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In this talk 

  Fisher market model and Arrow-Debreu market 
model 

  Combinatorial algorithm solving linear Fisher market 
 Similar to matching and maximum flow 

  Not in exam 



Irving Fisher, 1891 

 Defined a fundamental 
     market model 

 Special case of Walras’ 
      model 



Several buyers with  
different utility functions and moneys. 
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  Find market clearing prices. 



Market clearing allocation 
  Budget constraint 

    
 The buyer cannot spend more than what he has 

  Optimality 
 x maximize              for every buyer i 
 no other bundle of goods that satisfies the budget constraint 

is more desirable 

  Market clearing 
 There is neither deficiency nor surplus of any goods: 
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Bang per buck 

 Utility of  $1 worth of goods 

 Buyers will only buy goods providing 
    maximum bang per buck 



Equality subgraph 
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$100 can get utility of 50 



Arrow-Debreu market 

  Each agent is assigned a bundle of goods instead of 
an amount of money 

  They sell their own goods to other agents then buy 
their desirable goods  

  Fisher market can be seen as a special case of AD 
market 
 Money can be seen as a kind of goods 



Arrow-Debreu Theorem, 1954 

  Established existence of market equilibrium under 
      very general conditions using a deep theorem from  
      topology  -  Kakutani fixed point theorem. 

   Provides a mathematical ratification of  
       Adam Smith’s  “invisible hand of the market”. 



Need algorithmic ratification!!  



Linear Fisher Market 

  B = n  buyers,  money  mi  for buyer i 
  G = g  goods, w.l.o.g. unit amount of each good 
          :  utility derived by i 
                        on obtaining one unit of  j 
  Total utility of i,  

  Find market clearing prices. 



Can equilibrium allocations be  
    captured via an LP? 

  Set of feasible allocations: 



Does equilibrium optimize a  
global objective function? 

  Guess 1:    Maximize sum of utilities, i.e., 

  Problem:                  and 

      are equivalent utility functions. 



However,  



Guess 2:  Product of utilities.  



 However, suppose a buyer with $200 is 

split into two buyers with $100 each 

And same utility function. 

 Clearly, equilibrium should not change. 



However,  



 Money of buyers is relevant. 

 Assume a utility function is written on 
    each dollar in market 



Guess 3:  Product of utilities  
                    over all dollars 



Eisenberg-Gale Program, 1959 

This can be solved in polynomial time 
However, we want combinatorial algorithms 



An easier question 

 Given prices  p,  are they equilibrium prices? 

  If so, find equilibrium allocations. 



  At prices  p,  buyer  i’s  most 
       desirable goods,                    Si =    

  Any goods from  Si  worth  m(i) 
    constitute  i’s  optimal bundle 

Bang-per-buck 
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For each buyer,  most desirable goods, i.e. 



Network  N(p) 
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Max flow in  N(p) 
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p:  equilibrium prices iff both cuts saturated 



Idea of  algorithm 

  “primal” variables:   allocations 

  “dual” variables:   prices of goods 

 Approach equilibrium prices from below: 
 start with very low prices; buyers have surplus money 
 iteratively keep raising prices  
          and decreasing surplus 



An important consideration 

 The price of a good never exceeds 
              its equilibrium price 

 Invariant:  s  is a min-cut 



Invariant:  s is a min-cut in  N(p) 

m(1) 

m(2) 

m(3) 

m(4) 

p(1) 

p(2) 

p(3) 

p(4) 

p:    low prices  

s 



Idea of  algorithm 

  Iterations:  
       execute  primal & dual improvements 

Allocations             Prices 



Key Algorithmic Idea 

 Dual variables (prices) are raised greedily 

 Yet, primal objects go tight and loose 

 Balanced Flows:  For limiting no. of such events 



Max-flow in  N   

m p 

W.r.t. max-flow  f,  surplus(i)  =  m(i) – f(i,t) 
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Max-flow in  N   

m p 

surplus vector  =  vector of surpluses w.r.t.  f 

i 



Obvious potential function 

 Total surplus money  =  l1  norm of surplus vector 

 Reduce  l1  norm of  surplus vector by  
    inverse polynomial fraction in each iteration 

  

€ 

l1(s1,s2,…,sn ) =| s1 |+ | s2 |+…+ | sn |



Balanced flow 

 A max-flow that  
        minimizes  l2   norm of surplus vector. 

 Makes surpluses as equal as possible. 

  

€ 

l2(s1,s2,…,sn ) = s1
2 + s2

2 +…+ sn
2



Balanced flow 

 A max-flow that  
        minimizes  l2   norm of surplus vector. 

 Makes surpluses as equal as possible. 

 All balanced flows have same surplus vector. 



Our algorithm 

 Reduces  l2  norm of surplus vector by  
    inverse polynomial fraction in each iteration. 



Property 1 

  f:   max-flow in  N. 

 R:  residual graph w.r.t.  f. 

  If  surplus (i)  <  surplus(j)  then there is no 
     path from  i  to  j  in  R. 



Property 1 

i 

j 
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  surplus(i)  <  surplus(j) 



Property 1 
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  surplus(i)  <  surplus(j) 

j 

R: 



Property 1 

i 

  Circulation gives a more balanced flow.   

j 

R: 



Property 1 

 Theorem:  A  max-flow is balanced iff 
                      it satisfies Property 1. 



 Construct  N’(I, J) 

 Raise prices in  J 

 New edge enters  N 

 OR a subset in I becomes tight 

Algorithm for an iteration 



Network   N(p)  

m p 

buyers goods 

bang-per-buck  
edges 



 Construct  N’(I, J) 
 Find a balanced flow in  N(p) 
      Let  d  =  max surplus w.r.t. balanced flow 
 I  =  buyers with surplus  d 
 J  =  goods desired by  I 

 Raise prices in  J 

 New edge enters  N 

 OR a subset in I becomes tight 
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 Construct  N’(I, J) 

 Raise prices in  J 
  N’  is decoupled from  N - N’ 

 New edge enters  N 

 OR a subset in I becomes tight 
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Network   N(p)  

N’(I, J) I J 

N - N’ 

By Property 1, this edge did not carry any flow. 



Network   N(p)  

N’(I, J) I J 

N - N’ 

Hence Invariant is not violated by its removal. 



Raise prices in  J 

  proportionately, so that  
       edges in  N’ don’t change. 

   p . x,   for each  p in  J 
  initialize  x = 1 
 raise  x 
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 Construct  N’(I, J) 

 Raise prices in  J 

 New edge enters  N 
 Recompute balanced flow 
 Buyers in  N - N’  having residual paths to N’    
                                                            Move to N’ 

 OR a subset in I becomes tight 
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 Construct  N’(I, J) 

 Raise prices in  J 

 New edge enters  N 
 Recompute balanced flow 
 Buyers moved to N’ will have  
                            sufficiently large surplus 

 OR a subset in I becomes tight 



 Construct  N’(I, J) 

 Raise prices in  J 

 New edge enters  N 

 OR a subset in I becomes tight 

Algorithm for an iteration 



Tight set:   p(S) = m(T)  

N’(I, J) 

T S 

N - N’ 



  Surplus of buyers in T  drops to 0 



 Assume  k  sub-iterations. 

 Let  d0 =  d.     At the end of  lth  sub-iteration, 

 dl  =  min {surplus(i) |  i  is in I}.    So,   dk  =  0. 



Network   N(p)  

N’(I, J) I J 

N - N’ 



 Construct  N’(I, J) 

 Raise prices in  J 

 New edge enters  N 
 Recompute balanced flow 
 Move buyers in  N - N’  having residual paths to N’ 

  will have sufficiently large surplus 

 OR a subset in I becomes tight 



Network   N(p)  

N’(I, J) I J 

N - N’ 



 Assume  k  sub-iterations. 

 Let  d0 =  d.     At the end of  lth  sub-iteration, 

 dl  =  min {surplus(i) |  i  is in I}.    So,   dk  =  0. 

 Decrease in  l1  norm in sub-iteration  l 
       is at least  (dl-1 – dl) 

 Decrease in  l2
2

  norm in sub-iteration  l 
       is at least  (dl-1 – dl)2

 



Our algorithm 

 Reduces  l2  norm of surplus vector by  
     1/n2   fraction in each iteration 

  Polynomial time algorithm 



An improved algorithm by Orlin ‘10 

 More intuitive 
  Scaling algorithm 
  Similar to Hungarian algorithm for matchings 



The residual network N(p) 

  In the bipartite graph from buyer to goods 

  For each equality edge (i,j), (i,j)∈N(p) 

  For every (i,j) with xij>0, there is an arc (j,i)∈N(p) 



An example 



For an augmenting path connecting a buyer and 
a goods both with surplus 



For an augmenting path connecting a buyer and 
a goods both with surplus 



  In each scale, we maintain: 
 The surplus of every buyer ≥0 
 The surplus of every goods between [0,Δ] 
 All xij are multiples of Δ 

 Our aim in each scale: 
 The surplus of every buyer <Δ 

 After that reduce Δ by one half 



  In each phase, start from buyers with surplus ≥Δ 
  Find augmenting paths to goods with surplus ≥Δ 



  If there is no such augmenting paths, 
 Define the ActiveSet to be the vertices reachable 

from buyers with surplus ≥Δ 
 Multiply the prices of goods in ActiveSet by the same 

factor q 
 Until ActiveSet becomes larger or some goods in 

ActiveSet has surplus ≥Δ 



 ActiveSet can become larger, since the goods not 
in it becomes more attractive 



  It takes O(m+nlog n) to find an augmenting path from a 
buyer 

  In each phase, the sum of all surplus is O(nΔ), so we just 
need to find O(n) augmenting paths 
 Because we start from the allocation of the previous phase with 

2Δ 

  Total running time: O(n(m+nlog n)(mmax+nlog Umax)) 
 Δ begins with mmax/n, and ends with 1/(8n2Umax) 



Arrow-Debreu market 

  Each agent is assigned a bundle of goods instead of 
an amount of money 

  They sell their own goods to other agents then buy 
their desirable goods  

  Fisher market can be seen as a special case of AD 
market 

  Still no combinatorial polynomial algorithms! 


