
Worst-Case Subgraph Connectivity

Ran Duan

My Research

 Basic Graph Optimization Problems

 Connectivity

 Shortest Path

 Matching

 Maximum Flow

 Exact Algorithms

 Approximate Algorithms

 Dynamic data structures

Basic Concepts and Notations

 G=(V, E): Primary graph we consider

 n=|V|, m=|E|

 Weighted graph:

 Connectivity: whether there is a path between two

vertices u,v (in undirected graphs).

 Shortest path: the path p connecting u and v minimizing

w : E

w(e)
ep

Traditional dynamic graph

 Fully dynamic: we can insert and delete edges/vertices

arbitrarily

 Decremental: only deletions

 Incremental: only insertions

Dynamic Subgraph Model

 There is a fixed underlying graph G, every vertex in G is

in one of the two states “on” and “off”.

 Construct a dynamic data structure:

 Update: Switch a vertex “on” or “off”.

 Query: For a pair (u,v), answer connectivity/shortest path

between u and v in the subgraph of G induced by the “on”

vertices.

Motivation of dynamic subgraph model

Overview (Dynamic Subgraph Model)

 d-failure connectivity (STOC 2010)

 The first d-vertex failure connectivity structure of query time only

polynomial of d and log n.

 Processing time when given d failed vertices: Õ(d2c+4)

 Query time: O(d); Space: Õ(mn1/c)

 c is an integer at least 1 and controls the time/space tradeoff

 Worst-case fully subgraph connectivity (ICALP 2010)

 Subgraph connectivity structure of Õ(m4/5) worst-case update time, with
query time Õ(m1/5)

 Dual-failure shortest path (SODA 2009)

 Two vertex failure shortest path structure of O(n2log3n) space and

O(log n) query time.

 Õ() hides poly-logarithmic factors

 For example, Õ(n2) means O(n2
logkn) for some constant k.

Overview of Shortest Path Results

 All-pair shortest path

 Dijkstra’s algorithm: O(mn+n2log n)

 Pettie improves to O(mn+n2loglog n)

 Floyd-Warshall algorithm: O(n3)

 Chan’s: O(n3
log3log n/log2n)

 No real sub-cubic algorithm now

 Dynamic all-pair shortest path (edge update)

 Demetrescu and Italiano/Thorup: update time O(n2log3n)

Overview of Dynamic Connectivity Results

 Edge update—amortized time

 Holm, Lichtenberg, and Thorup: O(log2n)

 Edge update—worst-case

 Frederickson, Eppstein et al: O(n1/2)

 (Kapron, King, Mountjoy: O(log5n), “randomized”)

 Not suitable for vertex-update structure

 We can get faster update time for the subgraph model.

Two dynamic subgraph models

 d-failure model:

 The number of “off” vertices is bounded by an integer d

 It can be seen as a static structure, in which the query (u,v) is

given with a set D of “off” vertices and |D|≤ d

 Real dynamic subgraph model:

 We can change the status of any vertex in any time

Our Results

 d-failure model:

 The first d-vertex failure connectivity structure of query time

only polynomial of d and log n.

 Two vertex failure shortest path structure of O(n2log3n) space

and O(log n) query time.

 Real dynamic subgraph model:

 Subgraph connectivity structure of Õ(m4/5) worst-case

update time, with query time Õ(m1/5)

Our Results
 The first d-vertex failure connectivity structure of query time

only polynomial of d and log n.

 (Here |D|≤d, n=|V|, m=|E|.)

 (c is an integer at least 1)

Processing Time

when given D

Query

Time

Size

Our Structure Õ(d2c+4) O(d) Õ(mn1/c)

Our Results
 The first d-vertex failure connectivity structure of query time

only polynomial of d and log n.

 (Here |D|≤d, n=|V|, m=|E|.)

 (c is an integer at least 1)

Processing Time

when given D

Query

Time

Size

Our Structure Õ(d2c+4) O(d) Õ(mn1/c)

Trivial Recompute -- O(m) O(m)

Table -- O(1) O(nd+2)

Edge-failure structure [Pătraşcu

and Thorup ‘2007]

Õ(dn) O(loglog n) O(m)

Worst-case subgraph

connecivity [Duan ‘2010]

Õ(dm4/5) Õ(m1/5) Õ(m)

Two-vertex failure distance

structure [Duan & Pettie ‘2009]

-- O(log n) Õ(nd)

New Edge Failure Structure

 As a component of the main structure, given a spanning tree, this

structure can answer the connectivity when d edges fail.

 Our structure do not need to compute the sparsest cut, thus the construction is

straight forward.

Processing

Time

Query Time Size Construction

Time

New edge failure

structure
O(d2

loglog n) O(loglog n) Õ(m) Õ(m)

Edge-failure structure
[Pătraşcu and Thorup

‘2007]

Õ(dlog2 n) O(loglog n) O(m) Exponential

Õ(dlog2.5 n) O(loglog n) O(m) Polynomial

Our Results

 d-failure model:

 The first d-vertex failure connectivity structure of query time

only polynomial of d and log n.

 Two vertex failure shortest path structure of O(n2log3n) space

and O(log n) query time.

 Real dynamic subgraph model:

 Subgraph connectivity structure of Õ(m4/5) worst-case

update time, with query time Õ(m1/5)

Dynamic Connectivity

Edge Updates Vertex Updates (Subgraph Model)

Update
time

Query
time

Space Update
time

Query
time

Space

Amortized O(log2n) O(log
n/loglog
n)

O(m) Õ(m2/3) Õ(m1/3) Õ(m4/3)

(Holm, Lichtenberg & Thorup 1998)
(Thorup 2000)

(Chan, Pâtraşcu & Roditty 2008)

Worst-Case O(n1/2) O(1) O(m) Õ(m4/5) Õ(m1/5) Õ(m)

(Frederickson 1985
Eppstein et al 1992)

(Duan 2010)

 Amortized time

 Average running time per update in dynamic structures.

Dynamic Connectivity

Edge Updates Vertex Updates (Subgraph Model)

Update
time

Query
time

Space Update
time

Query
time

Space

Amortized O(log2n) O(log
n/loglog
n)

O(m) Õ(m2/3) Õ(m1/3) Õ(m4/3)

Õ(m2/3) Õ(m1/3) O(m)

(Holm, Lichtenberg & Thorup 1998)
(Thorup 2000)

(Chan, Pâtraşcu & Roditty 2008)

(Duan 2010)

Worst-Case O(n1/2) O(1) O(m) Õ(m4/5) Õ(m1/5) Õ(m)

(Frederickson 1985
Eppstein et al 1992)

(Duan 2010)

Algorithms Overview

 d-failure model:

 d-failure connectivity

 Real dynamic subgraph model:

 Worst-case connectivity

Difficulties and New Ideas
 Difficulty: we can’t even spend O(1) time for every failed edge.

Difficulties and New Ideas
 Difficulty: we can’t even spend O(1) time for every failed edge.

 A data structure where the deletion time is polynomial in

degree of nodes in a tree T.

 Non-tree edges are deleted implicitly.

 If we have a degree-bound spanning tree T of G (degree smaller than s:

degT(v)≤s), we are already done.

Difficulties and New Ideas
 Difficulty: we can’t even spend O(1) time for every failed edge.

 A data structure where the deletion time is polynomial in

degree of nodes in a tree T.

 Non-tree edges are deleted implicitly.

 If we have a degree-bound spanning tree T of G (degree smaller than s:

degT(v)≤s), we are already done.

 A hierarchy of spanning forests such that the failed vertices are

low-degree (≤s) in a set of trees for any D.

 The degree threshold s=dc+1 controls the time-space tradeoff.

 The size of the hierarchy: O(n1/c).

 Time to delete failed vertices: Õ(d2s2)=Õ(d2c+4).

Basic Ideas

 Let T be a spanning tree of G.

 Thick line– tree edges.

 Thin line– non-tree edges.

Basic Ideas

 Let T be a spanning tree of G. If we delete d’ edges in T, T will

be divided into d’+1 subtrees. We need to reconnect these

subtrees.

Basic Ideas

 We show that it takes O(loglog n) time to check whether two

subtrees are connected by an edge,

 So it takes Õ(d’2) time to check whether any pair of these d’+1 subtrees

are connected by an edge.

 Note that we cannot use the edge-failure structure by Pătraşcu and

Thorup, since here we only consider the deletion of edges in T

associated with the failed vertices, not the edges in G.

Reconnecting Subtrees

 Euler Tour of T:

 Every vertex can appear many times in the Euler Tour, but we

only keep any one of them for each vertex to form a ET-list：

 v1，v2，… vn

ET-list table:

If there is a non-tree edge (vi,vj) in G, add element

(i,j) into this table.

1 2 3 4 5 6 7 8 9 10 11

1 X

2 X X X

3 X X X

4 X X

5 X X

6 X X

7 X

8 X X X

9 X X

10 X

11 X X

When we delete a tree edge, the ET-list will

be divided into ≤3 parts.

1 2 3 4 5 6 7 8 9 10 11

1 X

2 X X X

3 X X X

4 X X

5 X X

6 X X

7 X

8 X X X

9 X X

10 X

11 X X

v1，v2，v3，v4，v5，v6，v7，v8，v9，v10，v11

•It is a 2D range query to find edges to reconnect subtrees

•It takes O(loglog n) time to find an edge in every rectangle.

•So the time needed to reconnect after d tree-edge failures is

 O(d2loglog n).

1 2 3 4 5 6 7 8 9 10 11

1 X

2 X X X

3 X X X

4 X X

5 X X

6 X X

7 X

8 X X X

9 X X

10 X

11 X X

High-degree Vertices

 We choose an integer s such that s>d2, s=poly(d).

 If the degrees of all vertices are bounded by s in T, the

time needed to reconnect the valid subtrees after d

failures is Õ(d2s2)=poly(d), already done!

 We need to deal with the high-degree vertices in T.

 High-degree vertices: degree larger than s in T,

 Low-degree vertices: degree at most s in T.

 Since the number of edges in T is n-1, the number of high-

degree vertices is at most 2n/s. (rough bound)

s=3 here

 We move these high-degree vertices to a higher level.

 Then reconnect the remaining vertices, which will create new

high-degree vertices.

 Connecting high-level set will also create high-degree

vertices.
High-degree vertices

G\W1

F(W1)

 Then move the new high-degree vertices to join with

the previous high-degree vertices to form another set.

Construct the Hierarchy
 Move the high-degree vertices to higher level.

 Reconnect the remaining graph, if it still has high-degree vertices, also

move them to higher level. Since there are at most d failures, this will

repeat d times.

 Recursively deal with every high-level set.

 dc+1=s=high-degree threshold

 Number of hierarchy nodes:

 So the parameter s controls time-space tradeoff

O(logs/dn)

levels

d children for every set is enough

d logs /d n O(n1/c)

 Nodes in the hierarchy identified with vertex sets.

 Define the forest on edge (Ui,Ui+1): = the

forest connecting Ui\Ui+1 in the subgraph G\Ui+1.

FU1 (V)

FU2 (U1)

FU i1 (Ui)

 Key Property of the Hierarchy

 For all sets D of d failed vertices, there is a path in the hierarchy:

 V, U1, U2, …

 Such that all failed vertices are low-degree in FU1(V), FU2(U1), …

 (FW(U)= the forest connecting U\W in the subgraph G\W.)

FU2 (U1)

FU1 (V)

FU3 (U2)

Inside the hierarchy
 For all paths in the hierarchy tree from the root to every

node: U0(=V), U1, …, Up, where Up is not necessarily a leaf.

 These are the forests FU1(V), FU2(U1), …, FUp(Up-1), F(Up).

 Every spanning forest may contain lower level vertices, but not
higher level vertices.

 The spanning forests can reflect the connectivity through lower
level vertices

 Recall that FW(U)= the forest connecting U\W in the subgraph G\W.

 When a vertex fails in a tree, we need to reconnect the

subtrees split from it.

 The subtrees split from it may be connected by many trees of lower

levels, the number of which is not bounded by poly(d).

 How to deal with this?

d-failure Graph
 Add artificial edges reflecting connectivity through lower level vertices.

 For the vertices v1, v2, …, vn connected to a lower level tree ordered by the

ET-tour of that tree, add edges (vi, vj) if |i-j|≤d+1.

d-failure Graph

 Each vertex is adjacent to its 2(d+1) neighbors.

 Even when d vertices in the set fail, the graph on the active vertices is still

connected.

 When the tree is split into two subtrees, we need to delete O(d2) edges.

 The space is O(dm).

Processing d failures

 When d vertices fail, we will reconnect the spanning trees containing them.

 By both original edges in G and artificial edges added by the d-failure graph.

 The number of such subtrees is O(dslog n), so the time needed is its square Õ(d2s2).

Answering a Query

 A path connecting u and v

may be like:
•Consider the trees

FW(U)= the forest connecting U\W in the subgraph G\W.

 Consider the trees after reconnection. A tree can only be connected to

one tree in every higher level forest.

 Check the connectivity between two vertices u and v:

 Locate u and v in the forests

 Find all the trees in higher levels connecting to the trees containing u

and v.

Tradeoff between time and space

 Let s=O(dc+1)

 Processing time for d failures: Õ(d2s2) =Õ(d2c+4).

 Query time: O(d)

 Since in the reconnected components, we need to find a

component other than the d failed vertices.

 Space: Õ(d m n1/c)

 Õ(n1/c) nodes in the hierarchy.

 Õ(dm) space per path.

Algorithms Overview

 d-failure model:

 d-failure connectivity

 Real dynamic subgraph model:

 Worst-case connectivity

Difficulties

 Turning a vertex “off” may split the graph into O(n)

components.

 We can’t even spend O(1) time for every edge in the worst-

case scenario.

 The best worst-case edge update connectivity structure takes

O(n1/2) time per edge update.

Basic Ideas

 Partition the vertices into different sets by their degrees.

 Maintain the subgraph on theses sets differently:

 Subgraph on low-degree vertices: use the dynamic connectivity

with O(n1/2) worst-case edge update time.

 Subgraph on high-degree vertices: run a BFS in every update,

since the number of vertices of degree ≥k is bounded by O(m/k).

 Add artificial edges to high-degree vertices to reflect the

connectivity through low-degree vertices.

Simpler solution- Õ(m0.9) Worst-case Update

Time

 Partition the vertex set V (both “on” and “off” vertices)

into 4 subsets by the degrees of vertices:

 Notice that these sets are static.

Subsets Degree bounds Size

V0 [1, m0.4) O(m)

V1 [m0.4, m0.6) O(m0.6)

V2 [m0.6, m0.9) O(m0.4)

V3 [m0.9, m] O(m0.1)

Subsets Degree bounds Size

V0 [1, m0.4) O(m)

V1 [m0.4, m0.6) O(m0.6)

V2 [m0.6, m0.9) O(m0.4)

V3 [m0.9, m] O(m0.1)

Subsets Degree bounds Size

V0 [1, m0.4) O(m)

V1 [m0.4, m0.6) O(m0.6)

V2 [m0.6, m0.9) O(m0.4)

V3 [m0.9, m] O(m0.1)

For the subgraph of G induced by every subset, we

need to maintain the connectivity dynamically.

Subsets Degree bounds Size Update Time (Size0.5×Degree)

V0 [1, m0.4) O(m) O(m0.5×m0.4)=O(m0.9)

V1 [m0.4, m0.6) O(m0.6) O(m0.3×m0.6)=O(m0.9)

V2 [m0.6, m0.9) O(m0.4)

V3 [m0.9, m] O(m0.1)

If we use O(n1/2) worst-case edge update connectivity oracle

on the subgraph on V0 and V1, the update time will be:

Subsets Degree bounds Size Update Time

V0 [1, m0.4) O(m) O(m0.5×m0.4)=O(m0.9)

V1 [m0.4, m0.6) O(m0.6) O(m0.3×m0.6)=O(m0.9)

V2 [m0.6, m0.9) O(m0.4)
O(m0.8)

V3 [m0.9, m] O(m0.1)

We can just keep the subgraph of V2 and V3 and run a BFS

on it after an update, which will take O(m0.8) time.

However, a path connecting two vertices may

be like this…

How to deal with these inter-set edges?

 Suppose there are some vertices of V1 which are

adjacent to the same connected component of V0.

 Add artificial edges to connect these V1

vertices.

Adjacency Graph

 Set of artificial edges maintaining the connectivity of high-

level vertices through low-level vertices.

 Two types: Path graph and Complete graph.

Adjacency Graph

Path: Complete Graph:

Euler Tour

 Euler Tour of T:

 Every vertex can appear many times in the Euler Tour, but

we only keep any one of them for each vertex to form a

ET-list：

 v1，v2，… vn

When we delete a tree edge, the ET-list will be

divided into ≤3 parts, and we need to merge two

lists.

v1，v2，v3，v4，v5，v6，v7，v8，v9，v10，v11

(v1，v2，v3，v4，v5，v10，v11); (v6，v7，v8，v9)

When we connect two trees by an edge, we need

to split the ET-lists of the two trees from the

vertices on that edge …

(v1，v2，v3，v4，v5), (v6，v7)

(u1), (u2，u3，u4)

When we connect two trees by an edge, we need

to split the ET-lists of the two trees from the

vertices on that edge, and merge them in the

right order.

(v1，v2，v3，v4，v5), (v6，v7); (u1), (u2，u3，u4)

(v1，v2，v3，v4，v5，u2，u3，u4，u1，v6，v7)

Euler Tour

 Euler Tour of T:

 So we only need O(1) link & cut operations to maintain

the ET-lists per tree merging or splitting.

Path Graph

 Find the ET-list of the spanning tree in low-level.

 Order its adjacent “on” vertices on high-level by the ET-

list

 Notice that a vertex can appear multiple times since it may be

adjacent to many vertices in low-level.

Path Graph

 Find the ET-list of the spanning tree in low-level.

 Order its adjacent “on” vertices on high-level by the ET-

list

 Then connect them by a path in this order

Merge or split trees

 When we delete a tree edge, since the ET-list will be split

into at most 3 parts, the path graph will also be split into

≤3 parts.

Merge or split trees

 Then we need to reconnect the path.

 Similar to tree merging. So both merging and splitting

by one edge will need O(1) links/cuts.

When we update a high-

level vertex,
When we update a low-
level vertex,

We need to update O(1)

edges in the path for every

vertex in low-level it is

adjacent to.

1. Maintain the spanning

forests in low-level.

2. Update its adjaceny

vertices in high-level.

 A high-level vertex may be adjacent to many trees in

low-level.

 So the time needed to update the path graph is linear

to the degree of the updated vertex.

Then how to deal with

the highest level

vertices without

degree bound?

 So the time needed to update the path graph is linear

to the degree of the updated vertex.

 The number of trees in V0 adjacent to a vertex in V3

may be Θ(n).

Then how to deal with

the highest level

vertices without

degree bound?

Complete Graph

 Connect every pair of vertices (both “on” and “off”) by

an edge.

 When we update a low-level vertex, re-compute the

entire graph;

 When we update a high-level vertex, do nothing to this

graph.

 Since the remaining “on” vertices are still connected.

Subsets Degree bounds Size

V0 [1, m0.4) O(m)

V1 [m0.4, m0.6) O(m0.6)

V2 [m0.6, m0.9) O(m0.4)

V3 [m0.9, m] O(m0.1)

Recall the partition of vertices by degrees.

The structure

 Consider the vertices adjacent to a spanning tree in V0.

 V1 and V2: path graph;

 V2 to V3 and within V3: complete graph;

 V1 to V3: arbitrarily choose an active vertex in V1 and connect it

to all vertices in V3.

Update Time:
 V1 and V2: path graph;

 Update V0: changes O(m0.4) edges, takes O(m0.9) time.

 Update V1: changes O(m0.6) edges in V1 and V2, takes O(m0.9) time.

 Update V2: changes O(m0.9) edges in V2, we just keep those edges.

(Without using a dynamic structure)

Update Time:
 V1 and V2: path graph; (Time bound still O(m0.9))

 V2 to V3 and within V3: complete graph;

 Update a vertex in V0 will change O(m0.4) tree edges, each will change

|V2|×|V3|=O(m0.5) edges.

 V1 to V3: arbitrarily choose an active vertex in V1 and connect it

to all vertices in V3.

 degree(V1) ×|V3|=O(m0.5) edges

The structure

 Consider the vertices adjacent to a spanning tree in V1.

 V2 and V3: path graph;

 Degree from V2 and V3 to V1 is bounded by |V1|=O(m0.6).

The structure

 For the vertices in V2 and V3, just keep the all the edges

(original in G and artificial) on them, and run a BFS on the

“on” vertices after an update.

 It takes (|V2|+|V3|)
2=O(m0.8) time.

Answering a Query

A path connecting u and v

may be like: We just need to find a
common high-level
spanning tree of them.

Query Time

 Finding a high-level “on” vertex in path graph only takes O(1)

time.

 Since we use the complete graph from V0 to V3, we do not

record the “on” vertices in V3 adjacent to a tree in V0 in the

structure.

 So we need to check all the vertices in V3 adjacent to the tree

in V0 whether they are “on”. It takes |V3|=O(m0.1) time.

Reduce the update time to Õ(m0.8)

 Divide V into O(log n) sets:

 Use the path graph on all of subsets of V1.

 New query time: |V3|=O(m0.2).

Subsets Degree bounds Size

V0 [1, m0.2) O(m)

V1,1 [m0.2, 2m0.2) O(m0.8)

…

V1,i [2im0.2, 2i+1m0.2) O(m0.8/2i)

…

V2 [m0.6, m0.8) O(m0.4)

V3 [m0.8, m] O(m0.2)

V1 :degree [m0.2, m0.6),

Divided into O(log n)

subsets

Why O(m0.8) Update Time?

 Worst-case edge update connectivity structure for low-

degree vertices (≤ k):

 Update time at least O(k*(m/k)1/2)

 Need to make this degree bound precise.

 BFS for high-degree vertices (>k):

 Update time: (m/k)2

 Balance them: k=m0.6, update time: O(m0.8).

Open Problems

 Can we find subgraph connectivity oracle satisfying:

 Query Time×Update Time=o(m).

 Or prove an mΩ(1) lower bound.

 Dynamic subgraph reachability in directed graph?

 Multi-failure reachability in directed graph

 We have a Õ(n2) space and O(log n) query time structure for

dual-failure distance in directed graph [Duan & Pettie, 2009].

Homework and Exam

 Proposed oral exam time: 30.07-01.08

 Extra Assignment 12

