Exercise 1: Extending \(k \)-Path \((15 \text{ points}) \)
Recall the \(k \)-Path problem: Does \(G \) contain a path on \(k \) vertices? We define the following extension.

\textbf{\(k \)-Node Subtree}
Input: A graph \(G = (V, E) \), a tree \(T \) on \(k \) nodes.
Parameter: \(k \).
Task: Find a copy of \(T \) as a (not necessarily induced) subgraph of \(G \).

Note that \(k \)-Path is the special case where the tree \(T \) is a path. Show that \(k \)-Node Subtree is FPT. (Hint: I recommend that you start from the color coding algorithm for \(k \)-Path and try to extend it.)

Exercise 2: Chromatic Number in Polynomial Space \((10 \text{ points}) \)
Show how the tools for Chromatic Number presented in class can be used to compute the chromatic number of a graph in time \(O^{*}(c^n) \) and polynomial space (you should be able to get \(c = 3 \)).

Exercise 3: Important Separators \((3+3+9=15 \text{ points}) \)
(a) Which are the important \((X, Y)\)-separators (of any size) in the following graphs? (We are using edge cuts, not vertex cuts.)
1. \(G \) is a \(3 \times 3 \) grid graph, where \(v_{i,j} \) is the vertex in row \(i \), column \(j \) (thus the edges are \(v_{i,j}v_{i+1,j} \) for \(i \in [2], j \in [3] \) and \(v_{i,j}v_{i,j+1} \) for \(i \in [3], j \in [2] \)). The sets are \(X = \{v_{1,1}\} \) and \(Y = \{v_{3,2}, v_{2,3}, v_{3,3}\} \).
2. \(G \) is a complete binary tree of height two (i.e., with four leaves). \(X \) is the root, and \(Y \) is the set of leaves.
(b) Design a quick way to decide whether a given \((s, t)\)-edge cut is an important separator. (Polynomial time is required; quicker gives more points.)