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My Research 

 Basic Graph Optimization Problems 

 Connectivity 

 Shortest Path 

 Matching 

 Maximum Flow 

 

 Exact Algorithms 

 Approximate Algorithms 

 Dynamic data structures 



Basic Concepts and Notations 

 G=(V, E): Primary graph we consider 

 n=|V|, m=|E| 

 Weighted graph:  

 Connectivity: whether there is a path between two 

vertices u,v (in undirected graphs). 

 Shortest path: the path p connecting u and v minimizing  

 



w : E



w(e)
ep





Traditional dynamic graph 

 Fully dynamic: we can insert and delete edges/vertices 

arbitrarily 

 Decremental: only deletions 

 Incremental: only insertions 



Dynamic Subgraph Model 

 There is a fixed underlying graph G, every vertex in G is 

in one of the two states “on” and “off”.  

 Construct a dynamic data structure: 

 Update: Switch a vertex “on” or “off”. 

 Query: For a pair (u,v), answer connectivity/shortest path 

between u and v in the subgraph of G induced by the “on” 

vertices. 

 



Motivation of dynamic subgraph model 

 



Overview (Dynamic Subgraph Model) 

 d-failure connectivity (STOC 2010) 

 The first d-vertex failure connectivity structure of query time only 

polynomial of d and log n.  

 Processing time when given d failed vertices: Õ(d2c+4) 

 Query time: O(d); Space: Õ(mn1/c) 

 c is an integer at least 1 and controls the time/space tradeoff 

 

 Worst-case fully subgraph connectivity (ICALP 2010) 

 Subgraph connectivity structure of Õ(m4/5) worst-case update time, with 
query time Õ(m1/5) 

 

 Dual-failure shortest path (SODA 2009) 

 Two vertex failure shortest path structure of O(n2log3n) space and 

O(log n) query time. 

 Õ() hides poly-logarithmic factors 

 For example, Õ(n2) means O(n2
logkn) for some constant k. 



Overview of Shortest Path Results 

 All-pair shortest path 

 Dijkstra’s algorithm: O(mn+n2log n) 

 Pettie improves to O(mn+n2loglog n) 

 Floyd-Warshall algorithm: O(n3) 

 Chan’s: O(n3
log3log n/log2n) 

 No real sub-cubic algorithm now 

 

 Dynamic all-pair shortest path (edge update) 

 Demetrescu and Italiano/Thorup:  update time O(n2log3n) 



Overview of Dynamic Connectivity Results 

 Edge update—amortized time 

 Holm, Lichtenberg, and Thorup: O(log2n) 

 

 Edge update—worst-case 

 Frederickson, Eppstein et al: O(n1/2) 

 (Kapron, King, Mountjoy: O(log5n), “randomized”) 

 

 Not suitable for vertex-update structure 

 We can get faster update time for the subgraph model.  

 

 



Two dynamic subgraph models 

 d-failure model: 

 The number of “off” vertices is bounded by an integer d 

 It can be seen as a static structure, in which the query (u,v) is 

given with a set D of “off” vertices and |D|≤ d 

 

 Real dynamic subgraph model: 

 We can change the status of any vertex in any time 



Our Results 

 d-failure model: 

 The first d-vertex failure connectivity structure of query time 

only polynomial of d and log n.  

 

 Two vertex failure shortest path structure of O(n2log3n) space 

and O(log n) query time. 

 

 Real dynamic subgraph model: 

 Subgraph connectivity structure of Õ(m4/5) worst-case 

update time, with query time Õ(m1/5) 



Our Results 
 The first d-vertex failure connectivity structure of query time 

only polynomial of d and log n.  

 (Here |D|≤d, n=|V|, m=|E|.) 

 (c is an integer at least 1) 

Processing Time 

when given D 

Query 

Time 

Size 

Our Structure Õ(d2c+4) O(d) Õ(mn1/c) 



Our Results 
 The first d-vertex failure connectivity structure of query time 

only polynomial of d and log n.  

 (Here |D|≤d, n=|V|, m=|E|.) 

 (c is an integer at least 1) 

Processing Time 

when given D 

Query 

Time 

Size 

Our Structure Õ(d2c+4) O(d) Õ(mn1/c) 

Trivial Recompute -- O(m) O(m) 

Table -- O(1) O(nd+2) 

Edge-failure structure [Pătraşcu 

and Thorup ‘2007] 

Õ(dn) O(loglog n) O(m) 

Worst-case subgraph 

connecivity [Duan ‘2010] 

Õ(dm4/5) Õ(m1/5) Õ(m) 

Two-vertex failure distance 

structure [Duan & Pettie ‘2009] 

-- O(log n) Õ(nd) 



New Edge Failure Structure 

 As a component of the main structure, given a spanning tree, this 

structure can answer the connectivity when d edges fail. 

 

 

 

 

 
 Our structure do not need to compute the sparsest cut, thus the construction is 

straight forward. 

Processing 

Time 

Query Time Size Construction 

Time 

New edge failure 

structure 
O(d2

loglog n) O(loglog n) Õ(m) Õ(m) 

Edge-failure structure 
[Pătraşcu and Thorup 

‘2007] 

Õ(dlog2 n) O(loglog n) O(m) Exponential 

Õ(dlog2.5 n) O(loglog n) O(m) Polynomial 



Our Results 

 d-failure model: 

 The first d-vertex failure connectivity structure of query time 

only polynomial of d and log n.  

 

 Two vertex failure shortest path structure of O(n2log3n) space 

and O(log n) query time. 

 

 Real dynamic subgraph model: 

 Subgraph connectivity structure of Õ(m4/5) worst-case 

update time, with query time Õ(m1/5) 



Dynamic Connectivity 

Edge Updates Vertex Updates (Subgraph Model) 

Update 
time 

Query 
time 

Space Update 
time 

Query 
time 

Space 

Amortized O(log2n) O(log 
n/loglog 
n) 

O(m) Õ(m2/3) Õ(m1/3) Õ(m4/3) 

(Holm, Lichtenberg & Thorup 1998) 
(Thorup 2000) 
 

(Chan, Pâtraşcu & Roditty 2008) 
 

Worst-Case O(n1/2) O(1) O(m) Õ(m4/5) Õ(m1/5) Õ(m) 

(Frederickson 1985 
Eppstein et al 1992) 
 

(Duan 2010) 
 

 

 Amortized time 

 Average running time per update in dynamic structures. 



Dynamic Connectivity 

Edge Updates Vertex Updates (Subgraph Model) 

Update 
time 

Query 
time 

Space Update 
time 

Query 
time 

Space 

Amortized O(log2n) O(log 
n/loglog 
n) 

O(m) Õ(m2/3) Õ(m1/3) Õ(m4/3) 

Õ(m2/3) Õ(m1/3) O(m) 

(Holm, Lichtenberg & Thorup 1998) 
(Thorup 2000) 

(Chan, Pâtraşcu & Roditty 2008) 
 
(Duan 2010) 

Worst-Case O(n1/2) O(1) O(m) Õ(m4/5) Õ(m1/5) Õ(m) 

(Frederickson 1985 
Eppstein et al 1992) 
 

(Duan 2010) 
 



Algorithms Overview 

 d-failure model: 

 d-failure connectivity 

 

 Real dynamic subgraph model: 

 Worst-case connectivity 



Difficulties and New Ideas 
 Difficulty: we can’t even spend O(1) time for every failed edge. 



Difficulties and New Ideas 
 Difficulty: we can’t even spend O(1) time for every failed edge. 

 A data structure where the deletion time is polynomial in 

degree of nodes in a tree T. 

 Non-tree edges are deleted implicitly. 

 If we have a degree-bound spanning tree T of G (degree smaller than s: 

degT(v)≤s), we are already done. 



Difficulties and New Ideas 
 Difficulty: we can’t even spend O(1) time for every failed edge. 

 A data structure where the deletion time is polynomial in 

degree of nodes in a tree T. 

 Non-tree edges are deleted implicitly. 

 If we have a degree-bound spanning tree T of G (degree smaller than s: 

degT(v)≤s), we are already done. 

 A hierarchy of spanning forests such that the failed vertices are 

low-degree (≤s) in a set of trees for any D. 

 The degree threshold s=dc+1  controls the time-space tradeoff. 

 The size of the hierarchy: O(n1/c). 

 Time to delete failed vertices: Õ(d2s2)=Õ(d2c+4). 



Basic Ideas 

 Let T be a spanning tree of G. 

 Thick line– tree edges. 

 Thin line– non-tree edges. 



Basic Ideas 

 Let T be a spanning tree of G. If we delete d’ edges in T,  T will 

be divided into d’+1 subtrees. We need to reconnect these 

subtrees. 



Basic Ideas 

 We show that it takes O(loglog n) time to check whether two 

subtrees are connected by an edge,  

 So it takes Õ(d’2) time to check whether any pair of these d’+1 subtrees 

are connected by an edge. 

 Note that we cannot use the edge-failure structure by Pătraşcu and 

Thorup, since here we only consider the deletion of edges in T 

associated with the failed vertices, not the edges in G. 



Reconnecting Subtrees 

 Euler Tour of T: 

 

 

 

 

 

 

 

 Every vertex can appear many times in the Euler Tour, but we 

only keep any one of them for each vertex to form a ET-list： 

 v1，v2，… vn 



ET-list table:  

If there is a non-tree edge (vi,vj) in G, add element 

(i,j) into this table. 

1 2 3 4 5 6 7 8 9 10 11 

1 X 

2 X X X 

3 X X X 

4 X X 

5 X X 

6 X X 

7 X 

8 X X X 

9 X X 

10 X 

11 X X 

 



When we delete a tree edge, the ET-list will 

be divided into ≤3 parts. 

1 2 3 4 5 6 7 8 9 10 11 

1 X 

2 X X X 

3 X X X 

4 X X 

5 X X 

6 X X 

7 X 

8 X X X 

9 X X 

10 X 

11 X X 

v1，v2，v3，v4，v5，v6，v7，v8，v9，v10，v11 



•It is a 2D range query to find edges to reconnect subtrees 

•It takes O(loglog n) time to find an edge in every rectangle. 

•So the time needed to reconnect after d tree-edge failures is  

 O(d2loglog n). 

1 2 3 4 5 6 7 8 9 10 11 

1 X 

2 X X X 

3 X X X 

4 X X 

5 X X 

6 X X 

7 X 

8 X X X 

9 X X 

10 X 

11 X X 



High-degree Vertices 

 We choose an integer s such that s>d2, s=poly(d). 

 If the degrees of all vertices are bounded by s in T, the 

time needed to reconnect the valid subtrees after d 

failures is Õ(d2s2)=poly(d), already done! 

 



 We need to deal with the high-degree vertices in T. 

 High-degree vertices: degree larger than s in T, 

 Low-degree vertices: degree at most s in T.  

 Since the number of edges in T is n-1, the number of high-

degree vertices is at most 2n/s. (rough bound) 

 

 
s=3 here 



 We move these high-degree vertices to a higher level. 

 Then reconnect the remaining vertices, which will create new 

high-degree vertices. 

 Connecting high-level set will also create high-degree 

vertices. 
High-degree vertices 

G\W1 

F(W1) 



 Then move the new high-degree vertices to join with 

the previous high-degree vertices to form another set. 



Construct the Hierarchy 
 Move the high-degree vertices to higher level. 

 Reconnect the remaining graph, if it still has high-degree vertices, also 

move them to higher level. Since there are at most d failures, this will 

repeat d times. 

 Recursively deal with every high-level set. 

 

 



 dc+1=s=high-degree threshold 

 Number of hierarchy nodes: 

 So the parameter s controls time-space tradeoff 

O(logs/dn) 

levels 

d children for every set is enough 



d logs /d n O(n1/c)



 Nodes in the hierarchy identified with vertex sets. 

 Define the forest on edge (Ui,Ui+1):               = the 

forest connecting Ui\Ui+1 in the subgraph G\Ui+1. 

 

 

 

 



FU1 (V )

FU2 (U1)



FU i1 (Ui)



 Key Property of the Hierarchy 

 For all sets D of d failed vertices, there is a path in the hierarchy: 

 V, U1, U2, … 

 Such that all failed vertices are low-degree in FU1(V), FU2(U1), … 

 (FW(U)= the forest connecting U\W in the subgraph G\W. ) 

 



FU2 (U1)



FU1 (V )



FU3 (U2)



Inside the hierarchy 
 For all paths in the hierarchy tree from the root to every 

node: U0(=V), U1, …, Up, where Up is not necessarily a leaf. 



 These are the forests FU1(V), FU2(U1), …, FUp(Up-1), F(Up). 

 Every spanning forest may contain lower level vertices, but not 
higher level vertices. 

 The spanning forests can reflect the connectivity through lower 
level vertices 

 

 

 

 

 

 

 

 

 

 

 Recall that FW(U)= the forest connecting U\W in the subgraph G\W. 



 When a vertex fails in a tree, we need to reconnect the 

subtrees split from it. 



 The subtrees split from it may be connected by many trees of lower 

levels, the number of which is not bounded by poly(d).  

 How to deal with this? 



d-failure Graph 
 Add artificial edges reflecting connectivity through lower level vertices. 

 For the vertices v1, v2, …, vn connected to a lower level tree ordered by the 

ET-tour of that tree, add edges (vi, vj) if |i-j|≤d+1. 



d-failure Graph 

 Each vertex is adjacent to its 2(d+1) neighbors. 

 Even when d vertices in the set fail, the graph on the active vertices is still 

connected. 

 When the tree is split into two subtrees, we need to delete O(d2) edges. 

 The space is O(dm). 



Processing d failures 

 When d vertices fail, we will reconnect the spanning trees containing them. 

 By both original edges in G and artificial edges added by the d-failure graph. 

 The number of such subtrees is O(dslog n), so the time needed is its square Õ(d2s2). 



Answering a Query 

 A path connecting u and v 

may be like: 
•Consider the trees 

FW(U)= the forest connecting U\W in the subgraph G\W. 



 Consider the trees after reconnection. A tree can only be connected to 

one tree in every higher level forest. 

 Check the connectivity between two vertices u and v: 

 Locate u and v in the forests 

 Find all the trees in higher levels connecting to the trees containing u 

and v.  



Tradeoff between time and space 

 Let s=O(dc+1) 

 Processing time for d failures: Õ(d2s2) =Õ(d2c+4). 

 Query time: O(d) 

 Since in the reconnected components, we need to find a 

component other than the d failed vertices. 

 Space: Õ(d m n1/c) 

 Õ(n1/c) nodes in the hierarchy. 

 Õ(dm)  space per path. 

 



Algorithms Overview 

 d-failure model: 

 d-failure connectivity 

 

 Real dynamic subgraph model: 

 Worst-case connectivity 



Difficulties 

 Turning a vertex “off” may split the graph into O(n) 

components.  

 We can’t even spend O(1) time for every edge in the worst-

case scenario. 

 The best worst-case edge update connectivity structure takes   

O(n1/2) time per edge update. 

 



Basic Ideas 

 Partition the vertices into different sets by their degrees. 

 Maintain the subgraph on theses sets differently: 

 Subgraph on low-degree vertices: use the dynamic connectivity 

with O(n1/2) worst-case edge update time. 

 Subgraph on high-degree vertices: run a BFS in every update, 

since the number of vertices of degree ≥k is bounded by O(m/k). 

 Add artificial edges to high-degree vertices to reflect the 

connectivity through low-degree vertices. 



Simpler solution- Õ(m0.9) Worst-case Update 

Time 

 Partition the vertex set  V (both “on” and “off” vertices) 

into 4 subsets by the degrees of vertices: 
 

 

 

 

 

 

 

 

 Notice that these sets are static. 
 

Subsets Degree bounds Size 

V0 [1, m0.4) O(m) 

V1 [m0.4, m0.6) O(m0.6) 

V2 [m0.6, m0.9) O(m0.4) 

V3 [m0.9, m] O(m0.1) 



Subsets Degree bounds Size 

V0 [1, m0.4) O(m) 

V1 [m0.4, m0.6) O(m0.6) 

V2 [m0.6, m0.9) O(m0.4) 

V3 [m0.9, m] O(m0.1) 



Subsets Degree bounds Size 

V0 [1, m0.4) O(m) 

V1 [m0.4, m0.6) O(m0.6) 

V2 [m0.6, m0.9) O(m0.4) 

V3 [m0.9, m] O(m0.1) 

For the subgraph of G induced by every subset, we 

need to maintain the connectivity dynamically. 



Subsets Degree bounds Size Update Time (Size0.5×Degree) 

V0 [1, m0.4) O(m) O(m0.5×m0.4)=O(m0.9) 

V1 [m0.4, m0.6) O(m0.6) O(m0.3×m0.6)=O(m0.9) 

V2 [m0.6, m0.9) O(m0.4) 

V3 [m0.9, m] O(m0.1) 

If we use O(n1/2) worst-case edge update connectivity oracle 

on the subgraph on V0 and V1, the update time will be: 



Subsets Degree bounds Size Update Time  

V0 [1, m0.4) O(m) O(m0.5×m0.4)=O(m0.9) 

V1 [m0.4, m0.6) O(m0.6) O(m0.3×m0.6)=O(m0.9) 

V2 [m0.6, m0.9) O(m0.4) 
O(m0.8) 

V3 [m0.9, m] O(m0.1) 

We can just keep the subgraph of  V2 and V3 and run a BFS 

on it after an update, which will take O(m0.8) time. 



However, a path connecting two vertices may 

be like this… 

How to deal with these inter-set edges? 



 Suppose there are some vertices of V1 which are 

adjacent to the same connected component of V0. 



 Add artificial edges to connect these V1 

vertices. 



Adjacency Graph 

 Set of artificial edges maintaining the connectivity of high-

level vertices through low-level vertices. 

 

 

 

 

 

 

 Two types: Path graph and Complete graph. 



Adjacency Graph 

Path: Complete Graph: 



Euler Tour 

 Euler Tour of T: 

 

 

 

 

 

 Every vertex can appear many times in the Euler Tour, but 

we only keep any one of them for each vertex to form a 

ET-list： 

 v1，v2，… vn 

 



When we delete a tree edge, the ET-list will be 

divided into ≤3 parts, and we need to merge two 

lists.  

v1，v2，v3，v4，v5，v6，v7，v8，v9，v10，v11 

 

(v1，v2，v3，v4，v5，v10，v11);  (v6，v7，v8，v9) 

 



When we connect two trees by an edge, we need 

to split the ET-lists of the two trees from the 

vertices on that edge …  

(v1，v2，v3，v4，v5),  (v6，v7) 
 

(u1),  (u2，u3，u4) 

 



When we connect two trees by an edge, we need 

to split the ET-lists of the two trees from the 

vertices on that edge, and merge them in the 

right order.  

(v1，v2，v3，v4，v5),  (v6，v7); (u1),  (u2，u3，u4) 
 

(v1，v2，v3，v4，v5，u2，u3，u4，u1，v6，v7) 

 



Euler Tour 

 Euler Tour of T: 

 

 

 

 

 

 

 So we only need O(1) link & cut operations to maintain 

the ET-lists per tree merging or splitting. 

 



Path Graph 

 Find the ET-list of the spanning tree in low-level. 

 Order its adjacent “on” vertices on high-level by the ET-

list 

 Notice that a vertex can appear multiple times since it may be 

adjacent to many vertices in low-level. 



Path Graph 

 Find the ET-list of the spanning tree in low-level. 

 Order its adjacent “on” vertices on high-level by the ET-

list 

 Then connect them by a path in this order 



Merge or split trees 

 When we delete a tree edge, since the ET-list will be split 

into at most 3 parts, the path graph will also be split into 

≤3 parts. 



Merge or split trees 

 Then we need to reconnect the path. 

 Similar to tree merging. So both merging and splitting 

by one edge will need O(1) links/cuts. 



When we update a high-

level vertex,  
When we update a low-
level vertex,  

We need to update O(1) 

edges in the path for every 

vertex in low-level it is 

adjacent to. 

1. Maintain the spanning 

forests in low-level. 

2. Update its adjaceny 

vertices in high-level. 



 A high-level vertex may be adjacent to many trees in 

low-level. 

 So the time needed to update the path graph is linear 

to the degree of the updated vertex. 

Then how to deal with 

the highest level 

vertices without 

degree bound? 



 So the time needed to update the path graph is linear 

to the degree of the updated vertex. 

 The number of trees in V0 adjacent to a vertex in V3 

may be Θ(n). 

Then how to deal with 

the highest level 

vertices without 

degree bound? 



Complete Graph 

 Connect every pair of vertices (both “on” and “off”) by 

an edge. 

 When we update a low-level vertex, re-compute the 

entire graph; 

 When we update a high-level vertex, do nothing to this 

graph. 

 Since the remaining “on” vertices are still connected. 



Subsets Degree bounds Size 

V0 [1, m0.4) O(m) 

V1 [m0.4, m0.6) O(m0.6) 

V2 [m0.6, m0.9) O(m0.4) 

V3 [m0.9, m] O(m0.1) 

Recall the partition of vertices by degrees. 



The structure 

 Consider the vertices adjacent to a spanning tree in V0. 

 V1 and V2: path graph; 

 V2 to V3 and within V3: complete graph; 

 V1 to V3: arbitrarily choose an active vertex in V1 and connect it 

to all vertices in V3. 



Update Time: 
 V1 and V2: path graph;   

 Update V0: changes O(m0.4) edges, takes O(m0.9) time. 

 Update V1: changes O(m0.6) edges in V1 and V2, takes O(m0.9) time. 

 Update V2: changes O(m0.9) edges in V2, we just keep those edges. 

(Without using a dynamic structure) 



Update Time: 
 V1 and V2: path graph;   (Time bound still O(m0.9)) 

 V2 to V3 and within V3: complete graph;    

 Update a vertex in V0 will change O(m0.4) tree edges, each will change 

|V2|×|V3|=O(m0.5) edges. 

 V1 to V3: arbitrarily choose an active vertex in V1 and connect it 

to all vertices in V3. 

 degree(V1) ×|V3|=O(m0.5) edges 



The structure 

 Consider the vertices adjacent to a spanning tree in V1. 

 V2 and V3: path graph; 

 Degree from V2 and V3 to V1 is bounded by |V1|=O(m0.6). 



The structure 

 For the vertices in V2 and V3, just keep the all the edges 

(original in G and artificial) on them, and run a BFS on the 

“on” vertices after an update.  

 It takes (|V2|+|V3|)
2=O(m0.8) time. 



Answering a Query 

A path connecting u and v 

may be like: We just need to find a 
common high-level 
spanning tree of them. 



Query Time 

 Finding a high-level “on” vertex in path graph only takes O(1) 

time. 

 Since we use the complete graph from V0 to V3, we do not 

record the “on” vertices in V3 adjacent to a tree in V0 in the 

structure. 

 So we need to check all the vertices in V3 adjacent to the tree 

in V0 whether they are “on”. It takes |V3|=O(m0.1) time. 

 



Reduce the update time to Õ(m0.8) 

 Divide V into O(log n) sets: 

 Use the path graph on all of subsets of  V1. 

 New query time: |V3|=O(m0.2). 

Subsets Degree bounds Size 

V0 [1, m0.2) O(m) 

V1,1 [m0.2, 2m0.2) O(m0.8) 

… 

V1,i [2im0.2, 2i+1m0.2) O(m0.8/2i) 

… 

V2 [m0.6, m0.8) O(m0.4) 

V3 [m0.8, m] O(m0.2) 

V1 :degree [m0.2, m0.6), 

Divided into O(log n) 

subsets 



Why O(m0.8) Update Time? 

 Worst-case edge update connectivity structure for low-

degree vertices (≤ k): 

 Update time at least O(k*(m/k)1/2) 

 Need to make this degree bound precise. 

 BFS for high-degree vertices (>k): 

 Update time: (m/k)2 

 

 Balance them: k=m0.6, update time: O(m0.8). 



Open Problems 

 Can we find subgraph connectivity oracle satisfying: 

 Query Time×Update Time=o(m). 

 Or prove an mΩ(1) lower bound. 

 

 Dynamic subgraph reachability in directed graph? 

 Multi-failure reachability in directed graph 

 We have a Õ(n2) space and O(log n) query time structure for 

dual-failure distance in directed graph [Duan & Pettie, 2009]. 



Homework and Exam 

 Proposed oral exam time: 30.07-01.08 

 Extra Assignment 12 


