

N’(I, J) I J

N - N’

Network N(p)

N’(I, J) I J

N - N’

Network N(p)

N’(I, J) I J

N - N’

 Construct N’(I, J)

 Raise prices in J

 New edge enters N
 Recompute balanced flow
 Buyers moved to N’ will have
 sufficiently large surplus

 OR a subset in I becomes tight

 Construct N’(I, J)

 Raise prices in J

 New edge enters N

 OR a subset in I becomes tight

Algorithm for an iteration

Tight set: p(S) = m(T)

N’(I, J)

T S

N - N’

  Surplus of buyers in T drops to 0

 Assume k sub-iterations.

 Let d0 = d. At the end of lth sub-iteration,

 dl = min {surplus(i) | i is in I}. So, dk = 0.

Network N(p)

N’(I, J) I J

N - N’

 Construct N’(I, J)

 Raise prices in J

 New edge enters N
 Recompute balanced flow
 Move buyers in N - N’ having residual paths to N’

  will have sufficiently large surplus

 OR a subset in I becomes tight

Network N(p)

N’(I, J) I J

N - N’

 Assume k sub-iterations.

 Let d0 = d. At the end of lth sub-iteration,

 dl = min {surplus(i) | i is in I}. So, dk = 0.

 Decrease in l1 norm in sub-iteration l
 is at least (dl-1 – dl)

 Decrease in l2
2

 norm in sub-iteration l
 is at least (dl-1 – dl)2

Our algorithm

 Reduces l2 norm of surplus vector by
 1/n2 fraction in each iteration

  Polynomial time algorithm

An improved algorithm by Orlin ‘10

 More intuitive
  Scaling algorithm
  Similar to Hungarian algorithm for matchings

The residual network N(p)

  In the bipartite graph from buyer to goods

  For each equality edge (i,j), (i,j)∈N(p)

  For every (i,j) with xij>0, there is an arc (j,i)∈N(p)

An example

For an augmenting path connecting a buyer and
a goods both with surplus

For an augmenting path connecting a buyer and
a goods both with surplus

  In each scale, we maintain:
 The surplus of every buyer ≥0
 The surplus of every goods between [0,Δ]
 All xij are multiples of Δ

 Our aim in each scale:
 The surplus of every buyer <Δ

 After that reduce Δ by one half

  In each phase, start from buyers with surplus ≥Δ
  Find augmenting paths to goods with surplus ≥Δ

  If there is no such augmenting paths,
 Define the ActiveSet to be the vertices reachable

from buyers with surplus ≥Δ
 Multiply the prices of goods in ActiveSet by the same

factor q
 Until ActiveSet becomes larger or some goods in

ActiveSet has surplus ≥Δ

 ActiveSet can become larger, since the goods not
in it becomes more attractive

  It takes O(m+nlog n) to find an augmenting path from a
buyer

  In each phase, the sum of all surplus is O(nΔ), so we just
need to find O(n) augmenting paths
 Because we start from the allocation of the previous phase with

2Δ

  Total running time: O(n(m+nlog n)(mmax+nlog Umax))
 Δ begins with mmax/n, and ends with 1/(8n2Umax)

Arrow-Debreu market

  Each agent is assigned a bundle of goods instead of
an amount of money

  They sell their own goods to other agents then buy
their desirable goods

  Fisher market can be seen as a special case of AD
market

  Still no combinatorial polynomial algorithms!

