Worst-Case Subgraph Connectivity

Ran Duan

My Research

- Basic Graph Optimization Problems
 - Connectivity
 - Shortest Path
 - Matching
 - Maximum Flow
- Exact Algorithms
- Approximate Algorithms
- Dynamic data structures

Basic Concepts and Notations

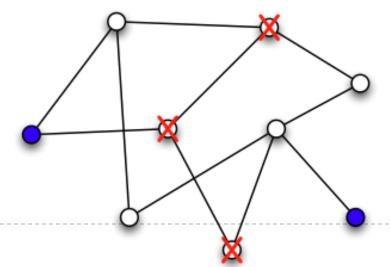
- ▶ G=(V, E): Primary graph we consider
 - \rightarrow n=|V|, m=|E|
- Weighted graph: $w: E \to \Re$
- Connectivity: whether there is a path between two vertices u,v (in undirected graphs).
- Shortest path: the path p connecting u and v minimizing $\sum_{e \in p} w(e)$

Traditional dynamic graph

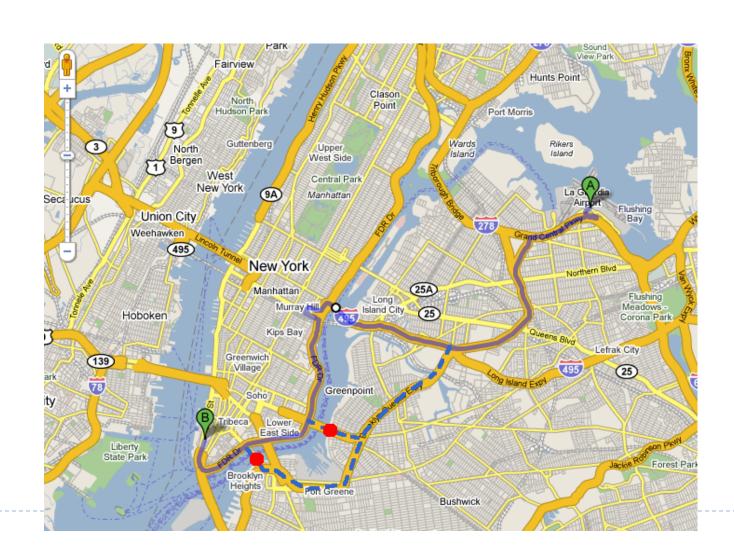
- Fully dynamic: we can insert and delete edges/vertices arbitrarily
- Decremental: only deletions
- Incremental: only insertions

Dynamic Subgraph Model

- There is a fixed underlying graph G, every vertex in G is in one of the two states "on" and "off".
- Construct a dynamic data structure:
 - Update: Switch a vertex "on" or "off".
 - Query: For a pair (u,v), answer connectivity/shortest path between u and v in the subgraph of G induced by the "on" vertices.



Motivation of dynamic subgraph model



Overview (Dynamic Subgraph Model)

- d-failure connectivity (STOC 2010)
 - The first d-vertex failure connectivity structure of query time only polynomial of d and log n.
 - Processing time when given d failed vertices: $\tilde{O}(d^{2c+4})$
 - Query time: O(d); Space: Õ(mn^{1/c})
 - c is an integer at least I and controls the time/space tradeoff
- Worst-case fully subgraph connectivity (ICALP 2010)
 - Subgraph connectivity structure of $\tilde{O}(m^{4/5})$ worst-case update time, with query time $\tilde{O}(m^{1/5})$
- Dual-failure shortest path (SODA 2009)
 - Two vertex failure shortest path structure of $O(n^2 \log^3 n)$ space and $O(\log n)$ query time.
 - Õ(•) hides poly-logarithmic factors
 - For example, $\tilde{O}(n^2)$ means $O(n^2 \cdot \log^k n)$ for some constant k.

Overview of Shortest Path Results

- All-pair shortest path
 - Dijkstra's algorithm: O(mn+n²log n)
 - Pettie improves to O(mn+n²loglog n)
 - ► Floyd-Warshall algorithm: O(n³)
 - Chan's: O(n³•log³log n/log²n)
 - No real sub-cubic algorithm now
- Dynamic all-pair shortest path (edge update)
 - ▶ Demetrescu and Italiano/Thorup: update time O(n²log³n)

Overview of Dynamic Connectivity Results

- Edge update—amortized time
 - ► Holm, Lichtenberg, and Thorup: O(log²n)
- Edge update—worst-case
 - ▶ Frederickson, Eppstein et al: O(n^{1/2})
 - ▶ (Kapron, King, Mountjoy: O(log⁵n), "randomized")
- Not suitable for vertex-update structure
- We can get faster update time for the subgraph model.

Two dynamic subgraph models

d-failure model:

- The number of "off" vertices is bounded by an integer d
- It can be seen as a static structure, in which the query (u,v) is given with a set D of "off" vertices and $|D| \le d$

Real dynamic subgraph model:

We can change the status of any vertex in any time

- d-failure model:
 - The first d-vertex failure connectivity structure of query time only polynomial of d and log n.
 - Two vertex failure shortest path structure of $O(n^2 \log^3 n)$ space and $O(\log n)$ query time.
- Real dynamic subgraph model:
 - Subgraph connectivity structure of $\tilde{O}(m^{4/5})$ worst-case update time, with query time $\tilde{O}(m^{1/5})$

- The first d-vertex failure connectivity structure of query time only polynomial of d and log n.
 - ► (Here $|D| \le d$, n=|V|, m=|E|.)
 - ▶ (c is an integer at least I)

	Processing Time when given D	Query Time	Size
Our Structure	$\tilde{O}(d^{2c+4})$	O(d)	Õ(m•n¹/c)

- The first d-vertex failure connectivity structure of query time only polynomial of d and log n.
 - ► (Here $|D| \le d$, n=|V|, m=|E|.)
 - ▶ (c is an integer at least I)

		Processing Time when given D	Query Time	Size
Our Structure		$\tilde{O}(d^{2c+4})$	O(d)	Õ(m•n¹/c)
Trivial	Recompute		O(m)	O(m)
	Table		O(I)	$O(n^{d+2})$
Edge-failure structure [Pătrașcu and Thorup '2007]		Õ(d•n)	O(loglog n)	O(m)
Worst-case subgraph connecivity [Duan '2010]		Õ(d•m⁴/5)	Õ(m ^{1/5})	Õ(m)
Two-vertex failustructure [Duan			O(log n)	$\tilde{O}(n^d)$

New **Edge Failure** Structure

As a component of the main structure, given a spanning tree, this structure can answer the connectivity when d edges fail.

	Processing Time	Query Time	Size	Construction Time
New edge failure structure	O(d ² •loglog n)	O(loglog n)	Õ(m)	Õ(m)
Edge-failure structure	$\tilde{O}(d \cdot log^2 n)$	O(loglog n)	O(m)	Exponential
[Pătraşcu and Thorup '2007]	Õ(d•log ^{2.5} n)	O(loglog n)	O(m)	Polynomial

 Our structure do not need to compute the sparsest cut, thus the construction is straight forward.

- d-failure model:
 - The first d-vertex failure connectivity structure of query time only polynomial of d and log n.
 - Two vertex failure shortest path structure of $O(n^2 \log^3 n)$ space and $O(\log n)$ query time.
- ▶ Real dynamic subgraph model:
 - Subgraph connectivity structure of $\tilde{O}(m^{4/5})$ worst-case update time, with query time $\tilde{O}(m^{1/5})$

Dynamic Connectivity

	Edge Upda	ates		Vertex Updates (Subgraph Model)			
	Update time	Query time	Space	Update time	Query time	Space	
Amortized	O(log ² n)	O(log O(m) n/loglog n)		$\tilde{O}(m^{2/3})$ $\tilde{O}(m^{1/3})$		Õ(m ^{4/3})	
	(Holm, Lich (Thorup 200	tenberg & Tho 00)	orup 1998)	(Chan, Pâtraşcu & Roditty 2008)			
Worst-Case	O(n ^{1/2})	O(1)	O(m)	Õ(m ^{4/5})	Õ(m ^{1/5})	Õ(m)	
	(Frederickso Eppstein et			(Duan 2010)			

Amortized time

Average running time per update in dynamic structures.

Dynamic Connectivity

	Edge Upda	ates		Vertex Updates (Subgraph Model)				
	Update time	Query time	Space	Update time	Query time	Space		
Amortized	Amortized O(log²n)	O(log n/loglog	O(m)	Õ(m ^{2/3})	Õ(m ^{1/3})	Õ(m ^{4/3})		
		n)		Õ(m ^{2/3})	Õ(m ^{1/3})	O(m)		
	(Holm, Lich (Thorup 200	tenberg & Tho	orup 1998)	(Chan, Pâtraşcu & Roditty 2008)				
	(111014) 200	(11101up 2000)			(Duan 2010)			
Worst-Case	O(n ^{1/2})	O(1) O(m)		Õ(m ^{4/5})	Õ(m ^{1/5})	Õ(m)		
	(Frederickso Eppstein et			(Duan 2010)				

Algorithms Overview

- d-failure model:
 - d-failure connectivity
- Real dynamic subgraph model:
 - Worst-case connectivity

Difficulties and New Ideas

Difficulty: we can't even spend O(I) time for every failed edge.

Difficulties and New Ideas

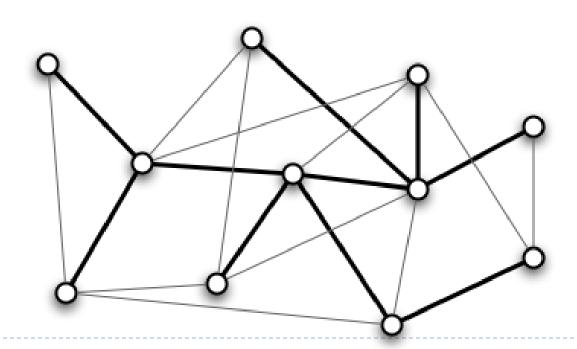
- \blacktriangleright Difficulty: we can't even spend O(1) time for every failed edge.
- A data structure where the deletion time is polynomial in degree of nodes in a tree T.
 - Non-tree edges are deleted implicitly.
 - If we have a degree-bound spanning tree T of G (degree smaller than s: $deg_T(v) \le s$), we are already done.

Difficulties and New Ideas

- \blacktriangleright Difficulty: we can't even spend O(1) time for every failed edge.
- A data structure where the deletion time is polynomial in degree of nodes in a tree T.
 - Non-tree edges are deleted implicitly.
 - If we have a degree-bound spanning tree T of G (degree smaller than s: $deg_T(v) \le s$), we are already done.
- A hierarchy of spanning forests such that the failed vertices are low-degree (≤s) in a set of trees for any D.
 - ▶ The degree threshold $s=d^{c+1}$ controls the time-space tradeoff.
 - The size of the hierarchy: $O(n^{1/c})$.
 - Time to delete failed vertices: $\tilde{O}(d^2s^2) = \tilde{O}(d^{2c+4})$.

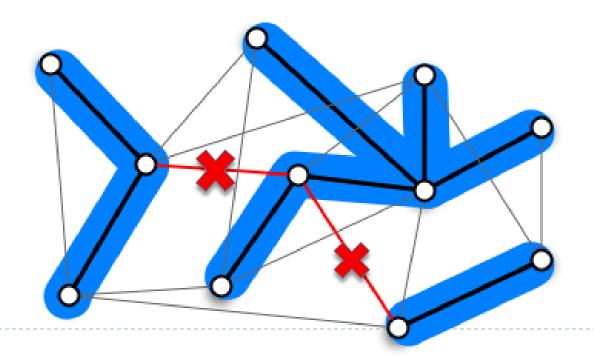
Basic Ideas

- ▶ Let T be a spanning tree of G.
 - ▶ Thick line— tree edges.
 - ▶ Thin line— non-tree edges.



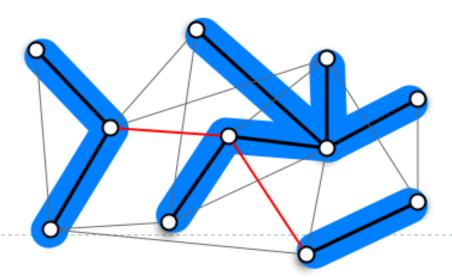
Basic Ideas

Let T be a spanning tree of G. If we delete d'edges in T, T will be divided into d'+1 subtrees. We need to reconnect these subtrees.



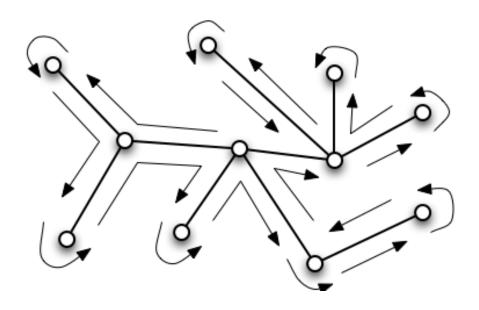
Basic Ideas

- We show that it takes O(loglog n) time to check whether two subtrees are connected by an edge,
 - So it takes $\tilde{O}(d^2)$ time to check whether any pair of these d'+1 subtrees are connected by an edge.
 - Note that we cannot use the edge-failure structure by Pătraşcu and Thorup, since here we only consider the deletion of edges **in T** associated with the failed vertices, not the edges in G.



Reconnecting Subtrees

Euler Tour of T:

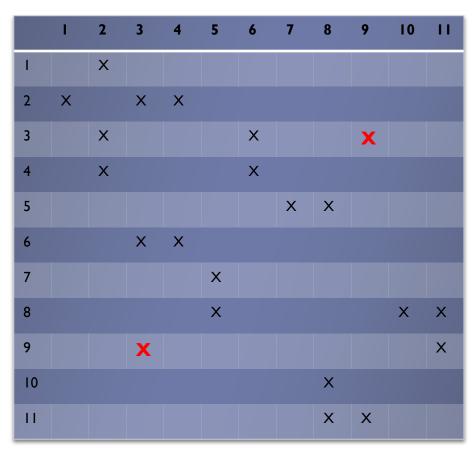


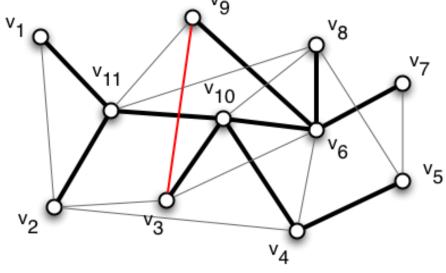
Every vertex can appear many times in the Euler Tour, but we only keep any one of them for each vertex to form a ET-list:

$$v_1, v_2, \dots v_n$$

ET-list table:

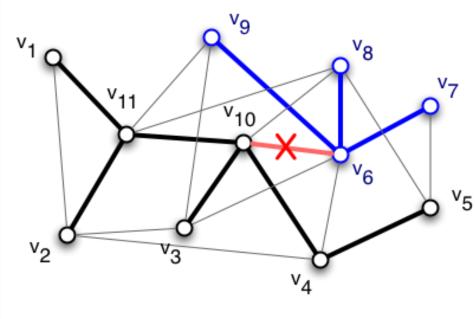
If there is a non-tree edge (v_i, v_j) in G, add element (i,j) into this table.





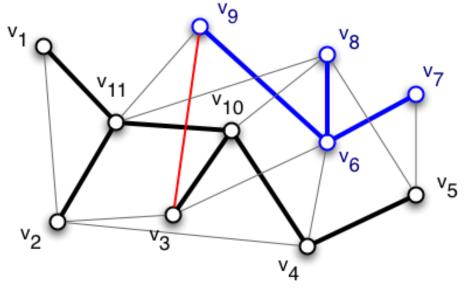
When we delete a tree edge, the ET-list will be divided into ≤3 parts.

	1	2	3	4	5	6	7	8	9	10	Ш
1		X									
2	×		X	×							
3		×				Х			X		
4		X				Х					
5							X	X			
6			X	X					77		
7					X						
8					X					X	×
9			X								X
10								X	1717		7.11
11								X	X		



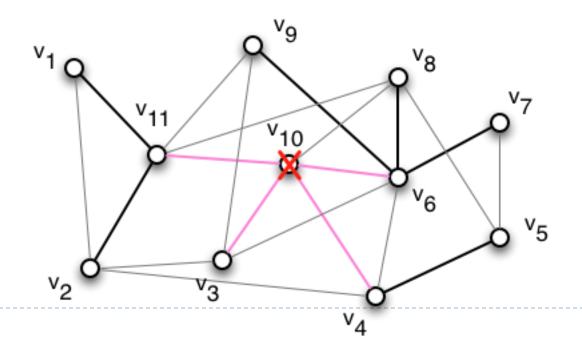
- •It is a 2D range query to find edges to reconnect subtrees
- •It takes O(loglog n) time to find an edge in every rectangle.
- •So the time needed to reconnect after d tree-edge failures is $O(d^2loglog\ n)$.

	1	2	3	4	5	6	7	8	9	10	11
1		X									
2	X		X	X							
3		X				X			X		
4		X				×					
5							X	X			
6			×	×			7				
7					X						
8					X					X	X
9			X								X
10			777					X	1/11/		700
11								X	X		

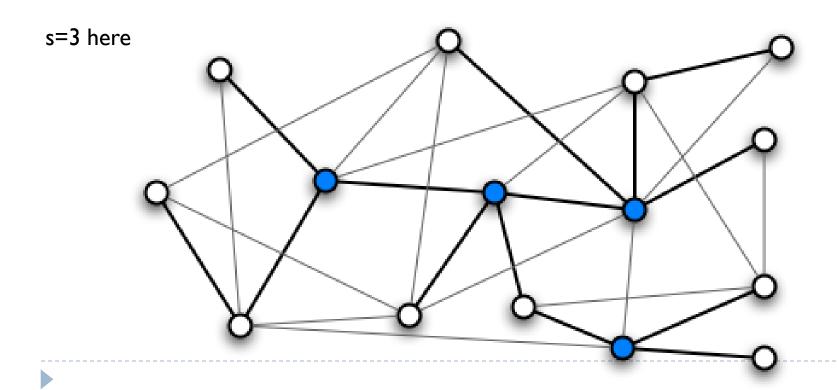


High-degree Vertices

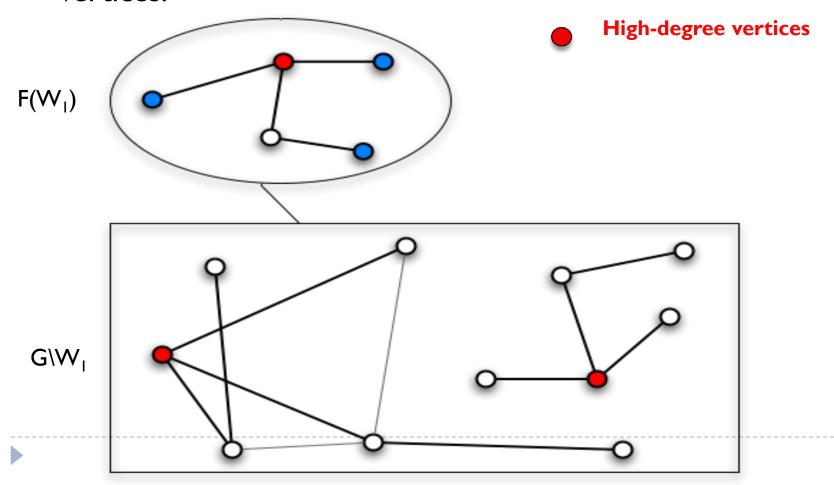
- We choose an integer s such that $s>d^2$, s=poly(d).
- If the degrees of all vertices are bounded by s in T, the time needed to reconnect the valid subtrees after d failures is $\tilde{O}(d^2s^2)$ =poly(d), already done!



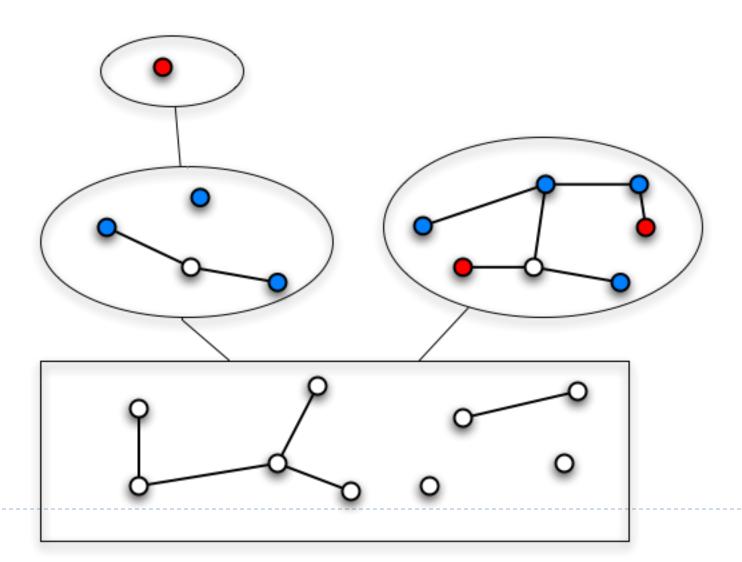
- ▶ We need to deal with the high-degree vertices in **T**.
 - High-degree vertices: degree larger than s in T,
 - ▶ Low-degree vertices: degree at most s in T.
- Since the number of edges in T is n-1, the number of highdegree vertices is at most 2n/s. (rough bound)



- We move these high-degree vertices to a higher level.
- Then reconnect the remaining vertices, which will create new high-degree vertices.
- Connecting high-level set will also create high-degree vertices.

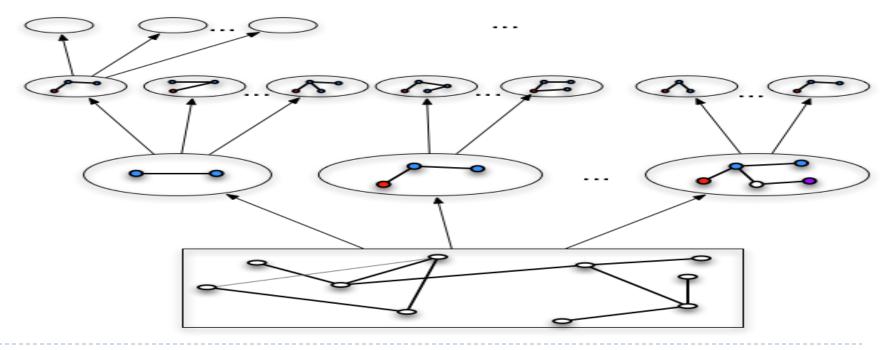


Then move the new high-degree vertices to join with the previous high-degree vertices to form another set.

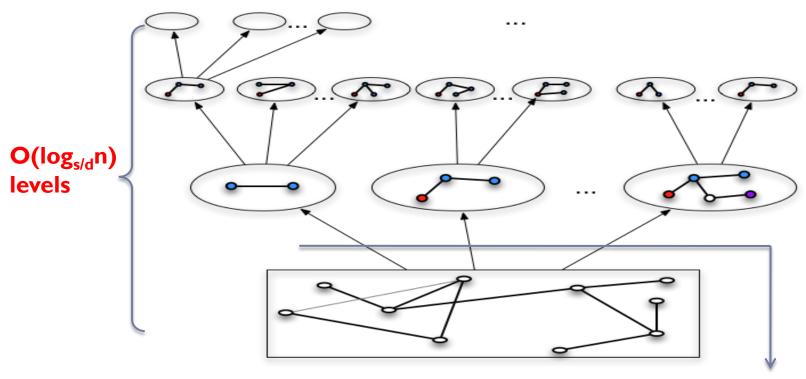


Construct the Hierarchy

- Move the high-degree vertices to higher level.
- Reconnect the remaining graph, if it still has high-degree vertices, also move them to higher level. Since there are at most d failures, this will repeat d times.
- Recursively deal with every high-level set.

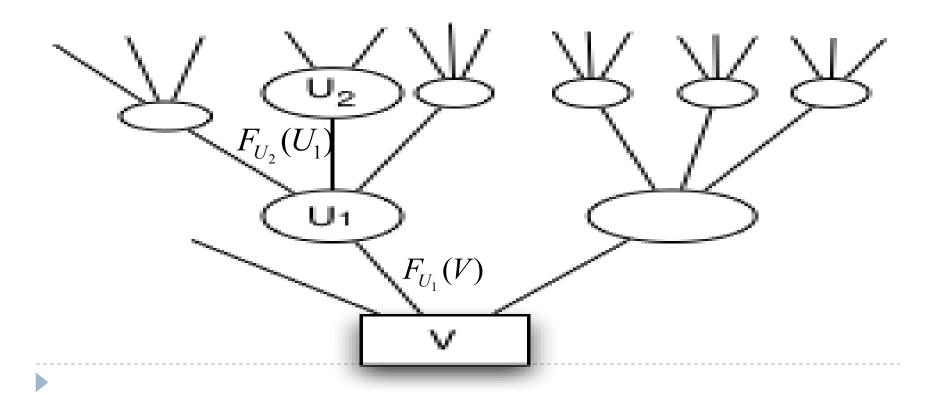


- dc+1=s=high-degree threshold
- Number of hierarchy nodes: $d^{\log_{s/d} n} = O(n^{1/c})$
- So the parameter s controls time-space tradeoff



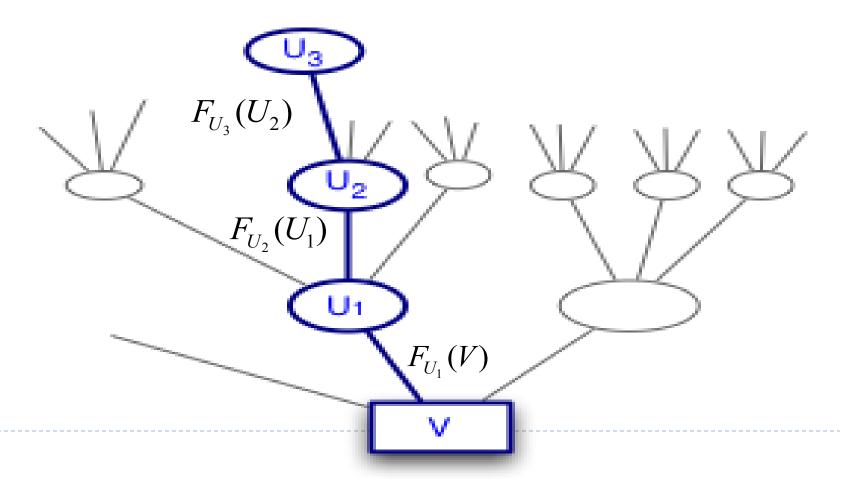
d children for every set is enough

- ▶ Nodes in the hierarchy identified with vertex sets.
- ▶ Define the forest on edge (U_i, U_{i+1}) : $F_{U_{i+1}}(U_i)$ = the forest connecting $U_i \setminus U_{i+1}$ in the subgraph $G \setminus U_{i+1}$.



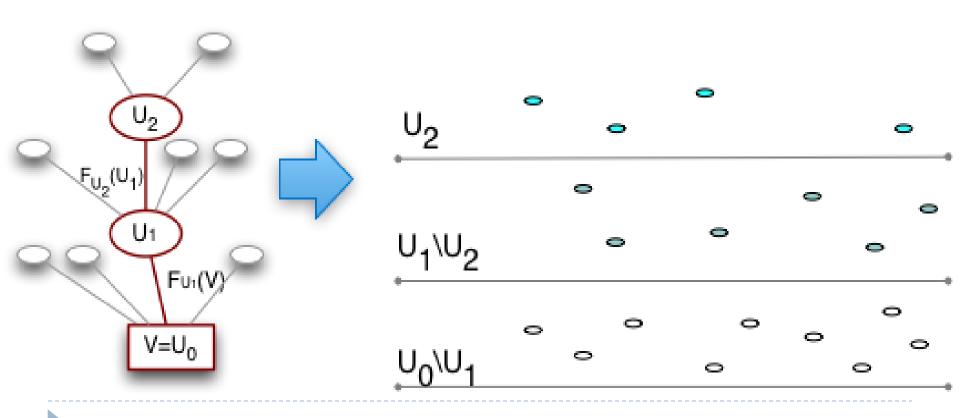
Key Property of the Hierarchy

- For all sets D of d failed vertices, there is a path in the hierarchy:
- V, U_1, U_2, \dots
- ▶ Such that all failed vertices are low-degree in $F_{U_1}(V)$, $F_{U_2}(U_1)$, ...
- $(F_W(U))$ = the forest connecting U\W in the subgraph G\W.)

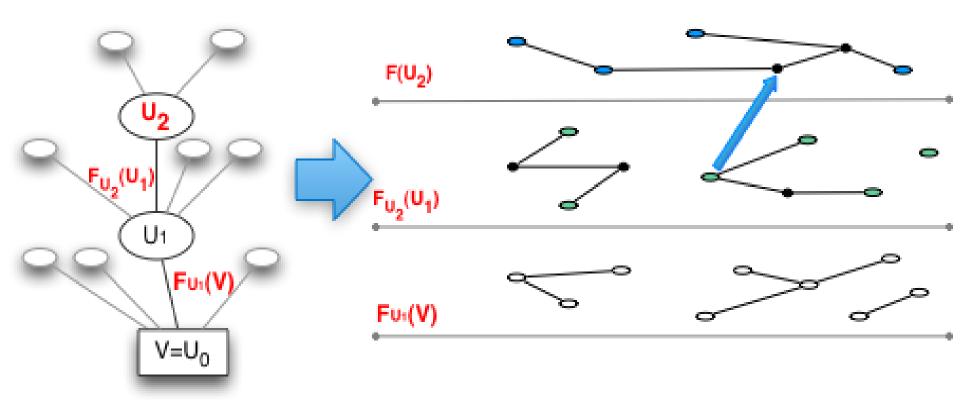


Inside the hierarchy

For all paths in the hierarchy tree from the root to every node: $U_0(=V), U_1, ..., U_p$, where U_p is not necessarily a leaf.

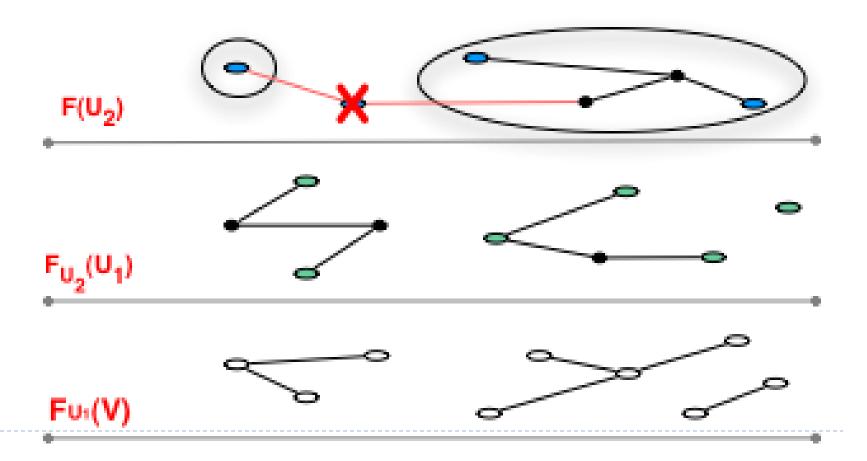


- ▶ These are the forests $F_{UI}(V)$, $F_{U2}(U_I)$, ..., $F_{Up}(U_{p-1})$, $F(U_p)$.
- Every spanning forest may contain lower level vertices, but not higher level vertices.
- ▶ The spanning forests can reflect the connectivity through lower level vertices

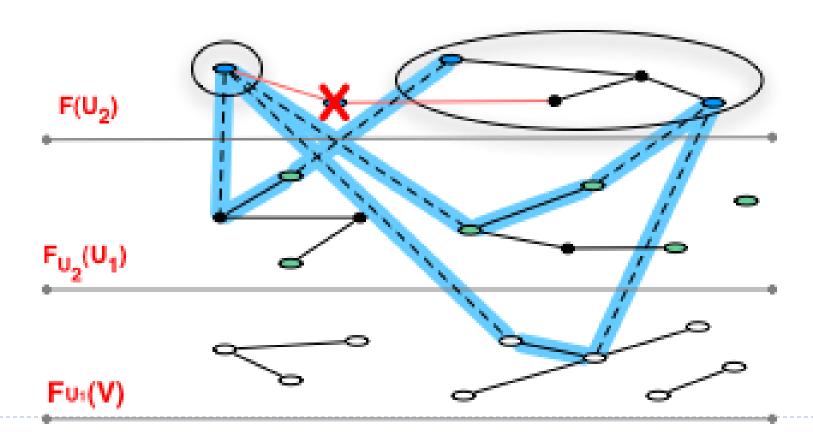


Recall that $F_W(U)$ = the forest connecting $U\backslash W$ in the subgraph $G\backslash W$.

When a vertex fails in a tree, we need to reconnect the subtrees split from it.

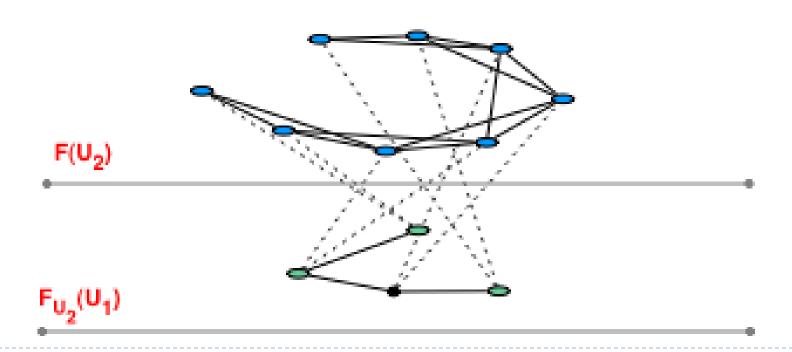


- The subtrees split from it may be connected by many trees of lower levels, the number of which is not bounded by poly(d).
- ▶ How to deal with this?



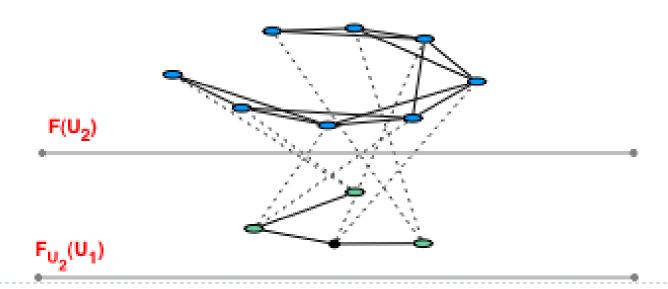
d-failure Graph

- Add artificial edges reflecting connectivity through lower level vertices.
- For the vertices $v_1, v_2, ..., v_n$ connected to a lower level tree ordered by the ET-tour of that tree, add edges (v_i, v_i) if $|i-j| \le d+1$.



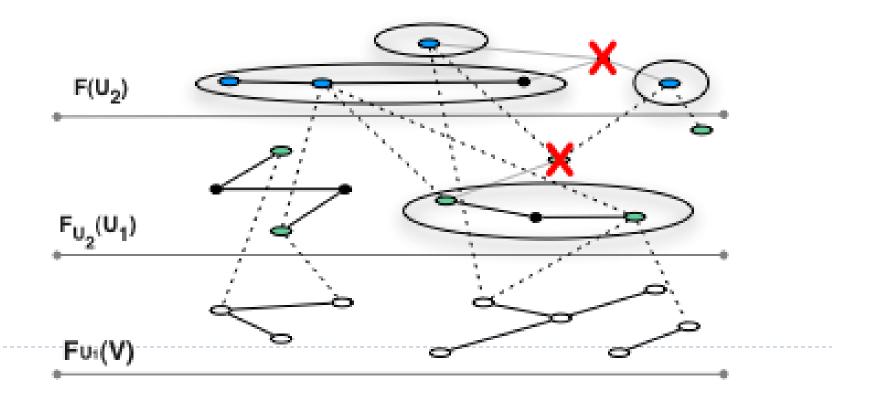
d-failure Graph

- Each vertex is adjacent to its 2(d+1) neighbors.
- Even when d vertices in the set fail, the graph on the active vertices is still connected.
- When the tree is split into two subtrees, we need to delete $O(d^2)$ edges.
- ► The space is O(d•m).



Processing d failures

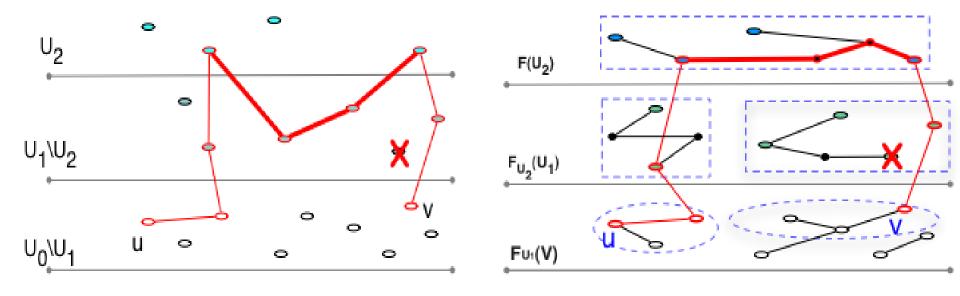
- When d vertices fail, we will reconnect the spanning trees containing them.
 - ▶ By both original edges in G and artificial edges added by the d-failure graph.
 - The number of such subtrees is $O(d \cdot s \cdot \log n)$, so the time needed is its square $\tilde{O}(d^2s^2)$.



Answering a Query

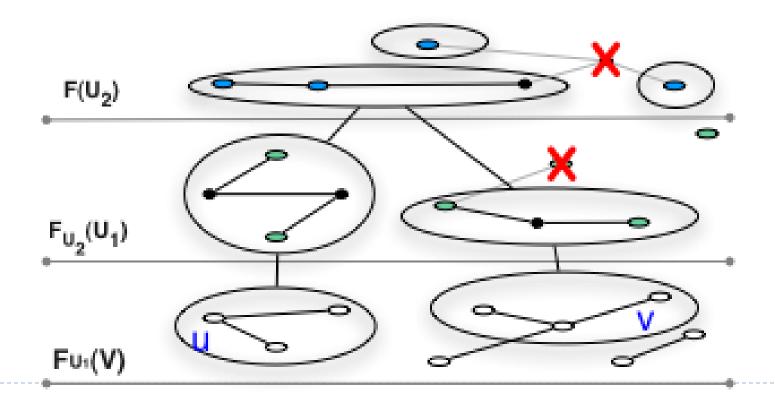
A path connecting u and v may be like:

Consider the trees



 $F_W(U)$ = the forest connecting U\W in the subgraph G\W.

- Consider the trees after reconnection. A tree can only be connected to one tree in every higher level forest.
- Check the connectivity between two vertices u and v:
 - Locate u and v in the forests
 - Find all the trees in higher levels connecting to the trees containing u and v.



Tradeoff between time and space

- $Let s=O(d^{c+1})$
- ▶ Processing time for d failures: $\tilde{O}(d^2s^2) = \tilde{O}(d^{2c+4})$.
- Query time: O(d)
 - Since in the reconnected components, we need to find a component other than the d failed vertices.
- ▶ Space: $\tilde{O}(d\Box m\Box n^{1/c})$
 - $ightharpoonup \tilde{O}(n^{1/c})$ nodes in the hierarchy.
 - O(dm) space per path.

Algorithms Overview

- d-failure model:
 - d-failure connectivity
- Real dynamic subgraph model:
 - Worst-case connectivity

Difficulties

- Turning a vertex "off" may split the graph into O(n) components.
 - We can't even spend O(1) time for every edge in the worst-case scenario.
 - The best worst-case edge update connectivity structure takes $O(n^{1/2})$ time per edge update.

Basic Ideas

- Partition the vertices into different sets by their degrees.
- Maintain the subgraph on theses sets differently:
 - Subgraph on low-degree vertices: use the dynamic connectivity with $O(n^{1/2})$ worst-case edge update time.
 - Subgraph on high-degree vertices: run a BFS in every update, since the number of vertices of degree ≥k is bounded by O(m/k).
- Add artificial edges to high-degree vertices to reflect the connectivity through low-degree vertices.

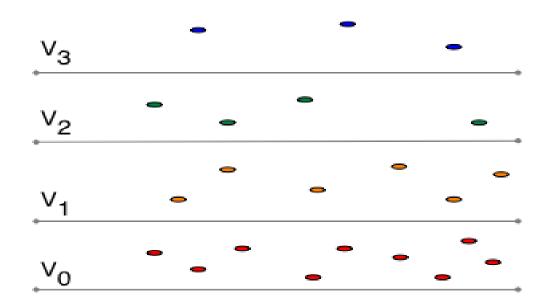
Simpler solution- $\tilde{O}(m^{0.9})$ Worst-case Update Time

Partition the vertex set V (both "on" and "off" vertices) into 4 subsets by the degrees of vertices:

Subsets	Degree bounds	Size
V_0	$[1, m^{0.4})$	O(m)
VI	[m ^{0.4} , m ^{0.6})	O(m ^{0.6})
V ₂	[m ^{0.6} , m ^{0.9})	O(m ^{0.4})
V_3	[m ^{0.9} , m]	O(m ^{0.1})

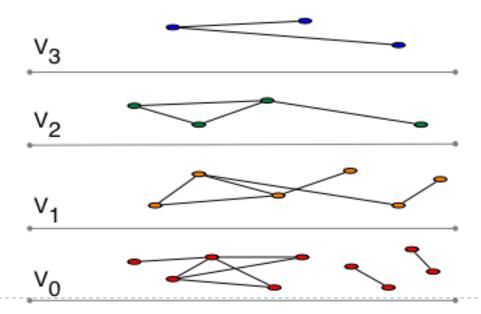
Notice that these sets are static.

Subsets	Degree bounds	Size
V ₀	[I, m ^{0.4})	O(m)
V _I	[m ^{0.4} , m ^{0.6})	O(m ^{0.6})
V_2	[m ^{0.6} , m ^{0.9})	O(m ^{0.4})
V ₃	[m ^{0.9} , m]	O(m ^{0.1})



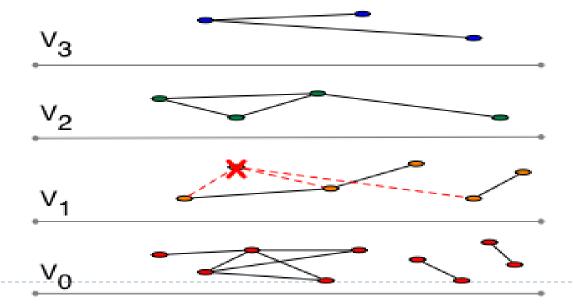
Subsets	Degree bounds	Size
V ₀	[I, m ^{0.4})	O(m)
V _I	[m ^{0.4} , m ^{0.6})	O(m ^{0.6})
V ₂	[m ^{0.6} , m ^{0.9})	O(m ^{0.4})
V ₃	[m ^{0.9} , m]	O(m ^{0.1})

For the subgraph of G induced by every subset, we need to maintain the connectivity dynamically.



If we use $O(n^{1/2})$ worst-case edge update connectivity oracle on the subgraph on V_0 and V_1 , the update time will be:

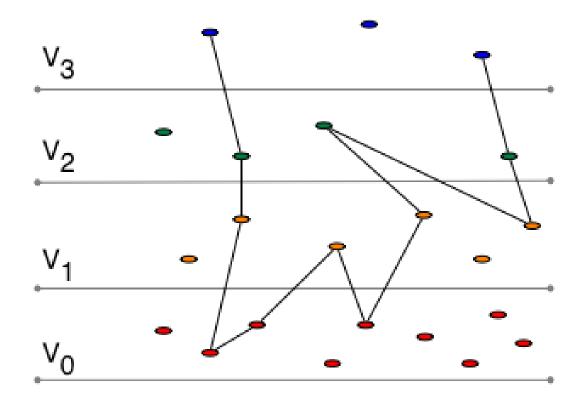
Subsets	Degree bounds	Size	Update Time (Size ^{0.5} ×Degree)
V ₀	[1, m ^{0.4})	O(m)	$O(m^{0.5} \times m^{0.4}) = O(m^{0.9})$
VI	[m ^{0.4} , m ^{0.6})	O(m ^{0.6})	$O(m^{0.3} \times m^{0.6}) = O(m^{0.9})$
V ₂	[m ^{0.6} , m ^{0.9})	O(m ^{0.4})	
V ₃	[m ^{0.9} , m]	O(m ^{0.1})	



We can just keep the subgraph of V_2 and V_3 and run a BFS on it after an update, which will take $O(m^{0.8})$ time.

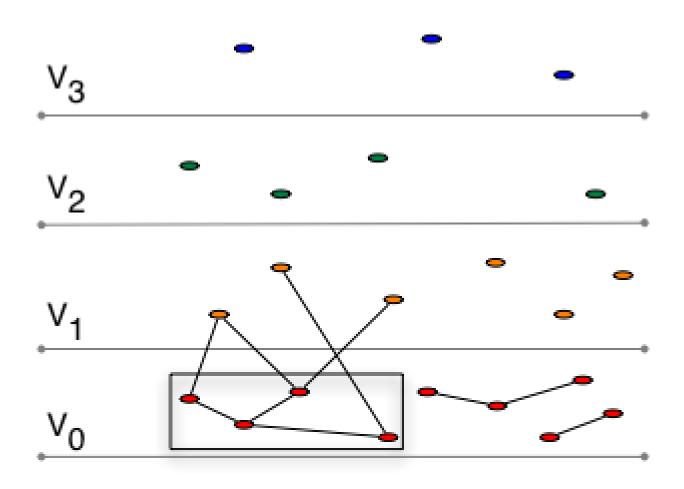
Subsets	Degree bounds	Size	Update Time
V ₀	[1, m ^{0.4})	O(m)	$O(m^{0.5} \times m^{0.4}) = O(m^{0.9})$
VI	[m ^{0.4} , m ^{0.6})	O(m ^{0.6})	$O(m^{0.3} \times m^{0.6}) = O(m^{0.9})$
V ₂	[m ^{0.6} , m ^{0.9})	O(m ^{0.4})	O(==0.8)
V ₃	[m ^{0.9} , m]	O(m ^{0.1})	- O(m ^{0.8})

However, a path connecting two vertices may be like this...

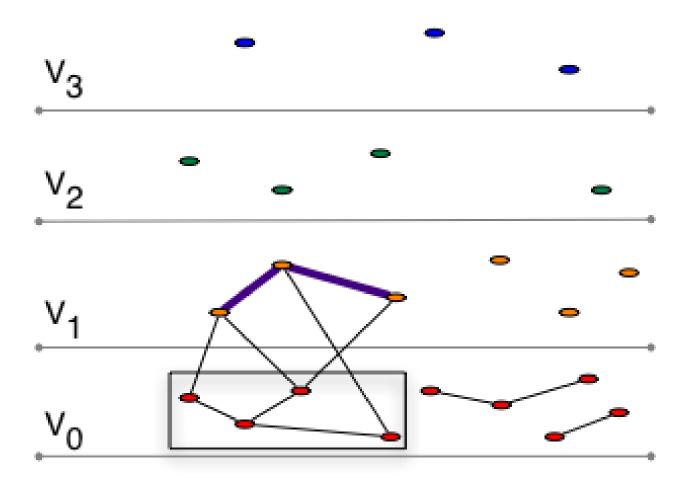


How to deal with these inter-set edges?

Suppose there are some vertices of V_1 which are adjacent to the same connected component of V_0 .

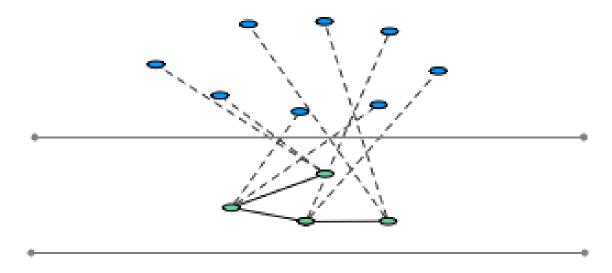


Add artificial edges to connect these V₁ vertices.



Adjacency Graph

Set of artificial edges maintaining the connectivity of highlevel vertices through low-level vertices.

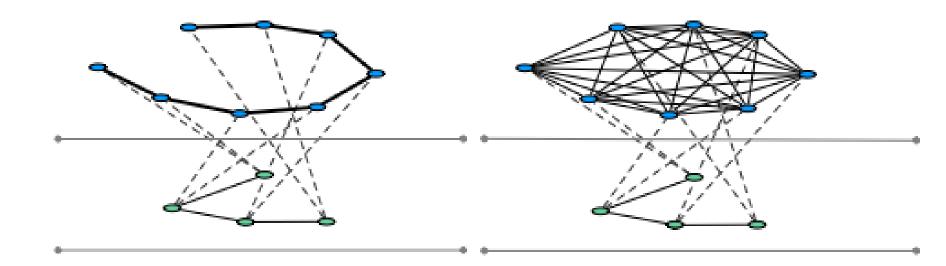


▶ Two types: Path graph and Complete graph.

Adjacency Graph

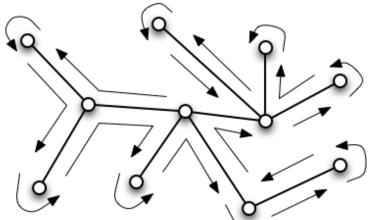
Path:

Complete Graph:



Euler Tour

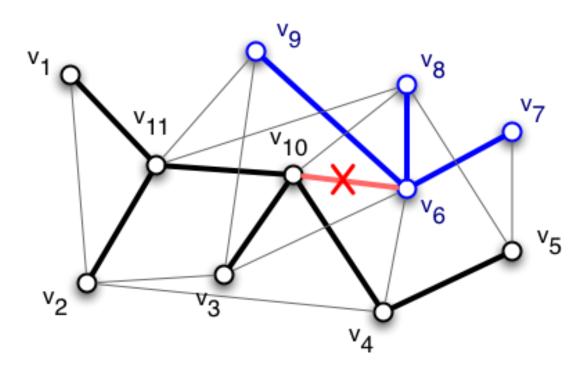
Euler Tour of T:



Every vertex can appear many times in the Euler Tour, but we only keep any one of them for each vertex to form a ET-list:

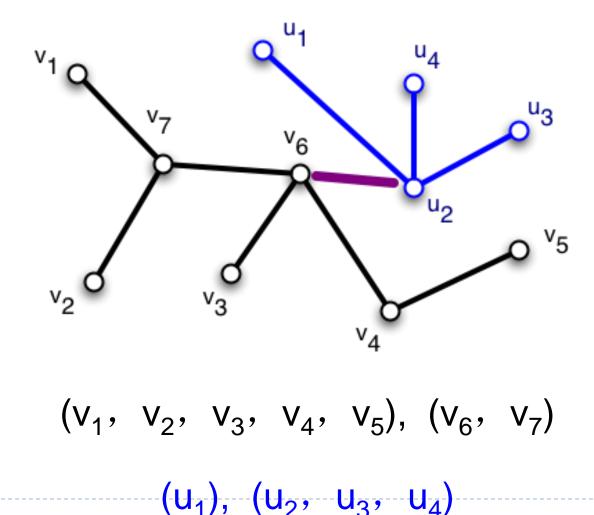
$$V_1, V_2, \dots V_n$$

When we delete a tree edge, the ET-list will be divided into ≤3 parts, and we need to merge two lists.

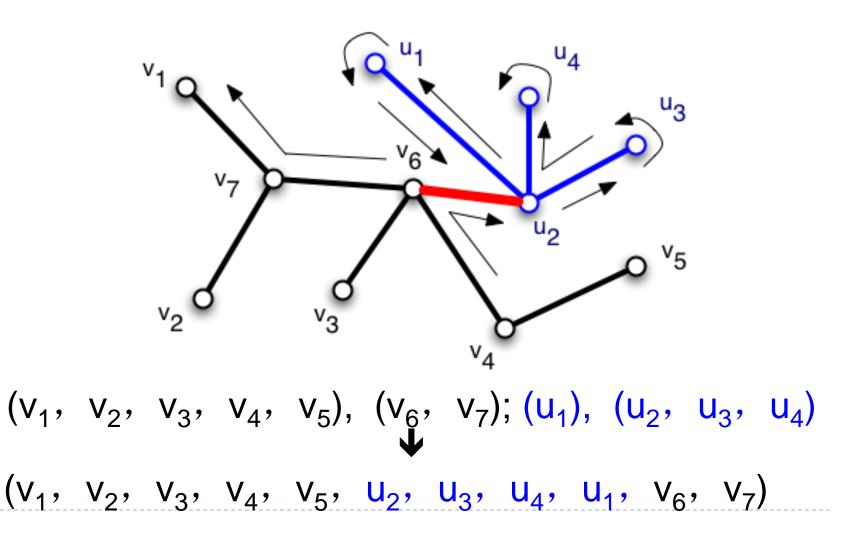


$$V_1, V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}$$
 $(V_1, V_2, V_3, V_4, V_5, V_{10}, V_{11}); (V_6, V_7, V_8, V_9)$

When we connect two trees by an edge, we need to split the ET-lists of the two trees from the vertices on that edge ...

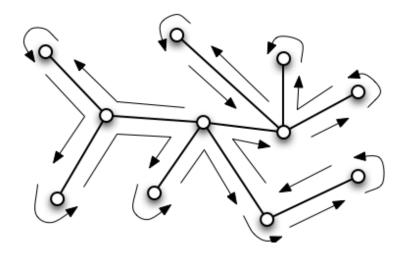


When we connect two trees by an edge, we need to split the ET-lists of the two trees from the vertices on that edge, and merge them in the right order.



Euler Tour

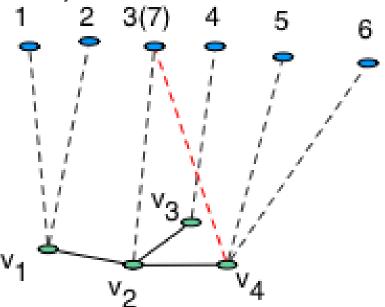
Euler Tour of T:



▶ So we only need O(I) link & cut operations to maintain the ET-lists per tree merging or splitting.

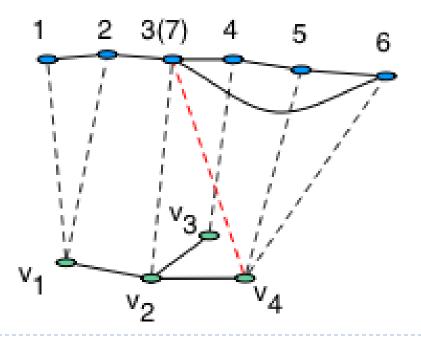
Path Graph

- Find the ET-list of the spanning tree in low-level.
- Order its adjacent "on" vertices on high-level by the ET-list
 - Notice that a vertex can appear multiple times since it may be adjacent to many vertices in low-level.



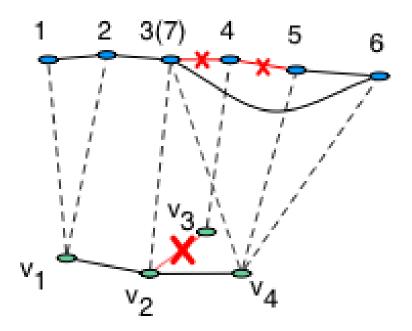
Path Graph

- Find the ET-list of the spanning tree in low-level.
- Order its adjacent "on" vertices on high-level by the ET-list
- ▶ Then connect them by a path in this order



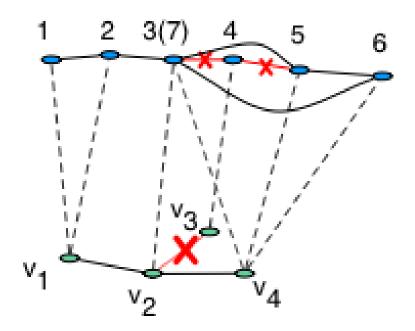
Merge or split trees

When we delete a tree edge, since the ET-list will be split into at most 3 parts, the path graph will also be split into ≤3 parts.



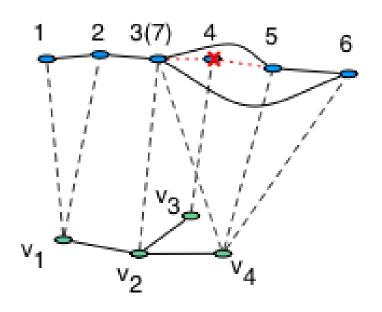
Merge or split trees

- ▶ Then we need to reconnect the path.
- Similar to tree merging. So both merging and splitting by one edge will need O(1) links/cuts.

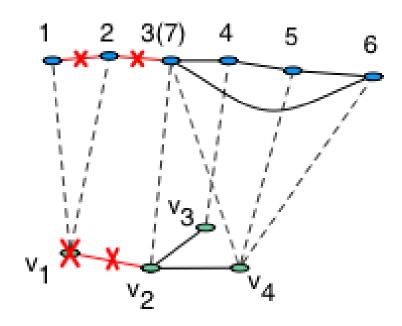


When we update a highlevel vertex,

When we update a lowlevel vertex,

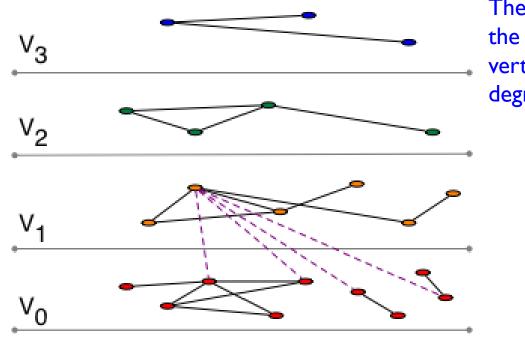


We need to update O(I) edges in the path for every vertex in low-level it is adjacent to.



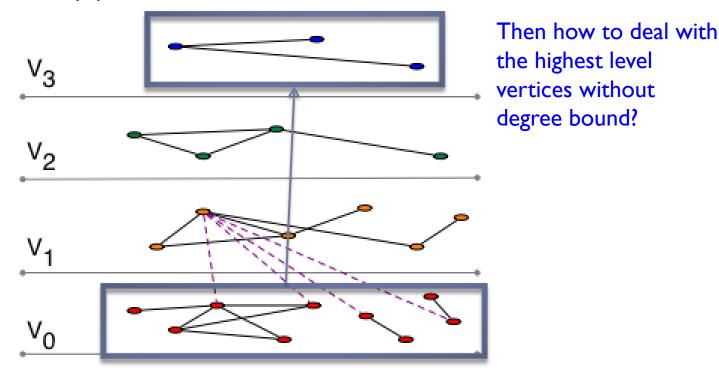
- I. Maintain the spanning forests in low-level.
- Update its adjaceny vertices in high-level.

- A high-level vertex may be adjacent to many trees in low-level.
- So the time needed to update the path graph is linear to the degree of the updated vertex.



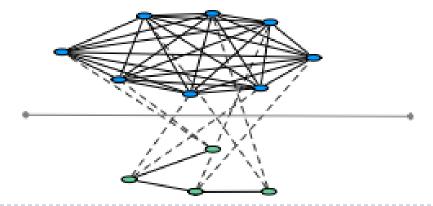
Then how to deal with the highest level vertices without degree bound?

- So the time needed to update the path graph is linear to the degree of the updated vertex.
- The number of trees in V_0 adjacent to a vertex in V_3 may be $\Theta(n)$.



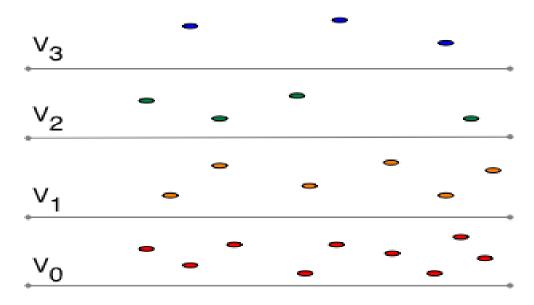
Complete Graph

- Connect every pair of vertices (both "on" and "off") by an edge.
- When we update a low-level vertex, re-compute the entire graph;
- When we update a high-level vertex, do nothing to this graph.
 - Since the remaining "on" vertices are still connected.



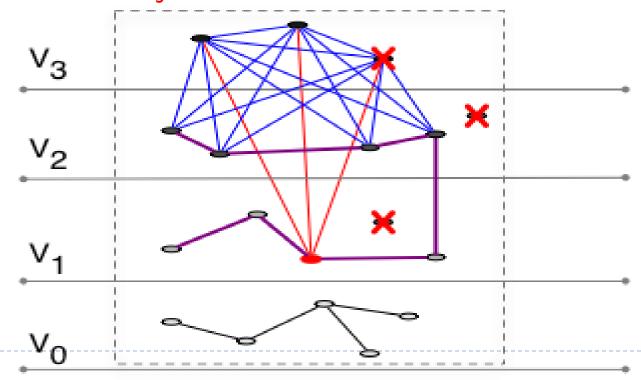
Recall the partition of vertices by degrees.

Subsets	Degree bounds	Size
V_0	$[1, m^{0.4})$	O(m)
V _I	[m ^{0.4} , m ^{0.6})	O(m ^{0.6})
V ₂	[m ^{0.6} , m ^{0.9})	O(m ^{0.4})
V ₃	[m ^{0.9} , m]	O(m ^{0.1})



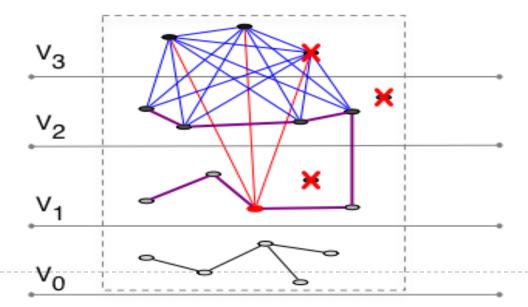
The structure

- \triangleright Consider the vertices adjacent to a spanning tree in V_0 .
 - \triangleright V₁ and V₂: path graph;
 - V_2 to V_3 and within V_3 : complete graph;
 - V_1 to V_3 : arbitrarily choose an active vertex in V_1 and connect it to all vertices in V_3 .



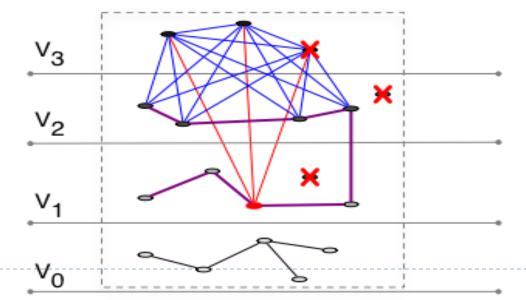
Update Time:

- V_1 and V_2 : path graph;
 - ▶ Update V_0 : changes $O(m^{0.4})$ edges, takes $O(m^{0.9})$ time.
 - ▶ Update V_1 : changes $O(m^{0.6})$ edges in V_1 and V_2 , takes $O(m^{0.9})$ time.
 - ▶ Update V_2 : changes $O(m^{0.9})$ edges in V_2 , we just keep those edges. (Without using a dynamic structure)



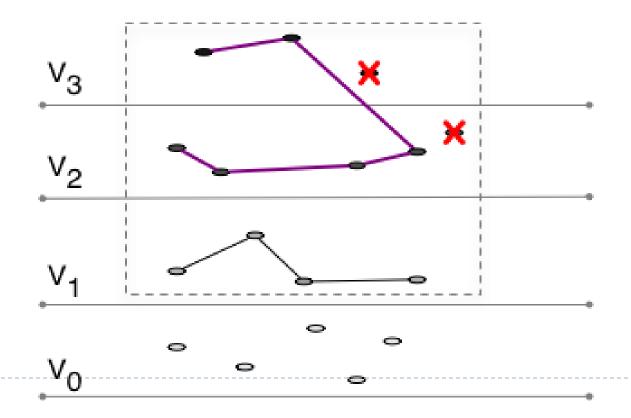
Update Time:

- V_1 and V_2 : path graph; (Time bound still $O(m^{0.9})$)
- \triangleright V₂ to V₃ and within V₃: complete graph;
 - ▶ Update a vertex in V_0 will change $O(m^{0.4})$ tree edges, each will change $|V_2| \times |V_3| = O(m^{0.5})$ edges.
- V_1 to V_3 : arbitrarily choose an active vertex in V_1 and connect it to all vertices in V_3 .
 - \triangleright degree(V_1) $\times |V_3| = O(m^{0.5})$ edges



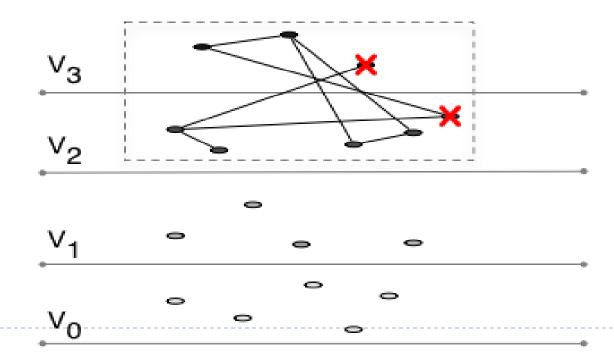
The structure

- \blacktriangleright Consider the vertices adjacent to a spanning tree in V_1 .
 - V_2 and V_3 : path graph;
 - ▶ Degree from V_2 and V_3 to V_1 is bounded by $|V_1| = O(m^{0.6})$.



The structure

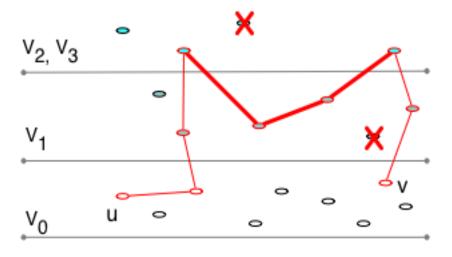
- For the vertices in V_2 and V_3 , just keep the all the edges (original in G and artificial) on them, and run a BFS on the "on" vertices after an update.
 - It takes $(|V_2|+|V_3|)^2=O(m^{0.8})$ time.

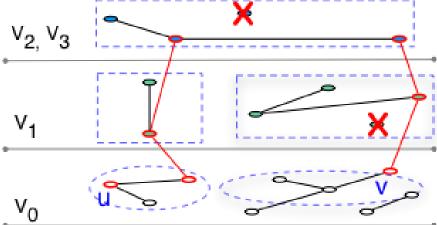


Answering a Query

A path connecting u and v may be like:

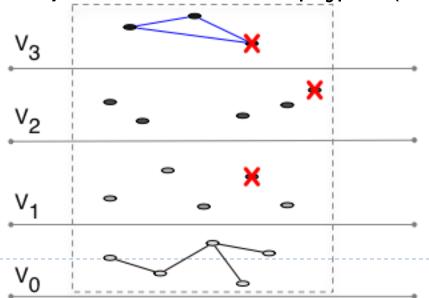
We just need to find a common high-level spanning tree of them.





Query Time

- Finding a high-level "on" vertex in path graph only takes O(I) time.
- Since we use the complete graph from V_0 to V_3 , we do not record the "on" vertices in V_3 adjacent to a tree in V_0 in the structure.
- So we need to check all the vertices in V_3 adjacent to the tree in V_0 whether they are "on". It takes $|V_3| = O(m^{0.1})$ time.



Reduce the update time to $\tilde{O}(m^{0.8})$

- Divide V into O(log n) sets:
 - Use the path graph on all of subsets of V_1 .
 - New query time: $|V_3| = O(m^{0.2})$.

V₁:degree [m^{0.2}, m^{0.6}), Divided into O(log n) subsets

Subsets	Degree bounds	Size
V_0	[l, m ^{0.2})	O(m)
V _{I,I}	[m ^{0.2} , 2m ^{0.2})	$O(m^{0.8})$
	•••	
$V_{I,i}$	$[2^{i}m^{0.2}, 2^{i+1}m^{0.2})$	$O(m^{0.8}/2^{i})$
	•••	
V_2	$[m^{0.6}, m^{0.8})$	$O(m^{0.4})$
V ₃	[m ^{0.8} , m]	O(m ^{0.2})

Why O(m^{0.8}) Update Time?

- Worst-case edge update connectivity structure for lowdegree vertices (≤ k):
 - Update time at least $O(k^*(m/k)^{1/2})$
 - Need to make this degree bound precise.
- ▶ BFS for high-degree vertices (>k):
 - Update time: $(m/k)^2$
- ▶ Balance them: $k=m^{0.6}$, update time: $O(m^{0.8})$.

Open Problems

- Can we find subgraph connectivity oracle satisfying:
 - Query Time * Update Time = o(m).
- Or prove an $m^{\Omega(1)}$ lower bound.
- Dynamic subgraph reachability in directed graph?
- Multi-failure reachability in directed graph
 - We have a $\tilde{O}(n^2)$ space and $O(\log n)$ query time structure for dual-failure distance in directed graph [Duan & Pettie, 2009].

Homework and Exam

- Proposed oral exam time: 30.07-01.08
- Extra Assignment 12

