7. Homework

Advanced Graph Algorithms SS 2012
Ran Duan, Jens M. Schmidt, Magnus Wahlström Tutor: Bernhard Schommer

Exercise 1: Minimum Spanning Trees
(15 points)

Assume that all edge weights are pairwise distinct. Consider an algorithm that first performs \(k \) steps of Prim’s/Jarník’s algorithm and then contracts all tree edges and applies Borůvka’s algorithm. What is the running time of this algorithm in terms of \(k, n \) and \(m \)? For which value of \(k \) is the running time minimized?

Exercise 2: Finding Quadrangle
(10 points)

Give an \(O(n^\omega) \) algorithm for finding a quadrangle (a simple cycle of 4 edges) in directed graphs.

Exercise 3: Maximum Witness
(15 points)

In the Boolean matrix product \(C \) of two Boolean matrices \(A \) and \(B \), if \(C_{i,j} = 1 \), then any index \(k \) such that \(A_{i,k} \) and \(B_{k,j} \) are both 1 is a witness for \(C_{i,j} \). The maximum witness for \(C_{i,j} \) is the largest possible witness for \(C_{i,j} \). The time complexity for computing the maximum witness for all entries of \(C \) is usually denoted by \(O(n^\mu) \), when \(A, B \) are both \(n \times n \) matrices.

Let \(\omega(1, r, 1) \) denotes the exponent of the time complexity for computing the product of an \(n \times n^r \) matrix and an \(n^r \times n \) matrix. If

\[
\omega(1, r, 1) \leq \begin{cases}
2 & \text{if } 0 \leq r \leq \alpha \\
2 + \beta(r - \alpha) & \text{otherwise}
\end{cases}
\]

where \(\alpha = 0.294, \beta = 0.533 \), show that \(\mu < 2.575 \). (Note that by far the maximum witness has the same time complexity as the unweighted directed APSP as given in class.)