Great Ideas in Theoretical Computer Science Summer 2013

Lecture 2: P vs. NP, and Polynomial-Time Hierarchy

Lecturer: Kurt Mehlhorn & He Sun

1 P vs. NP

Today’s lecture starts with the intriguing question about P vs. NP. In early days
of computer science, people discovered two families of problems which present different
properties. Typical problems in the first family include:

e Given a graph G, is there a closed cycle which visits every edge of G exactly once?
e Given a graph G and two vertices s and ¢, what is the maximum flow between s
and t7

e Given a graph GG and two vertices s and ¢, find the shortest path between s and t.

All problems in this family can be solved in polynomial number of steps, by using either
navie methods, general algorithm design techniques (e.g. dynamic programming, greedy
strategy, linear programming), or based on some mathematical properties of the prob-
lems (e.g. existence of an Euler cycle in a graph). On the other hand, there is a long list
of problems where efficient algorithms are unknown. Typical problems include:

e Clique: Given a graph GG of n vertices and a parameter k, is there a clique of size
kin G?

e Hamiltonian: Given a graph G of n vertices, is there a cycle of length n which
visits every vertex exactly one?

e Satisfiability: Given a boolean formula ¢ with n variables and m clauses, where
every clause has at least three literals, is ¢ satisfiable? I.e. is there an assignment
of xy,...,x, such that p(xy,...,x,) =17

While efficient algorithms were missing, these problems have some properties in common:
(1) All existing algorithms for solving any problem in this family are essentially based
on Brute-Force Search, i.e. listing all possible candidate solutions and checking if one
candidate is a solution. (2) For every candidate solution, verifying the candidate is effi-
cient and can be done in polynomial-time. Besides the problems listed above, the family
includes many problems arising from Physics, Chemistry, Biology, as well as Network
Design, City Planing, and etc.

The question of whether brute-force search can be avoided in general was discussed
initially in a letter by Kurt Godel. In 1956, Kurt Godel wrote a letter to von Neumann.
Despite that Kurt Godel described the question in a remarkably modern way, the question
can be more or less summarized by how much we can improve upon the brute-force search.

To start our formal discussion, we first relate searching problems to decision problems.
Despite that most problems we handle are searching problems, i.e. finding a solution (an



assignment of a boolean formula, an Euler cycle of a graph), we can simply study their
decision version without decreasing the hardness of the problems. Given this, we relate
the problem like finding an assignment of boolean formula ¢ to the problem like is ¢
satisfiable?

We further relate problems into languages or sets, such that for any instance (boolean
formulae, graphs), the instance is in the set iff the answer to the instance is yes. For
example, we rewrite the second and the third problem as

e Hamiltonian® {G : graph G has a Hamiltonian cycle}
e SATZ {p: ¢ is satisfiable}

In order to show a specific graph (or formula) in Hamiltonian or SAT, we need a certificate,
e.g. a permuation of n vertices (or an assignment of n boolean variables).

No we define P and NP. The complexity class P consists of the problems that
can be solved in polynomial-time. The complexity class NP consists of all problems
that admit a short “certificate” for membership. Given this certificate, called a witness,
membership can be verified efficiently in polynomial-time. For instance, for a satisfiable
formula ¢ € SAT, a true assignment is a certificate.

Since every polynomial-time solvable problem can be verified in polynomial-time,
hence P C NP. However, because of various practical problems for which only brute-force
based algorithms are known, people are interested in finding polynomial-time algorithms
for such problems. The question about P vs. NP was precisely formulated in Cook’s
1971 paper. Moreover, in that paper Cook showed that in order to prove P = NP,
it suffices to study a subset of problems in NP. This subset consists of the “hardest”
problems in NP, and is called NPC. Cook showed that a polynomial-time algorithm for
any problem in NPC implies P = NP.

Theorem 1. SAT is NP-complete.

The question about the P vs. NP can be informally formulated by the following
question: Is every polynomial-time verifiable problem solvable in polynomial-time? Al-
though most people believe that finding a solution is much more difficult than verifying
the correctness of a solution and a lot of effort was made for proving P # NP over the
past 40 years, people have not found a promising way to prove or disprove this statement.

Why do we care the P vs. NP question? Among various consequence, we would like
to mention a few here.

e P = NP implies that every efficiently verifiable problem can be solved efficiently,
and essentially brute-force search can be avoid. We are happy with the situation
that every “hard” problem can be solved easily. However, as we will discuss in later
lectures, based on this statement there is no modern cryptography.

e P # NP implies that brute-force search is essential and can not be avoided for
most problems. However, this negative result shows the existence of hard problems
which are essential for cryptography.

So far we have the following results: (1) P € NP, (2) NPC C NP\ P if P #
NP. Now the question: Assuming that P # NP, is there a problem that is in an
“Intermediate” state between P and NPC? Le. is NP\ P\ NPC = ()7

Theorem 2 (Ladner, 1975). If P # NP, then NP \ P\ NPC # (.

2



Ladner showed that if P # NP, then there are infinitely many levels of difficulties in
NP. However assuming that P # NP we know very few candidates which “should” be
non NP-complete.

Example (Graph Isomorphism). Given two simple graphs Gy = (Vi, Ey) and Gy =
(Va, E5), find an isomorphism between G and G, i.e. a permutation ¢ : Vi — Va such
that (u,v) € Ey iff (p(u), ¢(v)) € Es.

We remark that these “conjectured” NP non-complete problems play a special role in
Theoretical Computer Science. We will show in next lectures how to use these problems
to design Cryptography protocols.

2 Polynomial-Time Hierarchy

An oracle is a hypothetical device that would solve a computational program, free of
charge. For instance, say we have a subroutine to multiply two matrices. After we create
the subroutine, we don’t have to think about how to multiple two matrices again, we
simply think about it as a “black block” which always returns the correct answer.

Now assume that we have a program M, and program M uses another program A as a
subroutine. Program M can invoke A as many times as it likes. We use M4 to represent
such a program. Moreover, we denote P4 by the set of polynomial-time algorithms where
each algorithm can use A as a subroutine and the runtime of A is assumed to be O(1).
Moreover, for any complexity classes A, B, we define AB as the set of problems which
can be solved by using an algorithm in A that invokes another procedure in B as a
subroutine.

Example. P¥ = P.

So far we discussed two complexity classes: P and NP. While most practical prob-
lems can be categorized into these two classes and most people in 1970s were interested
in studying the relationship between P and NP, a young computer scientist, Larry S-
tockmeyer, and his supervisor Meyer started to think what the next step is. In the 1972’s
paper, they looked at the following problem.

Problem 3. The set MINIMAL consists of all boolean formulas for which there is no
shorter and equivalent boolean formula.

We look at the complexity status of MINIMAL. Note that for any formula ¢ and
¢’ of n variables, there is a short certificate (a specific assignment of zy,...x,) if ¢ is
not equivalent to ¢'. Hence the question of testing ¢ #Z ¢’ is in NP, i.e. there is an
algorithm A € NP to test if ¢ Z ¢'. Moreover, given algorithm A as an oracle, for
every ¢ € MINIMAL, there is a short certificate which can be verified in polynomial-time.
Although we cannot show if MINIMAL is in P or NP, the discussion above shows that
MINIMAL € NPNF,

Stockmeyer further extended this idea and used an inductive way to categorize the
difficulties of the problems.

Definition 4 (Polynomial-Time Hierarchy). ¥; is a sequence of sets and will be defined
inductively:

1. ¥, £ NP



2. Y & NP>
Moreover, let II; £ coX; and A, = P>,
Definition 5. PH & Ui>02;.
Theorem 6. (1) If X; =11;, then PH =%;. (2) If ¥; = ¥;44, then PH =X%,.
Like complete problems in set NP, there are complete problems for every 3J; and 11;.

Problem 7. Language ¥;-SAT is a set of boolean formulae ¢ such that there are vectors
7. of boolean variables satisfying

ITVTS - QT(Th, .., 7)) = 1,
where Q =V if i is even, and Q) = 3 otherwise. Language 11;-SAT is defined similarly.

Theorem 8. >;-SAT is X;-complete, and 11;-SAT is I1;-complete.

3 Further Reading

Main Reference.
e Wikipedia entry “NP (complexity)”.

e Wikipedia entry “Polynomial hierarchy”, and [Sto76].

Other Reference. Michael Sipser gave an excellent survey about the P vs. NP prob-
lem [Sip92], where Godel’s letter and the English translation are inside. For Larry Stock-
meyer’s work, [For05] is a good summary.

On complete problems in Polynomial-Time Hierarchy, there is a list maintained by
Marcus Schaefer, and Christopher Umans. Just google “Completeness in the Polynomial-
Time Hierarchy A Compendium” to get the latest version.

Bibliography

[For05] Lance Fortnow. Beyond NP: the work and legacy of larry stockmeyer. In STOC,
pages 120-127, 2005.

[Sip92] Michael Sipser. The history and status of the P versus NP question. In STOC,
pages 603-618, 1992.

[Sto76] Larry J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput. Sci.,
3(1):1-22, 1976.



