
Great Ideas in Theoretical Computer Science Summer 2013

Lecture 5: Data Streaming Algorithms

Lecturer: Kurt Mehlhorn & He Sun

In the data stream scenario, the input arrive rapidly in an arbitrary order, and there
is only limited space to store some information of the input. Algorithms with limited
space need to compute some function of the input data. To illustrate this setting, we give
some examples:

• Imagine that you are a webmaster of a big website. You receive thousands of
clicks (IPs) every minute, and very frequent visits per minute are probably due to
hackers. You need to detect and block these IPs, without storing millions of IPs
per hour.

• You want to solve a problem in a massive data set (database, graph, etc.), and
solving the problem is quite time-consuming. However, you can scan the whole
data set quickly and get some information. This information usually gives some
statistical data of the massive data set, e.g. the frequency of items appearing in
the data set, or properties of the set (typically graphs), e.g. how well connected
the graph is. The information obtained by scanning the dataset once can be used
to speedup subsequent processes.

1 Introduction

Model. A data stream is a sequence of data

S = s1, s2, . . . , sm, . . . ,

where each item si is an item in the universe U , where |U | = n. A data streaming
algorithm A takes S as input and needs to compute some function f of S. Moreover,
algorithm A is only allowed to access the input in this “streaming fashion”, i.e. we cannot
read the input in another order and for most cases we can only read the data once.

Depending on how items in U are expressed in S, there are two typical models [12]:

1. Cash Register Model: Here each item si in stream S represents an element in
U . Different items come in an arbitrary order.

2. Turnstile Model: In this model we have a dataset D, and D = ∅ initially. Each
item in S is a pair si = (j, Uj), and we add j into D if Uj is “+”, and delete j from
D if Uj is “−”. The turnstile model represents dynamic changes of the dataset, and
captures most practical situations that the dataset may change over time.

Typically, the size of the universe, n, is a huge number, and storing the whole data set
in the memory and computing a function f is infeasible. Hence we need to design sub-
linear -space algorithms which give a good approximation of f for most cases. Formally,
our goal is to design algorithms such that

1

• The working space is O(poly log(n)).

• For confidence parameter ε > 0 and approximation parameter δ > 0, the output
of the algorithm achieves a (1 ± ε)-approximation of the exact value f(U) with
probability at least 1− δ. That is, the output f ?(U) satisfies

Pr [f ?(U) ∈ [(1− ε)f(U), (1 + ε)f(U)]] ≥ 1− δ.

Basic Techniques. Sampling and Sketching are two basic techniques for designing
streaming algorithms.

Most sampling-based algorithms follow the same framework: Algorithm A chooses
every coming item ` with a certain probability. If item ` is sampled, then algorithm A
puts ` into the memory M [A], otherwise item ` is discarded. Depending on different
situations, algorithm A may discard some items from M [A] after item ` is added into
M [A]. For every query of the data set, algorithm A computes some function f only based
on the current set M [A].

Sketching is the other basic approach for streaming algorithms. In contrast to sam-
pling techniques, a sketch-based algorithm A uses the working space M [A] to maintain
some data structure, e.g. an array, or a table, and we call this data structure a sketch.
Usually the data recorded in the sketch represents some statistical information of the
data set S, and is quite different from what you see in the stream.

The following is an example of sketches. Durand and Flajolet [10] proposed one sketch,
called LogLog, to count the number of distinct items in a data set. Based on the LogLog

sketch, they condense the whole of Shakespear’s works to a table of 256 “small bytes” of
4 bits each. The estimate of the number of distinct words by the LogLog sketch here is
30897, while the true answer is 28239. I.e., a relative error is +9.4%.

ghfffghfghgghggggghghheehfhfhhgghghghhfgffffhhhiigfhhffgfiihfhhh

igigighfgihfffghigihghigfhhgeegeghgghhhgghhfhidiigihighihehhhfgg

hfgighigffghdieghhhggghhfghhfiiheffghghihifgggffihgihfggighgiiif

fjgfgjhhjiifhjgehgghfhhfhjhiggghghihigghhihihgiighgfhlgjfgjjjmfl

2 Counting Distinct Elements

The first problem people study in the streaming setting is to approximate the frequency
moments of a data set. Let S be a sequence of items si, where each si ∈ [n] , {0, . . . , n−
1}. Let

mi , |{j : sj = i}|

be the number of occurrences of i in S. We define the k-th moment of S as

Fk ,
∑
i

mk
i

where 00 is defined to be 0. By definition we have:

• F1 is the number of items in S.

• F0 is the number of distinct items in S.

2

2.1 The AMS Algorithm

We recall the following definition of pairwise independent hash functions.

Definition 1 (Family of pairwise independent hash functions). A set H of functions
f : D 7→ R is called a family of pairwise independent hash functions if for different
x1, x2, and (not necessarily distinct) y1, y2, it holds that

Prh∼uH[h(x1) = y1 ∧ h(x2) = y2] =
1

|R|2
,

where h ∼u H expresses that h is chosen uniformly at random from H.

An easy way to get a pairwise independent hash function is as follows: (1) Choose
a prime number p. (2) Choose a randomly from {1, . . . , p − 1}, and choose b randomly
from {0, . . . , p− 1}. (3) Define h(x) , (ax+ b) mod p.

Algorithm. The first algorithm for approximating F0 is due to Alon, Matias, and
Szegedy [4], and most references use AMS to name their algorithm. We first define

ρ(x) , max
i
{i : xmod 2i = 0}.

The intuition of the AMS algorithm is that, after applying a hash function h, all items in
S are uniformly distributed, and on average one out of F0 distinct numbers hit ρ(h(x)) ≥
logF0, and thus the maximum value of ρ(h(x)) over all items x in the stream could give
us a good approximation of the number of distinct items.

Algorithm 1 An Algorithm For Approximating F0

1: Choose a random function h : [n] → [n] from a family of pairwise independent hash
functions;

2: z ← 0;
3: while an item x arrives do
4: if ρ(h(x)) > z then
5: z ← ρ(h(x));

6: Return 2z+1/2

Analysis. Now we analyze Algorithm 1. Our goal is to prove the following statement.

Theorem 2. By running Θ(log(1/δ)) independent copies of Algorithm 1 and returning
the medium value, we achieve an (O(1), δ)-approximation of the number of distinct items
in S.

Proof. Let Xr,j be an indicator random variable such that Xr,j = 1 iff ρ(h(j)) ≥ r. Let
Yr =

∑
j∈S Xr,j, and z? be the value of z when the algorithm terminates. Hence, Yr > 0

iff z? ≥ r.
Since h is a pairwise independent hash function, h(j) is uniformly distributed, and

E[Xr,j] = Pr [ρ(h(j)) ≥ r] = Pr [h(x) mod 2r = 0] =
1

2r
.

3

Hence by the linearity of expectations, we have

E[Yr] =
∑
j∈S

E[Xr,j] =
F0

2r
,

and

Var[Yr] =
∑
j∈S

Var[Xr,j] ≤
∑
j∈S

E[X2
r,j] =

∑
j∈S

E[Xr,j] =
F0

2r
.

By using the Markov’s Inequality and Chebyshev’s Inequality, we have

Pr [Yr > 0] = Pr [Yr ≥ 1] ≤ E[Yr]

1
=
F0

2r
,

and

Pr [Yr = 0] ≤ Pr [|Yr − E[Yr]| ≥ F0/2
r] ≤ Var[Yr]

(F0/2r)2
≤ 2r

F0

.

Let F ? be the output of the algorithm. Then F ? = 2z
?+1/2. Let α be the smallest

integer such that 2α+1/2 ≥ 3F0. Then

Pr [F ? ≥ 3F0] = Pr [z? ≥ α] = Pr [Yα > 0] ≤ F0

2a
≤
√

2

3
.

Similarly, let b be the largest integer such that 2b+1/2 ≤ F0/3. We have

Pr [F ? ≤ F0/3] = Pr [z? ≤ b] = Pr [Yb+1 = 0] ≤ 2b+1

F0

≤
√

2

3
.

Running k = Θ(log(1/δ)) independent copies of Algorithm 1 above and returning
the median value, we can make the two probabilities above at most δ. This gives an
(O(1), δ)-approximation of the F0 over the stream.

2.2 The BJKST Algorithm

The following is a simplifier version of the algorithm by Bar-Yossef, Jayram, Kumar,
Sivakumar and Trevisan [5]. In contrast to the AMS algorithm, the BJKST algorithm
uses a set to maintain the sampled items. By running Θ(log(1/δ)) independent copies
in parallel and returning the medium of these outputs, the BJKST algorithm (ε, δ)-
approximates the number of distinct items in S.

Algorithm 2 presents a simplified version of the BJKST algorithm, where c is a con-
stant. The general idea of the BJKST algorithm is as follows:

1. Use a set B to maintain the sampled items;

2. When the set B becomes full, shrink B by removing about half items and from
then on the sample probability becomes smaller.

3. In the end the number of items in B can be used to give a good approximation of
the number of distinct items in S.

See [5] for detailed analysis.

4

Algorithm 2 The BJKST Algorithm (Simplified Version)

1: Choose a random function h : [n] → [n] from a family of pairwise independent hash
functions;

2: z ← 0;
3: B ← ∅
4: while an item x arrives do
5: if ρ(h(x)) ≥ z then
6: B ← B ∪ {(x, ρ(h(x)))};
7: while |B| ≥ c/ε2 do
8: z ← z + 1;
9: shrink B by removing all (x, ρ(h(x))) with ρ(h(x)) < z;

10: Return |B| · 2z

2.3 Indyk’s Algorithm

We further address the problem of approximating F0 in the turnstile stream, and present
an algorithm by Indyk [11]. Although the sampling-based algorithms are simple, they
cannot be applied in turnstile streams, and we need to develop other techniques.

We first formulate the problem of approximating F0 in the turnstile stream.

• Input: A sequence of pairs of the form (si, Ui), where si ∈ [n] and Ui = +/−.

• Output: The F0 of the data set expressed by the stream. Moreover, for parameters
ε and δ, the output of the algorithm achieves an (ε, δ)-approximation.

Stable Distributions. A distributionD over R is called p-stable, if there is a parameter
p ≥ 0 such that for any n real numbers a1, . . . , an, and independent and identically dis-
tributed random variables X1, . . . , Xn with distribution D, the random variable

∑
i aiXi

has the same distribution as the random variable (
∑

i |ai|p)
1/pX, where X is a random

variable with distribution D.

Definition 3 (Stable Distributions). For 0 < p ≤ 2 there exists a probability distribution
Dp, called the p-stable distribution, with E[eitX] = e−|t|

p
for X ∼ Dp. For any integer

n > 0 and vector a ∈ Rn, if X1, . . . , Xn ∼ Dp are independent, then
∑n

i=1 aiXi ∼
(
∑n

i=1 |ai|p)
1/p

X, where X ∼ Dp.

It is known that stable distributions exist for any p ∈ (0, 2]. In particular:

• A Cauchy distribution, defined by the density function c(x) = 1
π
· 1
1+x2

, is 1-stable.

• A Gausssian (normal) distribution, defined by the density function g(x) = 1√
2π

e−x
2/2,

is 2-stable.

For general values of p except the cases that p ∈ {1/2, 1, 2}, we have not found the closed
formula of the density function yet. For detailed discussion of stable distributions, see
[3]. Reference [7] gives a short and interesting introduction to stable distributions in
designing streaming algorithms.

5

How To Generate Stable Distributions. A random variable X satisfying a p-
stable distribution can be generated as follows [6]: (i) Pick Θ uniformly at random from
[−π/2, π/2], and pick r uniformly at random from [0, 1]. (ii) Output

sin(pΘ)

cos1/p(Θ)
·
(

cos(Θ(1− p))
− ln r

)(1−p)/p

. (1)

Algorithm. We first give the framework of an idealized algorithm. Assume that we
have a random matrix M of size k × n, where k , Θ(ε−2 log(1/δ)), and each entry of M
is drawn from the p-stable distribution. Given this, the algorithm only needs to maintain
a vector E of size k, and is described in Algorithm 3.

Algorithm 3 Approximating F0 in a Turnstile Stream (An Idealized Algorithm)

1: while 1 ≤ j ≤ k do
2: Ej ← 0;

3: while a pair (si, Ui) arrives do
4: if Ui = + then
5: for j ← 1, k do
6: Ej ← Ej + M[si, j];

7: else
8: for j ← 1, k do
9: Ej ← Ej −M[si, j];

10: Return medium1≤j≤k{|Ej|p} · scalefactor(p)

The algorithm relies on matrix M of size k × n, and for every occurrence of item i,
the algorithm needs the ith column of matrix M. However, sublinear space cannot store
the whole matrix! So we need an effective way to generate this random matrix such that

• Every entry of M is random and generated according to the p-stable distribution.

• Each column can be reconstructed when necessary.

To construct such matrix M, we use Nisna’s pseudorandom generators. Specifically, when
the column indexed by x is required, Nisan’s generator takes x as the input and, together
with the original see, the generator outputs a sequence of pseudorandom sequences. Based
on two consecutive pseudorandom numbers, we use (1) to generate one item.

The following lemma shows that algorithms for estimating Fp for small p can be used
to estimate F0.

Lemma 4. Assume that we have an upper bound K of each entry of the vector E. Then
the F0 norm of the set S can be approximated by the Fp norm of the set S.

Proof. By definition

F0 =
∑
i

|mi|0 ≤
∑
i

|mi|p = Fp ≤
∑
i

Kp|mi|0,

where the last inequality holds by the fact that |mi| ≤ K for all i. Hence by setting
p ≤ log(1 + ε)/ logK ≈ ε/ logK we have

Fp ≤ (1 + ε)
∑
i

|mi|0 = (1 + ε)F0.

6

Now we give the space complexity of Algorithm 3. See [8, 11] for the correctness
proof.

Theorem 5. For any parameters ε, δ, there is an algorithm that achieves an (ε, δ)-
approximation of the number of distinct elements in a turnstile stream. The algorithm
needs O(ε−2 log n log(1/δ)) bits of space. The update time for every coming item is
O(ε−2 log(1/δ)).

3 Frequency Estimation

Consider the following frequency estimation problem: Starting from an empty set S,
there is a sequence of update operations of INSERT(S, xi) (performs S ← S ∪ {xi})
or DELETE(S, xi) (performs S ← S \ {xi}). In addition, there is a query operation
QUERY(S, xi) which asks for the number of occurrences of xi in the multiset S.

We introduce the Count-Min Sketch that is used to solve the problem above. The
Count-Min Sketch is introduced by Cormode and Muthukrishnan [9], and consists of a
fixed array C of counters of width w and depth d. These counters are all initialized to be
zero. Each row is associated to a hash function hi, where each hi maps an element from
U to {1, . . . , w}. For every INSERT(S, xi) we update C[j, h(xi)] via

C[j, h(xi)]← C[j, h(xi)] + 1

for every row 1 ≤ i ≤ d. For every DELETE(S, xi) we update C[j, h(xi)] via

C[j, h(xi)]← C[j, h(xi)]− 1

When the number of occurrences of any si is asked, we output

m̂i , min
1≤j≤d

C[j, h(xi)].

The figure below shows the structure of the Count-Min Sketch.

h1(xi)

h4(xi)

h2(xi)

w = de/εe

d = dlog 1
δ e

Hash Functions. The hash functions used here need to be pairwise independent, and
it is easy to implement. Let p be a prime number larger than n. For every hi, we choose
two integers a ∈ {1, . . . , p−1}, b ∈ {0, . . . , p−1}, and let hi(x) , (aix+ bi) mod pmodw.

7

Choosing w and d. For given parameters ε and δ, set w , de/εe and d , dln(1/δ)e.
Hence for constant ε and δ, the sketch only consists of constant number of counters.

Analysis. The following theorem shows that the Count-Min Sketch can approximate
the number of occurrences of any item with high probability.

Theorem 6. The estimator m̂i has the following property: m̂i ≥ mi, and with probability
at least 1− δ, m̂i ≤ mi + ε · F1, where F1 is the first-moment of the data set S.

Proof. Clearly for any i ∈ [n] and 1 ≤ j ≤ d, it holds that hj(i) ≥ mi and hence m̂i ≥ mi.
So it suffices to prove the second statement. Let Xi,j be the number of items y ∈ [n]\{i}
satisfying hj(i) = hj(y). Then C[j, hj(i)] = mi + Xi,j. Since different hash functions are
pairwise independent, we have

Pr [hj(i) = hj(y)] ≤ 1

w
≤ ε

e
,

and E[Xi,j] ≤ ε
e
· F1. By Markov’s inequality we have

Pr [m̂i > mi + ε · F1] = Pr [∀j : C[j, hj(i)] > mi + ε · F1]

= Pr [∀j : mi +Xi,j > mi + ε · F1]

= Pr [∀j : Xi,j > ε · F1]

≤ Pr [∀j : Xi,j > e · E[Xi,j]] ≤ e−d ≤ δ.

4 Further Reference

[12] is an excellent survey and covers basic algorithmic techniques in designing streaming
algorithms. [1] gives a summary, applications, and implementations of the Count-Min
Sketch. [2] maintains a list of open questions in data streams which were proposed in the
past data streaming workshops.

References

[1] Count-Min Sketch & Its Applications. https://sites.google.com/site/

countminsketch/.

[2] Open questions in data streams. http://sublinear.info/index.php?title=

Main_Page.

[3] Stable distributions. http://academic2.american.edu/~jpnolan/stable/

stable.html.

[4] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

[5] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan.
Counting distinct elements in a data stream. In RANDOM, pages 1–10, 2002.

8

https://sites.google.com/site/countminsketch/
https://sites.google.com/site/countminsketch/
http://sublinear.info/index.php?title=Main_Page
http://sublinear.info/index.php?title=Main_Page
http://academic2.american.edu/~jpnolan/stable/stable.html
http://academic2.american.edu/~jpnolan/stable/stable.html

[6] J. M. Chambers, C. L. Mallows, and B. W. Stuck. A method for simulating stable
random varialbes. J. Amer. Statist. Assoc., 71:340–344, 1976.

[7] Graham Cormode. Stable distributions for stream computations: It is as easy as
0,1,2. In In Workshop on Management and Processing of Massive Data Streams, at
FCRC, 2003.

[8] Graham Cormode, Mayur Datar, Piotr Indyk, and S. Muthukrishnan. Comparing
data streams using hamming norms (how to zero in). In VLDB, pages 335–345, 2002.

[9] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the
count-min sketch and its applications. J. Algorithms, 55(1):58–75, 2005.

[10] Marianne Durand and Philippe Flajolet. Loglog counting of large cardinalities (ex-
tended abstract). In ESA, pages 605–617, 2003.

[11] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data
stream computation. J. ACM, 53(3):307–323, 2006.

[12] S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and
Trends in Theoretical Computer Science, 1(2), 2005.

9

	Introduction
	Counting Distinct Elements
	The AMS Algorithm
	The BJKST Algorithm
	Indyk's Algorithm

	Frequency Estimation
	Further Reference

