Recall that a dominating set in a graph \(G = (V, E) \) is a set \(X \) of vertices such that for every \(v \in V \), either \(v \in X \) or \(v \) has a neighbour in \(X \). The DOMINATING SET problem is, given \(G \) and \(k \), to decide whether \(G \) has a dominating set of size at most \(k \).

Exercise 1: Problems on \(d \)-degenerate graphs \((5+5+5=15 \text{ points})\)

A graph is \(d \)-degenerate if every induced subgraph contains a vertex of degree at most \(d \). This is quite a general notion of sparseness, but still allows for some algorithmic conclusions.

(a) Show that the “degeneracy number”, i.e., the smallest \(d \) such that \(G \) is \(d \)-degenerate, can be computed in polynomial time.

(b) Show that INDEPENDENT SET and DOMINATING SET have constant-factor approximations on \(d \)-degenerate graphs.

(c) Show that for INDEPENDENT SET, we also get a linear kernel.

Exercise 2: Dominating Set by bounded treewidth \((10 \text{ points})\)

Show that DOMINATING SET can be solved in \(2^{O(k)} n^{O(1)} \) time for graphs of treewidth \(k \).

Exercise 3: More treewidth \((5+10=15 \text{ points})\)

Show the following.

(a) Let \(u \) and \(v \) be two vertices of a graph \(G \), connected by a flow of more than \(k + 1 \) vertex-disjoint paths. Then any tree decomposition of \(G \) of width at most \(k \) must contain a bag \(X \) with \(u, v \in X \).

(b) Let \(G = (V, E) \) be a planar graph, \(v \in V \), and \(N_d[v] \) be the set of vertices at distance at most \(d \) of \(v \) (including \(v \) itself). Then \(G[N_d[v]] \) has treewidth bounded by \(O(d) \). (Hint: Go via outerplanarity.)