Exercise 1 (10 points (BT 7.3)) Each of \(n \) teams plays against every other team a total of \(k \) games. Assume that every game ends in a win or a loss (no draws) and let \(x_i \) be the number of wins of team \(i \). Let \(X \) be the set of all possible outcome vectors \((x_1, \ldots, x_n)\). Given an arbitrary vector \((x_1, \ldots, x_n)\), we would like to determine whether it belongs to \(X \), that is, whether it is a possible tournament outcome vector. Provide a network flow formulation of this problem.

Hint: if team \(n \) wins \(x_i \) times, it loses \((n - 1)k - x_i \) times.

Exercise 2 (10 points (BT 7.5))

Consider an uncapacitated network flow problem and assume that \(c_{ij} \geq 0 \) for all arcs. Let \(S_+ \) and \(S_- \) be the sets of source and sink nodes, respectively. Let \(d_{ij} \) be the length of the shortest directed path from node \(i \in S_+ \) to node \(j \in S_- \). Let \(d_{ij} = \infty \) if no path exists. We construct a transportation problem with the same source and sink nodes and the same values for the supplies and the demands. For every source node \(i \) and every sink node \(j \), we introduce a direct link with cost \(d_{ij} \). Show that the two problems have the same optimal cost.

Exercise 3 (10 points (BT 7.7))

Consider a network flow problem in which we impose an additional constraint \(f_{ij} \geq \ell_{ij} \) for every arc \((i, j)\). Construct an equivalent network flow problem in which there are no nonzero lower bounds on the arc costs.

Hint: let \(\bar{f}_{ij} = f_{ij} - \ell_{ij} \) and construct a new network for the arc flows \(\bar{f}_{ij} \). How should \(b_i \) be changed?
Exercise 4 (10 points (adapted from BT 7.8)) Consider a transportation problem in which all cost coefficients c_{ij} are positive. Suppose that we increase the supply at some source nodes and the demand at some sink nodes (in a consistent way). Is it true that the value of the optimal cost will also increase? Prove or give a counterexample. What happens if some c_{ij} values may be negative?