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The Traveling Salesman Problem 

 The Traveling Salesman Problem (TSP) 

 Input: edge-weighted graph G 

 Output: Hamilton cycle in G with minimum edge-weight 

 Motivation: 

 Traveling salesman ;-) 

 Complexity: 

 NP-hard 

 Admits no constant factor approximation (unless P=NP) 

[Sahni and Gonzalez 76] 



Metric TSP 

 Metric TSP 

 Input: edge-weighted graph G satisfying triangle inequality 

 Output: Hamilton cycle in G with minimum edge-weight 

 Motivation: 

 real-world problems usually satisfy triangle inequality 

 Complexity: 

 still NP-hard 

 admits 3/2-approximation [Christofides 76] 

 admits no PTAS (unless P=NP) [Arora et al. 98] 



Euclidean TSP 

 Euclidean TSP 

 Input: points P ½ R2 

 Output: tour ¼ through P with minimal length 

 Complexity: 

 still NP-hard [Papadimitriou 77] 

 admits PTAS [Arora 96; Mitchell 96] 
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 …even one with complexity O(n log n). 

Rao, Smith (STOC ’98) 

There is a randomized PTAS for Euclidean TSP with complexity 

O(n log n). 

Arora (FOCS ’97) 

There is a randomized PTAS for Euclidean TSP with complexity 

n logO(1/²) n. 



VRAP 

 (Euclidean) Vehicle Routing with Allocation (VRAP) 

 Input: points P ½ R2 , constant ¯ ¸ 1 

 Output: tour ¼ through subset T µ P minimizing 

 

 

 

 Motivation: 

 salesman does not visit all customers 

 customers not visited go to next tourpoint, which is 
more expensive by a factor of ¯. 

 



VRAP 

 (Euclidean) Vehicle Routing with Allocation (VRAP) 

 Input: points P ½ R2 , constant ¯ ¸ 1 

 Output: tour ¼ through subset T µ P minimizing 

 

 

 

 Complexity: 

 NP-hard, since setting ¯ ¸ 2 yields Euclidean TSP 

 as for Euclidean TSP, there exists a quasilinear PTAS 

 

 
Remy, S., Weißl (WADS ’07) 

There is a randomized PTAS for VRAP with complexity 

O(n log4 n). 



Steiner VRAP 

 Steiner VRAP 

 Input: points P ½ R2 , constant ¯ ¸ 1 

 Output: subset T µ P, set of points S ½ R2 (Steiner 

Points), tour ¼ through T [ S minimizing 

 

 

 

 Motivation:  

 salesman may also stop en route to serve customers 



Steiner VRAP 

 Steiner VRAP 

 Input: points P ½ R2 , constant ¯ ¸ 1 

 Output: subset T µ P, set of points S ½ R2 (Steiner 

Points), tour ¼ through T [ S minimizing … 

 Complexity: 

 NP-hard 

 admits PTAS 

 

 

 

 …even a quasilinear one 

 

 

Remy, S., Weißl (WADS ’07) 

There is a randomized PTAS for Steiner VRAP with complexity 

n logO(1/²) n. 

Armon, Avidor, Schwartz (ESA ’06) 

There is a randomized PTAS for Steiner VRAP with complexity 

nO(1/²). 



Techniques 

 Finding a good solution for VRAP means 

a)  finding a good set of tour points T µ P 

b)  finding a good tour on this set T 

 simultaneously. 

 a) is essentially a facility location problem. 

 We use the adaptive dissection technique, due to 

[Kolliopoulos and Rao, ESA ’99] 

 b) is Euclidean TSP. 

 We use dynamic programming on ‘patched short 

spanners’, due to [Rao and Smith, STOC ’98] 

 To put both ideas into perspective, we start by explaining the 

basics of dynamic programming in quadtrees, as introduced 

in [Arora, FOCS ’96] for Euclidean TSP 



Preliminaries 

 We assume that the input points P 

 have odd integer coordinates 

 lie inside a square whose sidelength is 

 a power of 2 

 of order O(n/²) 

 This is ok, since every (1+²/2)-approximation for the 

rescaled and shifted input P’ corresponds to a (1+²)-

approximation for the original input P. 

P 
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 a power of 2 

 of order O(n/²) 

 This is ok, since every (1+²/2)-approximation for the 

rescaled and shifted input P’ corresponds to a (1+²)-

approximation for the original input P. 

P 



Quadtrees 

 Choose origin of coordinate system (= center of large 

square) randomly. 

 this is the only source of randomness in all algorithms 

 

 

 



Quadtrees 

 Split large square recursively into 4 smaller squares until 

squares have sidelength 2 

 Since bounding square has sidelength O(n), resulting 

tree has O(n2) nodes (squares) and depth O(log n) 

 

 

 



Quadtrees 

 Truncated quadtree:  stop subdivision at empty squares 

 remaining tree has O(n log n) nodes 

 

 

 



 Place O(log n/²) many equidistant points (‘portals’) on the 

boundary of each square. 

 Impose restriction: Salesman may enter/leave a 

square only via its portals. 

 

 

Portal-respecting solutions 

In expectation, detouring all edges of the optimal salesman 

tour via the nearest portal increases its length only by a factor 
of 1+². 

Lemma (Arora) 
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boundary of each square. 

 Impose restriction: Salesman may enter/leave a 

square only via its portals. 

 

 

 

 

 Intuition: for two fixed points: 

 good 

 

In expectation, detouring all edges of the optimal salesman 

tour via the nearest portal increases its length only by a factor 
of 1+². 

Lemma (Arora) 

Portal-respecting solutions 



 Place O(log n/²) many equidistant points (‘portals’) on the 

boundary of each square. 

 Impose restriction: Salesman may enter/leave a 

square only via its portals. 

 

 

 

 

 Intuition: for two fixed points: 

 bad 

 but unlikely! 

 

In expectation, detouring all edges of the optimal salesman 

tour via the nearest portal increases its length only by a factor 
of 1+². 

Lemma (Arora) 

Portal-respecting solutions 



 Place O(log n/²) many equidistant points (‘portals’) on the 

boundary of each square. 

 Impose restriction: Salesman may enter/leave a 

square only via its portals. 

 

 

 

 

 i.e., there is an expected nearly-optimal portal-

respecting salesman tour. 

 We try to find the best portal-respecting salesman tour by 

dynamic programming in the quadtree. 

 

 

In expectation, detouring all edges of the optimal salesman 

tour via the nearest portal increases its length only by a factor 
of 1+². 

Lemma (Arora) 

Portal-respecting solutions 



Dynamic programming in quadtrees 

 For a given square Q, guess which portals are used by 
 

salesman tour, and enumerate all possible configurations C. 

 For each configuration C, calculate estimate for the length of 

a good tour inside Q, subject to the restrictions given by C: 

 If Q is a leaf of the quadtree, by brute force. 

 If Q is an inner node of the quadtree, by recursing to its 

four children. 

 

C 



Running time 

 Working in a non-truncated quadtree, we have to consider 

O(n2) squares. For each of these we have to consider 

2O(log n/²) = nO(1/²) configurations, and the estimate for each 

configuration can be calculated in time nO(1/²) . 

 We obtain a PTAS with running time  

O(n2) ¢ nO(1/²) ¢ nO(1/²) = nO(1/²)  

 

 

 

 

 This is essentially the technique used in the PTAS for 

Steiner VRAP by Armon et al. 

 

 

 

Arora (FOCS ’96) 

There is a randomized PTAS for Euclidean TSP with complexity 

nO(1/²). 

Armon, Avidor, Schwartz (ESA ’06) 

There is a randomized PTAS for Steiner VRAP with complexity 

nO(1/²). 



Running time 

 Working in a non-truncated quadtree, we have to consider 

O(n2) squares. For each of these we have to consider 

2O(log n/²) = nO(1/²) configurations, and the estimate for each 

configuration can be calculated in time nO(1/²) . 

 We obtain a PTAS with running time  

O(n2) ¢ nO(1/²) ¢ nO(1/²) = nO(1/²)  

 

 

 

 

 

 to achieve quasilinear time, we can only use 

polylogarithmic time per square. In particular, we can only 

consider polylogarithmically many configurations per 

square. 

 

 

Arora (FOCS ’96) 

There is a randomized PTAS for Euclidean TSP with complexity 

nO(1/²). 



Improving the running time 

 

 

 

 

 

 Idea: proceed bottom-up through quadtree and modify 

each square with too many crossings by introducing 

line segments parallel to sides. 

Patching Lemma (Arora) 

The optimal solution can be modified such that it crosses the 
boundary of every square at most O(1/²) many times. 

In expectation, this increases the length of the tour only by a 
factor of 1+². 

x 

 

 The total length of 

the new line 

segments is at most 

3x 

  modification on 

low levels of the 

quadtree are cheap. 



Improving the running time 

 

 

 

 

 

 i.e., there is an expected nearly-optimal portal-

respecting salesman tour which for every square uses 
only O(1/²) many of the O(log n) portals. 

 Looking for such a ‘patched’ solution, we only have to 

consider O(log n)O(1/²) = logO(1/²) n configurations per 

square! 

 

Patching Lemma (Arora) 

The optimal solution can be modified such that it crosses the 
boundary of every square at most O(1/²) many times. 

In expectation, this increases the length of the tour only by a 
factor of 1+². 



Improving the running time 

 

 

 

 

 

 We only have to consider logO(1/²) n configurations per 

square. 

 Working in a truncated quadtree, we obtain a PTAS 

with running time  

O(n log n) ¢ logO(1/²) n ¢ logO(1/²) n = n logO(1/²) n  

 

Patching Lemma (Arora) 

The optimal solution can be modified such that it crosses the 
boundary of every square at most O(1/²) many times. 

In expectation, this increases the length of the tour only by a 
factor of 1+². 

Arora (FOCS ’97) 

There is a randomized PTAS for Euclidean TSP with complexity 

n logO(1/²) n. 



Improving the running time 

 

 

 

 

 

 

 

 

 Combining the extended patching lemma with standard 

quadtree techniques for facility location problems [Arora, 

Raghavan, Rao, STOC ’98], we obtain 

 Remy, S., Weißl (WADS ’07) 

There is a randomized PTAS for Steiner VRAP with complexity 

n logO(1/²) n. 

Patching Lemma (Arora) 

The optimal solution can be modified such that it crosses the 
boundary of every square at most O(1/²) many times. 

In expectation, this increases the length of the tour only by a 
factor of 1+². 

Lemma 

The Patching Lemma extends to Steiner VRAP. 



Improving the running time even further 

 Patching revisited: 

 In Arora’s technique, the ‘patching’ is not part of the 

algorithm – we simply know a nearly-optimal patched 

solution exists, and try to find it by dynamic 

programming. 

 Rao and Smith (STOC ’98) improved Arora’s running 

time by making the ‘patching’ part of the algorithm. 

 A (1+²)-spanner S on P is a straight-line graph on P such 

that for every two points the shortest path in S is at most 
(1+²) time their Euclidean distance. 

 A ‘short’ (1+²)-spanner can be computed in time     

O(n log n) [Gudmundsson, Levcopoulos, Narasimhan, 

SWAT ’00] 

 Clearly, given such a spanner S there is a nearly-optimal 

salesman tour that only uses edges of S. 



Improving the running time even further 

 

 

 

 

 

 Idea: proceed bottom-up through quadtree and modify 

each square with too many crossings by introducing 

line segments parallel to sides. 

Patching Lemma (Rao and Smith) 

A short spanner S can be modified such that every square of 
the quadtree is crossed by at most O(1/²) relevant edges. 

In expectation, this increases the length of an optimal tour on 
the graph only by a factor of 1+². 

x 

 

 The total length of 

the new line 

segments is at most 

2x 

  modification on 

low levels of the 

quadtree are cheap. 



Improving the running time even further 

 A better algorithm for Euclidean TSP: 

 Compute short spanner S on P 

 Patch S, call the new graph S’ 

 Dynamic programming in quadtree, but instead of portals 

use edges of S’. 

 We now only have to consider constantly many configurations 

per square! 

 We obtain a PTAS with running time  

O(n log n) ¢ O(1) ¢ O(1) = O(n log n) 

 
Rao, Smith (STOC ’98) 

There is a randomized PTAS for Euclidean TSP with complexity 

O(n log n). 



Dealing with the facility location part 

 

 I promised a running time of O(n log4 n) for (non-Steiner) 

VRAP. 

 

 The techniques discussed so far take care of the Euclidean 

TSP part of the problem, and it remains to discuss the 

facility location part. 

 

 I will present the key ideas directly for the VRAP setting. 



Adaptive dissection 

 To improve the running time for facility location problems, 

Kolliopoulos and Rao (ESA ’99) introduced the adaptive 

dissection technique: 

 the quadtree is replaced by a more complicated structure, 

a zoom tree 

 the structure of the zoom tree changes with the location of 

the facilities (in our case, the tour points T).  

 Guessing the location of the tour points is done by  

guessing how to best recurse. 

 we have to do dynamic programming in larger 

structure, which is essentially the union of the zoom 
trees for all possible choices of T µ P 

 Key Advantage: constantly many portals per rectangle 

suffice! 

 Everything discussed so far (for the ‘TSP part’) needs to be 

adapted from the quadtree setting to the zoom tree setting!  



The zoom tree 

 The zoom tree alternates between split steps and zoom 

steps. 

 split steps work very similar to recursion in quadtree. 

 zoom steps look as follows: 

 
we zoom on bounding 

box of tour points 

(+ some safety margin), 

the sides of this 

rectangle lie on a 

suitable grid. 

 for a fixed set of tour 

points, the structure of 

the resulting zoom tree 

depends on the random 

choice of the coordinate 

origin. 

 



How does this help? 

 Two conceptual advantages: 

 On one hand, directly zooming on the tour points skips 

levels in between, which might introduce large errors in 

the quadtree technique. 

 On the other hand, in the resulting nearly-optimal 

solution, a point is not necessarily allocated to its 

nearest tourpoint, but possibly to a different nearby 

point.  added flexibility in analysis. 

 

 The net effect is that we only have to consider constantly 

many configurations per rectangle. 

 

 

 



Final running time for VRAP 

 Running time is dominated by zoom steps 

 We consider rectangles of bounded aspect ratio with 

sides on suitable grids containing at least one point. 

  There are only O(n log2 n) pairs of rectangles 

which correspond to zoom steps 

 For each such pair, the zoom step can be performed in 

time O(log2 n). 

 This requires allocating non-tour points in batches 

using range searching techniques. 

 We obtain a running time of 

 O(n log2 n) ¢ O(1) ¢ O(log2 n) = O(n log4 n) 

 
Remy, S., Weißl (WADS ’07) 

There is a randomized PTAS for VRAP with complexity 

O(n log4 n). 



Higher dimensions 

 Arora’s PTAS for Euclidean TSP and our PTAS for Steiner 

VRAP extend to any fixed dimension d, yielding a running 

time of O(n logC(d,²) n). 

 Here                                     , i.e., the running time is 

doubly exponential in d. 

 Main difficulty: the patching becomes more 

complicated, since the ‘sides’ of the hyper-‘squares’ are 

now (d–1)-dimensional hypercubes. 

 

 



Higher dimensions 

 Arora’s PTAS for Euclidean TSP and our PTAS for Steiner 

VRAP extend to any fixed dimension d, yielding a running 

time of O(n logC(d,²) n). 

 

 The Rao-Smith PTAS for Euclidean TSP extends to any 

fixed dimension d, still having a running  time of O(n log n). 

 (but with the implicit constant depending badly on d) 

 Our PTAS for VRAP extends to any fixed dimension d, 

yielding a running time of O(n logd+2 n). 

 The range searching adds an extra log-factor per 

dimension. 

 All algorithms can be derandomized by enumerating all 

possible random shifts of the quadtree (zoom tree), at the 

cost of an extra factor O(nd). 

 

 



Summary 

 

 VRAP is a combination of Euclidean TSP and a facility 

location problem. 

 

 The two state-of-the-art techniques 

 

 Dynamic programming on ‘patched short spanners’ 

(Rao and Smith, STOC ’98) for Euclidean TSP 

 

 Adaptive dissection (Kolliopoulos and Rao, ESA ’99) for 

facility location 

 

 can be combined into a O(n log4 n)-PTAS for VRAP. 

 



Thank you! 

Questions? 





Proof of Lemma 

 Consider two fixed points u,v 2 P, and a fixed line g which is 

on the even-integer grid and intersects uv. 

 If g is part of the level in which the squares have sidelength s, 

it introduces an error of at most s/m at this level. 

 The probability that g is part of the level in which the squares 

have sidelength s is 2/s. 

 That is, the grid line g introduces an expected error of at most 

2/s ¢ s/m = 2/m  

  at each level, which is O(log n/m) in total. 

 Since there are at most d(u,v) even-integer grid lines 

intersecting uv, the total expected error in the distance from u 

to v is 

 O(log n/m) ¢ d(u,v) = O(²) ¢ d(u,v) . 

 increase number of portals by constant factor to beat 

constant hiding in O  in expectation, tour length increases 
by a factor of 1+². 


