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In this talk 

  Fisher market model and Arrow-Debreu market 
model 

  Combinatorial algorithm solving linear Fisher market 
 Similar to matching and maximum flow 

  Not in exam 



Irving Fisher, 1891 

 Defined a fundamental 
     market model 

 Special case of Walras’ 
      model 



Several buyers with  
different utility functions and moneys. 
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Find equilibrium prices. 



Linear Fisher Market 

  B = n  buyers,  money  mi  for buyer i 
  G = g  goods, w.l.o.g. unit amount of each good 
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Linear Fisher Market 
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  Find market clearing prices. 



Market clearing allocation 
  Budget constraint 

    
 The buyer cannot spend more than what he has 

  Optimality 
 x maximize              for every buyer i 
 no other bundle of goods that satisfies the budget constraint 

is more desirable 

  Market clearing 
 There is neither deficiency nor surplus of any goods: 
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Bang per buck 

 Utility of  $1 worth of goods 

 Buyers will only buy goods providing 
    maximum bang per buck 



Equality subgraph 
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Arrow-Debreu market 

  Each agent is assigned a bundle of goods instead of 
an amount of money 

  They sell their own goods to other agents then buy 
their desirable goods  

  Fisher market can be seen as a special case of AD 
market 
 Money can be seen as a kind of goods 



Arrow-Debreu Theorem, 1954 

  Established existence of market equilibrium under 
      very general conditions using a deep theorem from  
      topology  -  Kakutani fixed point theorem. 

   Provides a mathematical ratification of  
       Adam Smith’s  “invisible hand of the market”. 



Need algorithmic ratification!!  



Linear Fisher Market 

  B = n  buyers,  money  mi  for buyer i 
  G = g  goods, w.l.o.g. unit amount of each good 
          :  utility derived by i 
                        on obtaining one unit of  j 
  Total utility of i,  

  Find market clearing prices. 



Can equilibrium allocations be  
    captured via an LP? 

  Set of feasible allocations: 



Does equilibrium optimize a  
global objective function? 

  Guess 1:    Maximize sum of utilities, i.e., 

  Problem:                  and 

      are equivalent utility functions. 



However,  



Guess 2:  Product of utilities.  



 However, suppose a buyer with $200 is 

split into two buyers with $100 each 

And same utility function. 

 Clearly, equilibrium should not change. 



However,  



 Money of buyers is relevant. 

 Assume a utility function is written on 
    each dollar in market 



Guess 3:  Product of utilities  
                    over all dollars 



Eisenberg-Gale Program, 1959 

This can be solved in polynomial time 
However, we want combinatorial algorithms 



An easier question 

 Given prices  p,  are they equilibrium prices? 

  If so, find equilibrium allocations. 



  At prices  p,  buyer  i’s  most 
       desirable goods,                    Si =    

  Any goods from  Si  worth  m(i) 
    constitute  i’s  optimal bundle 

Bang-per-buck 
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For each buyer,  most desirable goods, i.e. 



Network  N(p) 
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Max flow in  N(p) 
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p:  equilibrium prices iff both cuts saturated 



Idea of  algorithm 

  “primal” variables:   allocations 

  “dual” variables:   prices of goods 

 Approach equilibrium prices from below: 
 start with very low prices; buyers have surplus money 
 iteratively keep raising prices  
          and decreasing surplus 



An important consideration 

 The price of a good never exceeds 
              its equilibrium price 

 Invariant:  s  is a min-cut 



Invariant:  s is a min-cut in  N(p) 
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Idea of  algorithm 

  Iterations:  
       execute  primal & dual improvements 

Allocations             Prices 



Key Algorithmic Idea 

 Dual variables (prices) are raised greedily 

 Yet, primal objects go tight and loose 

 Balanced Flows:  For limiting no. of such events 



Max-flow in  N   
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W.r.t. max-flow  f,  surplus(i)  =  m(i) – f(i,t) 
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Max-flow in  N   

m p 

surplus vector  =  vector of surpluses w.r.t.  f 

i 



Obvious potential function 

 Total surplus money  =  l1  norm of surplus vector 

 Reduce  l1  norm of  surplus vector by  
    inverse polynomial fraction in each iteration 

  

€ 

l1(s1,s2,…,sn ) =| s1 |+ | s2 |+…+ | sn |



Balanced flow 

 A max-flow that  
        minimizes  l2   norm of surplus vector. 

 Makes surpluses as equal as possible. 

  

€ 

l2(s1,s2,…,sn ) = s1
2 + s2

2 +…+ sn
2



Balanced flow 

 A max-flow that  
        minimizes  l2   norm of surplus vector. 

 Makes surpluses as equal as possible. 

 All balanced flows have same surplus vector. 



Our algorithm 

 Reduces  l2  norm of surplus vector by  
    inverse polynomial fraction in each iteration. 



Property 1 

  f:   max-flow in  N. 

 R:  residual graph w.r.t.  f. 

  If  surplus (i)  <  surplus(j)  then there is no 
     path from  i  to  j  in  R. 



Property 1 
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  surplus(i)  <  surplus(j) 



Property 1 
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  surplus(i)  <  surplus(j) 
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Property 1 
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  Circulation gives a more balanced flow.   

j 

R: 



Property 1 

 Theorem:  A  max-flow is balanced iff 
                      it satisfies Property 1. 



 Construct  N’(I, J) 

 Raise prices in  J 

 New edge enters  N 

 OR a subset in I becomes tight 

Algorithm for an iteration 



Network   N(p)  

m p 

buyers goods 

bang-per-buck  
edges 



 Construct  N’(I, J) 
 Find a balanced flow in  N(p) 
      Let  d  =  max surplus w.r.t. balanced flow 
 I  =  buyers with surplus  d 
 J  =  goods desired by  I 

 Raise prices in  J 

 New edge enters  N 

 OR a subset in I becomes tight 
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 Construct  N’(I, J) 

 Raise prices in  J 
  N’  is decoupled from  N - N’ 

 New edge enters  N 

 OR a subset in I becomes tight 
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Network   N(p)  

N’(I, J) I J 

N - N’ 

By Property 1, this edge did not carry any flow. 



Network   N(p)  

N’(I, J) I J 

N - N’ 

Hence Invariant is not violated by its removal. 



Raise prices in  J 

  proportionately, so that  
       edges in  N’ don’t change. 

   p . x,   for each  p in  J 
  initialize  x = 1 
 raise  x 



 Construct  N’(I, J) 

 Raise prices in  J 

 New edge enters  N 

 OR a subset in I becomes tight 
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 Construct  N’(I, J) 

 Raise prices in  J 

 New edge enters  N 
 Recompute balanced flow 
 Buyers in  N - N’  having residual paths to N’    
                                                            Move to N’ 

 OR a subset in I becomes tight 
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Network   N(p)  

N’(I, J) I J 

N - N’ 



 Construct  N’(I, J) 

 Raise prices in  J 

 New edge enters  N 
 Recompute balanced flow 
 Buyers moved to N’ will have  
                            sufficiently large surplus 

 OR a subset in I becomes tight 



 Construct  N’(I, J) 

 Raise prices in  J 

 New edge enters  N 

 OR a subset in I becomes tight 

Algorithm for an iteration 



Tight set:   p(S) = m(T)  

N’(I, J) 

T S 

N - N’ 



  Surplus of buyers in T  drops to 0 



 Assume  k  sub-iterations. 

 Let  d0 =  d.     At the end of  lth  sub-iteration, 

 dl  =  min {surplus(i) |  i  is in I}.    So,   dk  =  0. 



Network   N(p)  

N’(I, J) I J 

N - N’ 



 Construct  N’(I, J) 

 Raise prices in  J 

 New edge enters  N 
 Recompute balanced flow 
 Move buyers in  N - N’  having residual paths to N’ 

  will have sufficiently large surplus 

 OR a subset in I becomes tight 



Network   N(p)  

N’(I, J) I J 

N - N’ 



 Assume  k  sub-iterations. 

 Let  d0 =  d.     At the end of  lth  sub-iteration, 

 dl  =  min {surplus(i) |  i  is in I}.    So,   dk  =  0. 

 Decrease in  l1  norm in sub-iteration  l 
       is at least  (dl-1 – dl) 

 Decrease in  l2
2

  norm in sub-iteration  l 
       is at least  (dl-1 – dl)2

 



Our algorithm 

 Reduces  l2  norm of surplus vector by  
     1/n2   fraction in each iteration 

  Polynomial time algorithm 



An improved algorithm by Orlin ‘10 

 More intuitive 
  Scaling algorithm 
  Similar to Hungarian algorithm for matchings 



The residual network N(p) 

  In the bipartite graph from buyer to goods 

  For each equality edge (i,j), (i,j)∈N(p) 

  For every (i,j) with xij>0, there is an arc (j,i)∈N(p) 



An example 



For an augmenting path connecting a buyer and 
a goods both with surplus 



For an augmenting path connecting a buyer and 
a goods both with surplus 



  In each scale, we maintain: 
 The surplus of every buyer ≥0 
 The surplus of every goods between [0,Δ] 
 All xij are multiples of Δ 

 Our aim in each scale: 
 The surplus of every buyer <Δ 

 After that reduce Δ by one half 



  In each phase, start from buyers with surplus ≥Δ 
  Find augmenting paths to goods with surplus ≥Δ 



  If there is no such augmenting paths, 
 Define the ActiveSet to be the vertices reachable 

from buyers with surplus ≥Δ 
 Multiply the prices of goods in ActiveSet by the same 

factor q 
 Until ActiveSet becomes larger or some goods in 

ActiveSet has surplus ≥Δ 



 ActiveSet can become larger, since the goods not 
in it becomes more attractive 



  It takes O(m+nlog n) to find an augmenting path from a 
buyer 

  In each phase, the sum of all surplus is O(nΔ), so we just 
need to find O(n) augmenting paths 
 Because we start from the allocation of the previous phase with 

2Δ 

  Total running time: O(n(m+nlog n)(mmax+nlog Umax)) 
 Δ begins with mmax/n, and ends with 1/(8n2Umax) 



Arrow-Debreu market 

  Each agent is assigned a bundle of goods instead of 
an amount of money 

  They sell their own goods to other agents then buy 
their desirable goods  

  Fisher market can be seen as a special case of AD 
market 

  Still no combinatorial polynomial algorithms! 


