- This homework set has three questions, each one with increasing difficulty. You must work in pairs to determine the solutions.
- Every member of the team must be able to explain how you arrived at the answer.
- You may be asked to present your answer on the blackboard.
- 1. Let G be a graph with n vertices and m edges. How many vertex- and edge-induced subgraphs does G contain, respectively?
- 2. Determine the number of edges m, minimum degree $\delta(G)$, average degree d(G), connectivity k(G) and edge connectivity $\lambda(G)$ for the following graphs:
 - (a) The path of length m, P_m .
 - (b) The cycle on n vertices, C_n .
 - (c) The complete graph on n vertices, K_n .
 - (d) Let $d \in \mathbb{N}$ and $V := \{0,1\}^d$; thus, V is the set of all 0-1 sequences of length d. The graph on V in which two such sequences form an edge if and only if they differ in exactly one position is called the d-dimensional cube.
- 3. Show that every connected graph G contains a path of length at least min $\{2\delta(G), |G|-1\}$.