Worst-Case Subgraph Connectivity

Ran Duan

My Research

» Basic Graph Optimization Problems
Connectivity
Shortest Path
Matching

Maximum Flow

» Exact Algorithms
» Approximate Algorithms
» Dynamic data structures

Basic Concepts and Notations

» G=(V, E): Primary graph we consider
n=[V], m=[E|
» Weighted graph: w: E >R

» Connectivity: whether there is a path between two
vertices u,v (in undirected graphs).

» Shortest path: the path p connecting u and v minimizing

> w(e)

Traditional dynamic graph

» Fully dynamic: we can insert and delete edges/vertices
arbitrarily

» Decremental: only deletions

» Incremental: only insertions

Dynamic Subgraph Model

» There is a fixed underlying graph G, every vertex in G is
in one of the two states “on” and “off”.

» Construct a dynamic data structure:
Update: Switch a vertex “on” or “off”.

Query: For a pair (u,v), answer connectivity/shortest path
between u and v in the subgraph of G induced by the “on”
vertices.

ic subgraph model

ion of dynam

t

Motiva

Overview (Dynamic Subgraph Model)
» d-failure connectivity (STOC 2010)

The first d-vertex failure connectivity structure of query time only
polynomial of d and log n.

Processing time when given d failed vertices: é(dzc“‘)
Query time: O(d); Space: O(mn ')

c is an integer at least | and controls the time/space tradeoff

» Worst-case fully subgraph connectivity (ICALP 2010)

Subgraph connectivity structure of O(m*5) worst-case update time, with
query time O(m/3)

» Dual-failure shortest path (SODA 2009)

Two vertex failure shortest path structure of O(n%log3n) space and
O(log n) query time.

» O(*) hides poly-logarithmic factors

For example, O(n2) means O(n2¢logkn) for some constant k.

Overview of Shortest Path Results

» All-pair shortest path
Dijkstra’s algorithm: O(mn+n2log n)
Pettie improves to O(mn+n?loglog n)
Floyd-Warshall algorithm: O(n3)
Chan’s: O(n3elog3log n/log?n)

No real sub-cubic algorithm now

» Dynamic all-pair shortest path (edge update)

Demetrescu and Italiano/Thorup: update time O(n?log3n)

Overview of Dynamic Connectivity Results

» Edge update—amortized time
Holm, Lichtenberg, and Thorup: O(log?n)

» Edge update—worst-case

Frederickson, Eppstein et al: O(n'’2)
(Kapron, King, Mountjoy: O(log®n),“randomized”)

» Not suitable for vertex-update structure
» We can get faster update time for the subgraph model.

Two dynamic subgraph models

» d-failure model:
The number of “off” vertices is bounded by an integer d

It can be seen as a static structure, in which the query (u,v) is
given with a set D of “off” vertices and |D|= d

» Real dynamic subgraph model:

We can change the status of any vertex in any time

Our Results

» d-failure model:

The first d-vertex failure connectivity structure of query time
only polynomial of d and log n.

Two vertex failure shortest path structure of O(n?log3n) space
and O(log n) query time.

» Real dynamic subgraph model:

Subgraph connectivity structure of O(m*3) worst-case
update time, with query time O(m'’)

Our Results

only polynomial of d and log n.
» (Here |D|=d, n=|V|, m=|E|.)
» (cis an integer at least |)

Processing Time Query
when given D Time

Our Structure O(d2+4) O(d) A(men'r)

Our Results

The first d-vertex failure connectivity structure of query time

only polynomial of d and log n.

(Here ID|<d, n=|V|, m=|E|.)
(c is an integer at least |)

Processing Time Query
when given D Time

Our Structure O(d2c+4)

Trivial Recompute ==

Table —_—

Edge-failure structure [Patrascu O(den)
and Thorup 22007]

Worst-case subgraph O(dem*/5)
connecivity [Duan 2010]

Two-vertex failure distance --
structure [Duan & Pettie 2009]

O(d)

O(m)
O(l)
O(loglog n)

O(m/5)

O(log n)

O(men'’c)

O(m)
O(nd+2)
O(m)

O(m)

O(nd)

New Edge Failure Structure

» As a component of the main structure, given a spanning tree, this
structure can answer the connectivity when d edges fail.

Processing Query Time Construction
Time Time

New edge failure O(d?¢loglogn) O(loglogn) O(m) O(m)
structure

Edge-failure structure ~ O(delog? n) O(loglog n) O(m) Exponential
[Patragcu and Thorup 5

2007] O(d*log?> n) O(loglog n) O(m) Polynomial

» Our structure do not need to compute the sparsest cut, thus the construction is
straight forward.

Our Results

» d-failure model:

The first d-vertex failure connectivity structure of query time
only polynomial of d and log n.

Two vertex failure shortest path structure of O(n?log3n) space
and O(log n) query time.

» Real dynamic subgraph model:

Subgraph connectivity structure of O(m*3) worst-case
update time, with query time O(m'’)

Dynamic Connectivity

- Edge Updates Vertex Updates (Subgraph Model)

Update | Query Update | Query
time time time time

Amortized O(log2n) O(log O(m) O(m23) O(m1/3) O(m*?)
n/loglog
n)
(Holm, Lichtenberg & Thorup 1998) (Chan, Patrascu & Roditty 2008)

(Thorup 2000)

Worst-Case O(n%2) 0O(1) O(m) O(m?#5) O(m?/5) O(m)

(Frederickson 1985 (Duan 2010)
Eppstein et al 1992)

» Amortized time

Average running time per update in dynamic structures.

Dynamic Connectivity

- Edge Updates Vertex Updates (Subgraph Model)

Update | Query Update | Query
time time time time

Amortized O(log2n) O(log O(m) O(m23) O(m1/3) O(m*?)
n/loglog - -
) O(m3) O(mi#B) O(m)
(Holm, Lichtenberg & Thorup 1998) (Chan, Patrascu & Roditty 2008)
(Thorup 2000)

(Duan 2010)

Worst-Case O(n¥2) 0O(1) O(m) O(m#5) O(m?/5) O(m)

(Frederickson 1985 (Duan 2010)
Eppstein et al 1992)

Algorithms Overview

» d-failure model:

d-failure connectivity

» Real dynamic subgraph model:

Worst-case connectivity

Difficulties and New Ideas

» Difficulty: we can’t even spend O(|) time for every failed edge.

Difficulties and New Ideas

» Difficulty: we can’t even spend O(|) time for every failed edge.

» A data structure where the deletion time is polynomial in
degree of nodes in a tree T.
Non-tree edges are deleted implicitly.

If we have a degree-bound spanning tree T of G (degree smaller than s:
deg;(v)<s), we are already done.

Difficulties and New Ideas

» Difficulty: we can’t even spend O(|) time for every failed edge.

» A data structure where the deletion time is polynomial in
degree of nodes in a tree T.

Non-tree edges are deleted implicitly.

If we have a degree-bound spanning tree T of G (degree smaller than s:
deg;(v)<s), we are already done.

» A hierarchy of spanning forests such that the failed vertices are
low-degree (<s) in a set of trees for any D.
The degree threshold s=d<*! controls the time-space tradeoff.
The size of the hierarchy: O(n'’).
Time to delete failed vertices: O(d2s2)=0O(d*4).

Basic Ideas

» Let T be a spanning tree of G.
Thick line— tree edges.

Thin line— non-tree edges.

Basic Ideas

» LetT be a spanning tree of G. If we delete d’ edges in T, T will
be divided into d’+1 subtrees.VWe need to reconnect these
subtrees.

Basic Ideas

» We show that it takes O(loglog n) time to check whether two
subtrees are connected by an edge,

So it takes O(d’?) time to check whether any pair of these d’+1 subtrees
are connected by an edge.

Note that we cannot use the edge-failure structure by Patrascu and
Thorup, since here we only consider the deletion of edges inT
associated with the failed vertices, not the edges in G.

Reconnecting Subtrees

Q. w5
>’L\'.\ y/ﬁ
&N

» Every vertex can appear many times in the Euler Tour, but we
only keep any one of them for each vertex to form a ET-list:

V|’ V29 Vn

ET-list table:
If there is a non-tree edge (v;,v}) in G, add element
(i,j) into this table.

When we delete a tree edge, the ET-list will
be divided into <3 parts.

> Vis Vyo V3’ Vg V5’ V6’ V7) V8) V9) V|09 Vi

eIt is a 2D range query to find edges to reconnect subtrees
*It takes O(loglog n) time to find an edge in every rectangle.

O(d?loglog n).

High-degree Vertices

» We choose an integer s such that s>d?, s=poly(d).

» If the degrees of all vertices are bounded by s in T, the
time needed to reconnect the valid subtrees after d
failures is O(d?s?)=poly(d), already done!

» We need to deal with the high-degree vertices inT.
High-degree vertices: degree larger than s in T,

Low-degree vertices: degree at most s in T.

» Since the number of edges in T is n-1, the number of high-
degree vertices is at most 2n/s. (rough bound)

s=3 here

» We move these high-degree vertices to a higher level.

» Then reconnect the remaining vertices, which will create new
high-degree vertices.

» Connecting high-level set will also create high-degree
vertices.

® High-degree vertices

F(W))

G\W,

» Then move the new high-degree vertices to join with
the previous high-degree vertices to form another set.

L L.

Construct the Hierarchy

Move the high-degree vertices to higher level.

Reconnect the remaining graph, if it still has high-degree vertices, also
move them to higher level. Since there are at most d failures, this will
repeat d times.

Recursively deal with every high-level set.

» d*!=s=high-degree threshold
» Number of hierarchy nodes: d°s " =O0(n'"'°)

» So the parameter s controls time-space tradeoff

O(log,4n)
levels

\ 4

d children for every set is enough

» Nodes in the hierarchy identified with vertex sets.
» Define the forest on edge (U,U,,): £, (U,)= the
forest connecting U\U., , in the subgraph G\U,,,.

» Key Property of the Hierarchy
For all sets D of d failed vertices, there is a path in the hierarchy:
vu,U,,...
Such that all failed vertices are low-degree in F,(V), F,(U)), ...
(Fw(U)= the forest connecting U\W in the subgraph G\W.)

Inside the hierarchy

For all paths in the hierarchy tree from the root to every

node: Uy(=V), U, ..., U, where U is not necessarily a leaf.
- -
= =
Lo
= =
= i
s > L =
L

» These are the forests F,(V), Fy,(U)), ..., Fy,(U,.), F(U)).

» Every spanning forest may contain lower level vertices, but not
higher level vertices.

» The spanning forests can reflect the connectivity through lower
level vertices

» - Recall that F,(U)= the forest connecting U\W in the subgraph G\WV.

» When a vertex fails in a tree, we need to reconnect the
subtrees split from it.

F(U,) & % @

L -
5 ?f}‘

-

Fy, {Uy)

Fui(V)

» The subtrees split from it may be connected by many trees of lower

levels, the number of which is not bounded by poly(d).

» How to deal with this!?

d-failure Graph

» Add artificial edges reflecting connectivity through lower level vertices.

» For the vertices v, v,, ..., v, connected to a lower level tree ordered by the
ET-tour of that tree, add edges (v, v) if |i-j|=d+1.

d-failure Graph

» Each vertex is adjacent to its 2(d+1) neighbors.

» Even when d vertices in the set fail, the graph on the active vertices is still
connected.

» When the tree is split into two subtrees, we need to delete O(d?) edges.
» The space is O(d*m).

Processing d failures

» When d vertices fail, we will reconnect the spanning trees containing them.
By both original edges in G and artificial edges added by the d-failure graph.

The number of such subtrees is O(d*s*log n), so the time needed is its square O(d?s?).

C= >

A e Tve——— - (E:)

-H -
L}

Fy,(Uy) ﬁ/ @\“‘—";‘:)

“-:.

Cq‘\"ca

Fu:(V)

Answering a Query

A path connectingu and v -Consider the trees
may be like:

o T\/ -
N
L b

UﬂUE Fy tth)

o—
d o

Up\V; u-° = = ‘ Fus(V)

Fw(U)= the forest connecting U\WV in the subgraph G\WV.

» Consider the trees after reconnection.A tree can only be connected to
one tree in every higher level forest.

» Check the connectivity between two vertices u and v:
Locate u and v in the forests

Find all the trees in higher levels connecting to the trees containing u
and v.

o K
F(U,) ﬂi"E——" @

| —)
o D) ==

@@

Fui(V)

Tradeoif between time and space

» Let s=O(d*!)
» Processing time for d failures: O(d?s2) =O(d2*4).
» Query time: O(d)

Since in the reconnected components, we need to find a
component other than the d failed vertices.

» Space: O(dCImn'%)
O(n'") nodes in the hierarchy.

O(dm) space per path.

Algorithms Overview

» d-failure model:

d-failure connectivity

» Real dynamic subgraph model:

Worst-case connectivity

Ditficulties

» Turning a vertex “off” may split the graph into O(n)
components.

We can’t even spend O(1) time for every edge in the worst-
case scenario.

The best worst-case edge update connectivity structure takes
O(n'"?) time per edge update.

Basic Ideas

» Partition the vertices into different sets by their degrees.
» Maintain the subgraph on theses sets differently:

Subgraph on low-degree vertices: use the dynamic connectivity
with O(n'’2) worst-case edge update time.

Subgraph on high-degree vertices: run a BFS in every update,
since the number of vertices of degree 2k is bounded by O(m/k).

» Add artificial edges to high-degree vertices to reflect the
connectivity through low-degree vertices.

Simpler solution- O(m°9) Worst-case Update
Time

» Partition the vertex set V (both “on” and “off” vertices)
into 4 subsets by the degrees of vertices:

V, 1, mO4) O(m)

V, mo4, mos) O(m0$)
v, 6, mo9) O(m%4)
\/3 :m0.9’ m] O(mo°')

» Notice that these sets are static.

Vo 1, mo4) O(m)

VI :m0.4’ m0.6) O(m0.6)
V2 :m0.6’ m0.9) O(m0.4)
V3 :m0.9’ m] O(mO.I)

For the subgraph of G induced by every subset, we
need to maintain the connectivity dynamically.

If we use O(n'?) worst-case edge update connectivity oracle
on the subgraph onV, andV , the update time will be:

VO :l , m0.4) O(m) O(mO.Sxm0.4)=O(m0.9)
VI :m0.4’ m0.6) O(m0.6) O(m0.3xm0.6)=0(m0.9)
\/2 :m0.6’ m0.9) O(m0.4)
\/3 :m0.9’ m] O(mO.I)

Vo ‘_ -

We can just keep the subgraph of V, andV; and run a BFS
on it after an update, which will take O(m°%8) time.

VO : I , m0.4) O(m) O(mo.Sxm0.4)=O(m0.9)
VI :m0.4’ m0.6) O(m0.6) O(m0.3xm0.6)=0(m0.9)
V 'mO6, M09 O(m4

2 : >) () O(mO'S)
V, ‘Mm%, m] O(m°"h

However, a path connecting two vertices may
be like this...

J"Z] \\

w
io- /\?'_
Y 2R

How to deal with these inter-set edges!?

» Suppose there are some vertices of V|, which are
adjacent to the same connected component of V,,.

» Add artificial edges to connect theseV,
vertices.

Vq -

.‘lez - L

W AN -
N

Adjacency Graph

» Set of artificial edges maintaining the connectivity of high-
level vertices through low-level vertices.

» Two types: Path graph and Complete graph.

Adjacency Graph

Euler Tour

» Euler Tour of T:

» Every vertex can appear ma%i umes in the Euler Tour, but
we only keep any one of them for each vertex to form a

ET-list:
V|’ V29 e V

When we delete a tree edge, the ET-list will be
divided into <3 parts, and we need to merge two
lists.

Vl’ V2’ V3’ V4’ V5) V6) V7’ V8’ V9’ VlO’ Vll

(Vi» Vos Vi35 V4 Vo, Vigs Vi) (Vg Vs Vgs Vo)

When we connect two trees by an edge, we need
to split the ET-lists of the two trees from the
vertices on that edge ...

(Vi» Vos V3o Vg4 Vi), (Vg V7)

(Ug), (Uys Ugs Uy)

When we connect two trees by an edge, we need
to split the ET-lists of the two trees from the
vertices on that edge, and merge them in the
right order.

(V15 Vys Vi35 Vys Vi), (vg V-); (Uy), (Uys Ugs Uy)

(Vi» Vys Vgs V45 Ve Uy Ug, Uy Ugs Vgs Vo)

Euler Tour

» Euler Tour of T:

» So we only need O(I) link & cut operations to maintain
the ET-lists per tree merging or splitting.

Path Graph

» Find the ET-list of the spanning tree in low-level.
4

Order its adjacent ““on”’ vertices on high-level by the ET-
list

Notice that a vertex can appear multiple times since it may be
adjacent to many vertices in low-level.

1 2 3|7) 4

> - —
! r T ! ol =
i i Iy I i s
i i Iy " i #
' / oy / g
i i] Vo] II_"'
| Il | 5 i i r
| | | L i o
| I I i &
| i i Ey
N l "'-"3 : f I'“
1d | i .
I P g
Y4

Path Graph

» Find the ET-list of the spanning tree in low-level.

» Order its adjacent ““on’’ vertices on high-level by the ET-
list

» Then connect them by a path in this order

1 2 37) 4 R

——

Merge or split trees

» When we delete a tree edge, since the ET-list will be split
into at most 3 parts, the path graph will also be split into
<3 parts.

1 2 3(7) 4 R g

Merge or split trees

» Then we need to reconnect the path.

» Similar to tree merging. So both merging and splitting
by one edge will need O(l) links/cuts.

1 2 3(7) 4 R g

When we update a high-
level vertex,

1 2 3(7) 4 5

We need to update O(I)
edges in the path for every
vertex in low-level it is
adjacent to.

When we update a low-
level vertex,

1 2 37 4 5

-I-—ﬂ'—‘r-"*
k
i i | 1 | r
i i i 5 i #
i i [} v F) ll_"'
i i I L] i F
| | | LT i s
(] I) / ;
| J i g
N I 1"'|3 vt ll_"'
L | v oF o,
ﬁ— I Ty
v —H L
1 v
Vo 4

Maintain the spanning
forests in low-level.

2. Update its adjaceny

vertices in high-level.

» A high-level vertex may be adjacent to many trees in
low-level.

» So the time needed to update the path graph is linear
to the degree of the updated vertex.

Then how to deal with

-

V - . the highest level
3 vertices without
W degree bound?
‘H’E ‘
i "—-—...‘-._ - -
v, LT -

» So the time needed to update the path graph is linear
to the degree of the updated vertex.

» The number of trees inV, adjacent to a vertex in V;
may be O(n).

Then how to deal with

Vg - . the highest level

vertices without
degree bound?

Complete Graph

» Connect every pair of vertices (both “on” and “off”) by
an edge.

» When we update a low-level vertex, re-compute the
entire graph;

» When we update a high-level vertex, do nothing to this
graph.

Since the remaining “on” vertices are still connected.

Recall the partition of vertices by degrees.

v, 1, mo4) O(m)
V, MO4, M) O(m0%)
v, M6, m0-) O(m04)
A 'm%?, m] O(m®!)
Vg - =
Vs = - -
vV, = = -
UD - - - - - = = =

The structure

» Consider the vertices adjacent to a spanning tree inV,,.
V, andV,: path graph;
V, to V; and within V;: complete graph;
V, to V;:arbitrarily choose an active vertex inV, and connect it
to all vertices in V.

Update Time:

V, andV,: path graph;
Update V,: changes O(m®%) edges, takes O(m®?) time.
Update V,: changes O(m%¢) edges inV, andV,, takes O(m??) time.

Update V,: changes O(m®?) edges inV,, we just keep those edges.
(Without using a dynamic structure)

_f:: ‘
%

Update Time:
V, andV,: path graph; (Time bound still O(m°?))
V, to V; and within V;: complete graph;

Update a vertex inV, will change O(m?%*) tree edges, each will change
[Va*[V3|=O(m®°) edges.
V, to V;:arbitrarily choose an active vertex inV, and connect it
to all vertices in V.

degree(V,) x|V;|=0O(m°®>) edges

The structure

» Consider the vertices adjacent to a spanning tree inV,.
V, and V;: path graph;
Degree fromV, andV, toV, is bounded by |V,|=0O(m°9).

The structure

» For the vertices inV, and V;, just keep the all the edges
(original in G and artificial) on them, and run a BFS on the
“on” vertices after an update.

It takes (|V,|+]|V;5])?=O(m?8) time.

Answering a Query

A path connecting u and v
may be like:

We just need to find a
common high-level
spanning tree of them.

Query Time

» Finding a high-level “on” vertex in path graph only takes O(1)
time.

» Since we use the complete graph fromV, toV,, we do not
record the “on” vertices inV; adjacent to a tree inV, in the
structure.

» So we need to check all the vertices in V; adjacent to the tree
inV, whether they are “on”. It takes [V;|=O(m?!) time.

Reduce the update time to O(m°-8)

» DivideV into O(log n) sets:
Use the path graph on all of subsets of V,.
New query time: [V;|=O(m°?2).

Vo [, m®2) O(m)
Y 0.2 9m0.2 0.8
V, :degree [m%2, m%9), Ll [m™2, 2m™%) O(m®™%)
Divided into O(log n)_
subsets V. [2im0.2’ 2i+|m0.2) O(mO'S/Zi)

\/2 [m0.6’ m0.8) O(m0.4)

V3 [MO8, m] O(m°?)

Why O(m°-8) Update Time?

» Worst-case edge update connectivity structure for low-
degree vertices (=< k):
Update time at least O(k*(m/k)'?)
Need to make this degree bound precise.
» BFS for high-degree vertices (>k):
Update time: (m/k)?

» Balance them: k=m%¢, update time: O(m°3).

Open Problems

» Can we find subgraph connectivity oracle satisfying:
Query TimexUpdate Time=o(m).
» Or prove an m&() lower bound.

» Dynamic subgraph reachability in directed graph!?
» Multi-failure reachability in directed graph

We have a O(n?) space and O(log n) query time structure for
dual-failure distance in directed graph [Duan & Pettie, 2009].

Homework and Exam

» Proposed oral exam time: 30.07-01.08
» Extra Assignment |2

