4. Homework (Due: 31 May, 2012)

Advanced Graph Algorithms

Ran Duan, Jens M. Schmidt, Magnus Wahlström

Exercise 1: Sparsification of dynamic minimum spanning tree (9+6=15 points)

Suppose we have a dynamic minimum spanning tree structure with $O(\sqrt{m})$ worstcase update time. We can also use the technique of sparsification to improve the update time to $O(\sqrt{n})$, which needs to prove:

- i) Let F_1 and F_2 be the minimum spanning forests of G_1 and G_2 , respectively. Show that there is a minimum spanning forest of $G_1 \cup G_2$ which does not use any edge in $G_1 - F_1$ and $G_2 - F_2$.
- ii) Suppose we have already constructed a binary tree for sparsification, where each node in the binary tree represents a graph with O(n) edges, and the graph of a non-leaf node consists of edges of the minimum spanning forests in its two children. When inserting an edge e to some leaf node G_i , show that we only need to update a constant number of edges in G_i 's ancestors.

Exercise 2: *d*-edge-failure connectivity

Let G be any n-vertex connected graph with a spanning tree T. By the ET-tree, design a data structure of $\tilde{O}(n^2)$ space which can reconnect the spanning tree in $O(d^2 \log^2 n)$ time after deleting d edges.

Exercise 3: Planar separator

Let G be any n-vertex connected planar graph having non-negative vertex costs summing to no more than one. Suppose that the vertices of G are partitioned into levels according to their distance from some vertex v, and that L(l) denotes the number of vertices on level l. Given any two levels l_1 and l_2 such that levels less than l_1 have total cost at most 2/3 and levels more than l_2 have total cost at most 2/3, prove that we can find a partition A, B, C of the vertices of G such that no edge joins a vertex in A with a vertex in B, neither A nor B has total cost exceeding 2/3, and |C| is at most $L(l_1) + L(l_2) + \max\{0, 2(l_2 - l_1 - 1)\}$.

Total points: 40

SS 2012

Tutor: Bernhard Schommer

(15 points)

 $(10 \ points)$