
Worst-Case Subgraph Connectivity 

Ran Duan 



My Research 

 Basic Graph Optimization Problems 

 Connectivity 

 Shortest Path 

 Matching 

 Maximum Flow 

 

 Exact Algorithms 

 Approximate Algorithms 

 Dynamic data structures 



Basic Concepts and Notations 

 G=(V, E): Primary graph we consider 

 n=|V|, m=|E| 

 Weighted graph:  

 Connectivity: whether there is a path between two 

vertices u,v (in undirected graphs). 

 Shortest path: the path p connecting u and v minimizing  

 



w : E



w(e)
ep





Traditional dynamic graph 

 Fully dynamic: we can insert and delete edges/vertices 

arbitrarily 

 Decremental: only deletions 

 Incremental: only insertions 



Dynamic Subgraph Model 

 There is a fixed underlying graph G, every vertex in G is 

in one of the two states “on” and “off”.  

 Construct a dynamic data structure: 

 Update: Switch a vertex “on” or “off”. 

 Query: For a pair (u,v), answer connectivity/shortest path 

between u and v in the subgraph of G induced by the “on” 

vertices. 

 



Motivation of dynamic subgraph model 

 



Overview (Dynamic Subgraph Model) 

 d-failure connectivity (STOC 2010) 

 The first d-vertex failure connectivity structure of query time only 

polynomial of d and log n.  

 Processing time when given d failed vertices: Õ(d2c+4) 

 Query time: O(d); Space: Õ(mn1/c) 

 c is an integer at least 1 and controls the time/space tradeoff 

 

 Worst-case fully subgraph connectivity (ICALP 2010) 

 Subgraph connectivity structure of Õ(m4/5) worst-case update time, with 
query time Õ(m1/5) 

 

 Dual-failure shortest path (SODA 2009) 

 Two vertex failure shortest path structure of O(n2log3n) space and 

O(log n) query time. 

 Õ() hides poly-logarithmic factors 

 For example, Õ(n2) means O(n2
logkn) for some constant k. 



Overview of Shortest Path Results 

 All-pair shortest path 

 Dijkstra’s algorithm: O(mn+n2log n) 

 Pettie improves to O(mn+n2loglog n) 

 Floyd-Warshall algorithm: O(n3) 

 Chan’s: O(n3
log3log n/log2n) 

 No real sub-cubic algorithm now 

 

 Dynamic all-pair shortest path (edge update) 

 Demetrescu and Italiano/Thorup:  update time O(n2log3n) 



Overview of Dynamic Connectivity Results 

 Edge update—amortized time 

 Holm, Lichtenberg, and Thorup: O(log2n) 

 

 Edge update—worst-case 

 Frederickson, Eppstein et al: O(n1/2) 

 (Kapron, King, Mountjoy: O(log5n), “randomized”) 

 

 Not suitable for vertex-update structure 

 We can get faster update time for the subgraph model.  

 

 



Two dynamic subgraph models 

 d-failure model: 

 The number of “off” vertices is bounded by an integer d 

 It can be seen as a static structure, in which the query (u,v) is 

given with a set D of “off” vertices and |D|≤ d 

 

 Real dynamic subgraph model: 

 We can change the status of any vertex in any time 



Our Results 

 d-failure model: 

 The first d-vertex failure connectivity structure of query time 

only polynomial of d and log n.  

 

 Two vertex failure shortest path structure of O(n2log3n) space 

and O(log n) query time. 

 

 Real dynamic subgraph model: 

 Subgraph connectivity structure of Õ(m4/5) worst-case 

update time, with query time Õ(m1/5) 



Our Results 
 The first d-vertex failure connectivity structure of query time 

only polynomial of d and log n.  

 (Here |D|≤d, n=|V|, m=|E|.) 

 (c is an integer at least 1) 

Processing Time 

when given D 

Query 

Time 

Size 

Our Structure Õ(d2c+4) O(d) Õ(mn1/c) 



Our Results 
 The first d-vertex failure connectivity structure of query time 

only polynomial of d and log n.  

 (Here |D|≤d, n=|V|, m=|E|.) 

 (c is an integer at least 1) 

Processing Time 

when given D 

Query 

Time 

Size 

Our Structure Õ(d2c+4) O(d) Õ(mn1/c) 

Trivial Recompute -- O(m) O(m) 

Table -- O(1) O(nd+2) 

Edge-failure structure [Pătraşcu 

and Thorup ‘2007] 

Õ(dn) O(loglog n) O(m) 

Worst-case subgraph 

connecivity [Duan ‘2010] 

Õ(dm4/5) Õ(m1/5) Õ(m) 

Two-vertex failure distance 

structure [Duan & Pettie ‘2009] 

-- O(log n) Õ(nd) 



New Edge Failure Structure 

 As a component of the main structure, given a spanning tree, this 

structure can answer the connectivity when d edges fail. 

 

 

 

 

 
 Our structure do not need to compute the sparsest cut, thus the construction is 

straight forward. 

Processing 

Time 

Query Time Size Construction 

Time 

New edge failure 

structure 
O(d2

loglog n) O(loglog n) Õ(m) Õ(m) 

Edge-failure structure 
[Pătraşcu and Thorup 

‘2007] 

Õ(dlog2 n) O(loglog n) O(m) Exponential 

Õ(dlog2.5 n) O(loglog n) O(m) Polynomial 



Our Results 

 d-failure model: 

 The first d-vertex failure connectivity structure of query time 

only polynomial of d and log n.  

 

 Two vertex failure shortest path structure of O(n2log3n) space 

and O(log n) query time. 

 

 Real dynamic subgraph model: 

 Subgraph connectivity structure of Õ(m4/5) worst-case 

update time, with query time Õ(m1/5) 



Dynamic Connectivity 

Edge Updates Vertex Updates (Subgraph Model) 

Update 
time 

Query 
time 

Space Update 
time 

Query 
time 

Space 

Amortized O(log2n) O(log 
n/loglog 
n) 

O(m) Õ(m2/3) Õ(m1/3) Õ(m4/3) 

(Holm, Lichtenberg & Thorup 1998) 
(Thorup 2000) 
 

(Chan, Pâtraşcu & Roditty 2008) 
 

Worst-Case O(n1/2) O(1) O(m) Õ(m4/5) Õ(m1/5) Õ(m) 

(Frederickson 1985 
Eppstein et al 1992) 
 

(Duan 2010) 
 

 

 Amortized time 

 Average running time per update in dynamic structures. 



Dynamic Connectivity 

Edge Updates Vertex Updates (Subgraph Model) 

Update 
time 

Query 
time 

Space Update 
time 

Query 
time 

Space 

Amortized O(log2n) O(log 
n/loglog 
n) 

O(m) Õ(m2/3) Õ(m1/3) Õ(m4/3) 

Õ(m2/3) Õ(m1/3) O(m) 

(Holm, Lichtenberg & Thorup 1998) 
(Thorup 2000) 

(Chan, Pâtraşcu & Roditty 2008) 
 
(Duan 2010) 

Worst-Case O(n1/2) O(1) O(m) Õ(m4/5) Õ(m1/5) Õ(m) 

(Frederickson 1985 
Eppstein et al 1992) 
 

(Duan 2010) 
 



Algorithms Overview 

 d-failure model: 

 d-failure connectivity 

 

 Real dynamic subgraph model: 

 Worst-case connectivity 



Difficulties and New Ideas 
 Difficulty: we can’t even spend O(1) time for every failed edge. 



Difficulties and New Ideas 
 Difficulty: we can’t even spend O(1) time for every failed edge. 

 A data structure where the deletion time is polynomial in 

degree of nodes in a tree T. 

 Non-tree edges are deleted implicitly. 

 If we have a degree-bound spanning tree T of G (degree smaller than s: 

degT(v)≤s), we are already done. 



Difficulties and New Ideas 
 Difficulty: we can’t even spend O(1) time for every failed edge. 

 A data structure where the deletion time is polynomial in 

degree of nodes in a tree T. 

 Non-tree edges are deleted implicitly. 

 If we have a degree-bound spanning tree T of G (degree smaller than s: 

degT(v)≤s), we are already done. 

 A hierarchy of spanning forests such that the failed vertices are 

low-degree (≤s) in a set of trees for any D. 

 The degree threshold s=dc+1  controls the time-space tradeoff. 

 The size of the hierarchy: O(n1/c). 

 Time to delete failed vertices: Õ(d2s2)=Õ(d2c+4). 



Basic Ideas 

 Let T be a spanning tree of G. 

 Thick line– tree edges. 

 Thin line– non-tree edges. 



Basic Ideas 

 Let T be a spanning tree of G. If we delete d’ edges in T,  T will 

be divided into d’+1 subtrees. We need to reconnect these 

subtrees. 



Basic Ideas 

 We show that it takes O(loglog n) time to check whether two 

subtrees are connected by an edge,  

 So it takes Õ(d’2) time to check whether any pair of these d’+1 subtrees 

are connected by an edge. 

 Note that we cannot use the edge-failure structure by Pătraşcu and 

Thorup, since here we only consider the deletion of edges in T 

associated with the failed vertices, not the edges in G. 



Reconnecting Subtrees 

 Euler Tour of T: 

 

 

 

 

 

 

 

 Every vertex can appear many times in the Euler Tour, but we 

only keep any one of them for each vertex to form a ET-list： 

 v1，v2，… vn 



ET-list table:  

If there is a non-tree edge (vi,vj) in G, add element 

(i,j) into this table. 

1 2 3 4 5 6 7 8 9 10 11 

1 X 

2 X X X 

3 X X X 

4 X X 

5 X X 

6 X X 

7 X 

8 X X X 

9 X X 

10 X 

11 X X 

 



When we delete a tree edge, the ET-list will 

be divided into ≤3 parts. 

1 2 3 4 5 6 7 8 9 10 11 

1 X 

2 X X X 

3 X X X 

4 X X 

5 X X 

6 X X 

7 X 

8 X X X 

9 X X 

10 X 

11 X X 

v1，v2，v3，v4，v5，v6，v7，v8，v9，v10，v11 



•It is a 2D range query to find edges to reconnect subtrees 

•It takes O(loglog n) time to find an edge in every rectangle. 

•So the time needed to reconnect after d tree-edge failures is  

 O(d2loglog n). 

1 2 3 4 5 6 7 8 9 10 11 

1 X 

2 X X X 

3 X X X 

4 X X 

5 X X 

6 X X 

7 X 

8 X X X 

9 X X 

10 X 

11 X X 



High-degree Vertices 

 We choose an integer s such that s>d2, s=poly(d). 

 If the degrees of all vertices are bounded by s in T, the 

time needed to reconnect the valid subtrees after d 

failures is Õ(d2s2)=poly(d), already done! 

 



 We need to deal with the high-degree vertices in T. 

 High-degree vertices: degree larger than s in T, 

 Low-degree vertices: degree at most s in T.  

 Since the number of edges in T is n-1, the number of high-

degree vertices is at most 2n/s. (rough bound) 

 

 
s=3 here 



 We move these high-degree vertices to a higher level. 

 Then reconnect the remaining vertices, which will create new 

high-degree vertices. 

 Connecting high-level set will also create high-degree 

vertices. 
High-degree vertices 

G\W1 

F(W1) 



 Then move the new high-degree vertices to join with 

the previous high-degree vertices to form another set. 



Construct the Hierarchy 
 Move the high-degree vertices to higher level. 

 Reconnect the remaining graph, if it still has high-degree vertices, also 

move them to higher level. Since there are at most d failures, this will 

repeat d times. 

 Recursively deal with every high-level set. 

 

 



 dc+1=s=high-degree threshold 

 Number of hierarchy nodes: 

 So the parameter s controls time-space tradeoff 

O(logs/dn) 

levels 

d children for every set is enough 



d logs /d n O(n1/c)



 Nodes in the hierarchy identified with vertex sets. 

 Define the forest on edge (Ui,Ui+1):               = the 

forest connecting Ui\Ui+1 in the subgraph G\Ui+1. 

 

 

 

 



FU1 (V )

FU2 (U1)



FU i1 (Ui)



 Key Property of the Hierarchy 

 For all sets D of d failed vertices, there is a path in the hierarchy: 

 V, U1, U2, … 

 Such that all failed vertices are low-degree in FU1(V), FU2(U1), … 

 (FW(U)= the forest connecting U\W in the subgraph G\W. ) 

 



FU2 (U1)



FU1 (V )



FU3 (U2)



Inside the hierarchy 
 For all paths in the hierarchy tree from the root to every 

node: U0(=V), U1, …, Up, where Up is not necessarily a leaf. 



 These are the forests FU1(V), FU2(U1), …, FUp(Up-1), F(Up). 

 Every spanning forest may contain lower level vertices, but not 
higher level vertices. 

 The spanning forests can reflect the connectivity through lower 
level vertices 

 

 

 

 

 

 

 

 

 

 

 Recall that FW(U)= the forest connecting U\W in the subgraph G\W. 



 When a vertex fails in a tree, we need to reconnect the 

subtrees split from it. 



 The subtrees split from it may be connected by many trees of lower 

levels, the number of which is not bounded by poly(d).  

 How to deal with this? 



d-failure Graph 
 Add artificial edges reflecting connectivity through lower level vertices. 

 For the vertices v1, v2, …, vn connected to a lower level tree ordered by the 

ET-tour of that tree, add edges (vi, vj) if |i-j|≤d+1. 



d-failure Graph 

 Each vertex is adjacent to its 2(d+1) neighbors. 

 Even when d vertices in the set fail, the graph on the active vertices is still 

connected. 

 When the tree is split into two subtrees, we need to delete O(d2) edges. 

 The space is O(dm). 



Processing d failures 

 When d vertices fail, we will reconnect the spanning trees containing them. 

 By both original edges in G and artificial edges added by the d-failure graph. 

 The number of such subtrees is O(dslog n), so the time needed is its square Õ(d2s2). 



Answering a Query 

 A path connecting u and v 

may be like: 
•Consider the trees 

FW(U)= the forest connecting U\W in the subgraph G\W. 



 Consider the trees after reconnection. A tree can only be connected to 

one tree in every higher level forest. 

 Check the connectivity between two vertices u and v: 

 Locate u and v in the forests 

 Find all the trees in higher levels connecting to the trees containing u 

and v.  



Tradeoff between time and space 

 Let s=O(dc+1) 

 Processing time for d failures: Õ(d2s2) =Õ(d2c+4). 

 Query time: O(d) 

 Since in the reconnected components, we need to find a 

component other than the d failed vertices. 

 Space: Õ(d m n1/c) 

 Õ(n1/c) nodes in the hierarchy. 

 Õ(dm)  space per path. 

 



Algorithms Overview 

 d-failure model: 

 d-failure connectivity 

 

 Real dynamic subgraph model: 

 Worst-case connectivity 



Difficulties 

 Turning a vertex “off” may split the graph into O(n) 

components.  

 We can’t even spend O(1) time for every edge in the worst-

case scenario. 

 The best worst-case edge update connectivity structure takes   

O(n1/2) time per edge update. 

 



Basic Ideas 

 Partition the vertices into different sets by their degrees. 

 Maintain the subgraph on theses sets differently: 

 Subgraph on low-degree vertices: use the dynamic connectivity 

with O(n1/2) worst-case edge update time. 

 Subgraph on high-degree vertices: run a BFS in every update, 

since the number of vertices of degree ≥k is bounded by O(m/k). 

 Add artificial edges to high-degree vertices to reflect the 

connectivity through low-degree vertices. 



Simpler solution- Õ(m0.9) Worst-case Update 

Time 

 Partition the vertex set  V (both “on” and “off” vertices) 

into 4 subsets by the degrees of vertices: 
 

 

 

 

 

 

 

 

 Notice that these sets are static. 
 

Subsets Degree bounds Size 

V0 [1, m0.4) O(m) 

V1 [m0.4, m0.6) O(m0.6) 

V2 [m0.6, m0.9) O(m0.4) 

V3 [m0.9, m] O(m0.1) 



Subsets Degree bounds Size 

V0 [1, m0.4) O(m) 

V1 [m0.4, m0.6) O(m0.6) 

V2 [m0.6, m0.9) O(m0.4) 

V3 [m0.9, m] O(m0.1) 



Subsets Degree bounds Size 

V0 [1, m0.4) O(m) 

V1 [m0.4, m0.6) O(m0.6) 

V2 [m0.6, m0.9) O(m0.4) 

V3 [m0.9, m] O(m0.1) 

For the subgraph of G induced by every subset, we 

need to maintain the connectivity dynamically. 



Subsets Degree bounds Size Update Time (Size0.5×Degree) 

V0 [1, m0.4) O(m) O(m0.5×m0.4)=O(m0.9) 

V1 [m0.4, m0.6) O(m0.6) O(m0.3×m0.6)=O(m0.9) 

V2 [m0.6, m0.9) O(m0.4) 

V3 [m0.9, m] O(m0.1) 

If we use O(n1/2) worst-case edge update connectivity oracle 

on the subgraph on V0 and V1, the update time will be: 



Subsets Degree bounds Size Update Time  

V0 [1, m0.4) O(m) O(m0.5×m0.4)=O(m0.9) 

V1 [m0.4, m0.6) O(m0.6) O(m0.3×m0.6)=O(m0.9) 

V2 [m0.6, m0.9) O(m0.4) 
O(m0.8) 

V3 [m0.9, m] O(m0.1) 

We can just keep the subgraph of  V2 and V3 and run a BFS 

on it after an update, which will take O(m0.8) time. 



However, a path connecting two vertices may 

be like this… 

How to deal with these inter-set edges? 



 Suppose there are some vertices of V1 which are 

adjacent to the same connected component of V0. 



 Add artificial edges to connect these V1 

vertices. 



Adjacency Graph 

 Set of artificial edges maintaining the connectivity of high-

level vertices through low-level vertices. 

 

 

 

 

 

 

 Two types: Path graph and Complete graph. 



Adjacency Graph 

Path: Complete Graph: 



Euler Tour 

 Euler Tour of T: 

 

 

 

 

 

 Every vertex can appear many times in the Euler Tour, but 

we only keep any one of them for each vertex to form a 

ET-list： 

 v1，v2，… vn 

 



When we delete a tree edge, the ET-list will be 

divided into ≤3 parts, and we need to merge two 

lists.  

v1，v2，v3，v4，v5，v6，v7，v8，v9，v10，v11 

 

(v1，v2，v3，v4，v5，v10，v11);  (v6，v7，v8，v9) 

 



When we connect two trees by an edge, we need 

to split the ET-lists of the two trees from the 

vertices on that edge …  

(v1，v2，v3，v4，v5),  (v6，v7) 
 

(u1),  (u2，u3，u4) 

 



When we connect two trees by an edge, we need 

to split the ET-lists of the two trees from the 

vertices on that edge, and merge them in the 

right order.  

(v1，v2，v3，v4，v5),  (v6，v7); (u1),  (u2，u3，u4) 
 

(v1，v2，v3，v4，v5，u2，u3，u4，u1，v6，v7) 

 



Euler Tour 

 Euler Tour of T: 

 

 

 

 

 

 

 So we only need O(1) link & cut operations to maintain 

the ET-lists per tree merging or splitting. 

 



Path Graph 

 Find the ET-list of the spanning tree in low-level. 

 Order its adjacent “on” vertices on high-level by the ET-

list 

 Notice that a vertex can appear multiple times since it may be 

adjacent to many vertices in low-level. 



Path Graph 

 Find the ET-list of the spanning tree in low-level. 

 Order its adjacent “on” vertices on high-level by the ET-

list 

 Then connect them by a path in this order 



Merge or split trees 

 When we delete a tree edge, since the ET-list will be split 

into at most 3 parts, the path graph will also be split into 

≤3 parts. 



Merge or split trees 

 Then we need to reconnect the path. 

 Similar to tree merging. So both merging and splitting 

by one edge will need O(1) links/cuts. 



When we update a high-

level vertex,  
When we update a low-
level vertex,  

We need to update O(1) 

edges in the path for every 

vertex in low-level it is 

adjacent to. 

1. Maintain the spanning 

forests in low-level. 

2. Update its adjaceny 

vertices in high-level. 



 A high-level vertex may be adjacent to many trees in 

low-level. 

 So the time needed to update the path graph is linear 

to the degree of the updated vertex. 

Then how to deal with 

the highest level 

vertices without 

degree bound? 



 So the time needed to update the path graph is linear 

to the degree of the updated vertex. 

 The number of trees in V0 adjacent to a vertex in V3 

may be Θ(n). 

Then how to deal with 

the highest level 

vertices without 

degree bound? 



Complete Graph 

 Connect every pair of vertices (both “on” and “off”) by 

an edge. 

 When we update a low-level vertex, re-compute the 

entire graph; 

 When we update a high-level vertex, do nothing to this 

graph. 

 Since the remaining “on” vertices are still connected. 



Subsets Degree bounds Size 

V0 [1, m0.4) O(m) 

V1 [m0.4, m0.6) O(m0.6) 

V2 [m0.6, m0.9) O(m0.4) 

V3 [m0.9, m] O(m0.1) 

Recall the partition of vertices by degrees. 



The structure 

 Consider the vertices adjacent to a spanning tree in V0. 

 V1 and V2: path graph; 

 V2 to V3 and within V3: complete graph; 

 V1 to V3: arbitrarily choose an active vertex in V1 and connect it 

to all vertices in V3. 



Update Time: 
 V1 and V2: path graph;   

 Update V0: changes O(m0.4) edges, takes O(m0.9) time. 

 Update V1: changes O(m0.6) edges in V1 and V2, takes O(m0.9) time. 

 Update V2: changes O(m0.9) edges in V2, we just keep those edges. 

(Without using a dynamic structure) 



Update Time: 
 V1 and V2: path graph;   (Time bound still O(m0.9)) 

 V2 to V3 and within V3: complete graph;    

 Update a vertex in V0 will change O(m0.4) tree edges, each will change 

|V2|×|V3|=O(m0.5) edges. 

 V1 to V3: arbitrarily choose an active vertex in V1 and connect it 

to all vertices in V3. 

 degree(V1) ×|V3|=O(m0.5) edges 



The structure 

 Consider the vertices adjacent to a spanning tree in V1. 

 V2 and V3: path graph; 

 Degree from V2 and V3 to V1 is bounded by |V1|=O(m0.6). 



The structure 

 For the vertices in V2 and V3, just keep the all the edges 

(original in G and artificial) on them, and run a BFS on the 

“on” vertices after an update.  

 It takes (|V2|+|V3|)
2=O(m0.8) time. 



Answering a Query 

A path connecting u and v 

may be like: We just need to find a 
common high-level 
spanning tree of them. 



Query Time 

 Finding a high-level “on” vertex in path graph only takes O(1) 

time. 

 Since we use the complete graph from V0 to V3, we do not 

record the “on” vertices in V3 adjacent to a tree in V0 in the 

structure. 

 So we need to check all the vertices in V3 adjacent to the tree 

in V0 whether they are “on”. It takes |V3|=O(m0.1) time. 

 



Reduce the update time to Õ(m0.8) 

 Divide V into O(log n) sets: 

 Use the path graph on all of subsets of  V1. 

 New query time: |V3|=O(m0.2). 

Subsets Degree bounds Size 

V0 [1, m0.2) O(m) 

V1,1 [m0.2, 2m0.2) O(m0.8) 

… 

V1,i [2im0.2, 2i+1m0.2) O(m0.8/2i) 

… 

V2 [m0.6, m0.8) O(m0.4) 

V3 [m0.8, m] O(m0.2) 

V1 :degree [m0.2, m0.6), 

Divided into O(log n) 

subsets 



Why O(m0.8) Update Time? 

 Worst-case edge update connectivity structure for low-

degree vertices (≤ k): 

 Update time at least O(k*(m/k)1/2) 

 Need to make this degree bound precise. 

 BFS for high-degree vertices (>k): 

 Update time: (m/k)2 

 

 Balance them: k=m0.6, update time: O(m0.8). 



Open Problems 

 Can we find subgraph connectivity oracle satisfying: 

 Query Time×Update Time=o(m). 

 Or prove an mΩ(1) lower bound. 

 

 Dynamic subgraph reachability in directed graph? 

 Multi-failure reachability in directed graph 

 We have a Õ(n2) space and O(log n) query time structure for 

dual-failure distance in directed graph [Duan & Pettie, 2009]. 



Homework and Exam 

 Proposed oral exam time: 30.07-01.08 

 Extra Assignment 12 


