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In 1984, Leslie Valiant wrote a very influential article (close to 7000 citations) with the title a
Theory of the Learnable [Val84], in which he proposes an approach to study the phenomenon of
learning from a computational point of view. He suggests to view learning as the task of acquiring an
algorithm without explicit programming.

1 Valiant’s 84 article: The birth of PAC-learning

Valiant introduces a precise computational model for concept learning. Concept learning is about
learning to decide whether a certain data belongs to a certain concept (is this a table? Is there an ele-
phant in the data?). The paper is the birth of PAC-learning (PAC = Probably Approximately Correct).

What is a concept? A concept is simply a subset of some domain. A concept comes from a some
concept class C known to the learner. So the learner is not completely in the dark. Rather, he/she
knows that the concept to learn comes from a certain concept class.

How does one get information about a concept? Either passively by examples. The learner is
shown examples drawn according to some unknown probability distribution D. With each example
comes the information, whether the example belongs to the concept or not. Or actively, by oracle
calls. The learner can ask whether an specific object which he/she creates belongs to the concept or
not. In later papers there is also supervised learning where a teacher provides strategically chosen
examples.

What does it mean to have learned a concept? It means to produce a hypothesis h from some
hypothesis class H that is close to c, i.e., is able to classify unknown examples with high confidence
(= small error probability). The examples on which the learner has to show its skills are drawn
according to the same probability distribution D which is used in the learning phase.

What does it mean to have a learning algorithm for a concept class? The algorithm should be able
to learn any concept in the concept class with high probability of success (= small failure probability)
after seeing a polynomial number of examples.

A Formalization: Let C be the concept class, let c ∈ C be the concept to be learned, and let D
be the probability distribution according to which examples are drawn. Let H be the set of possible
hypothesis of the learner. The error probability of a hypothesis h ∈ H is defined as the probability of
c and h differing on a random example drawn according to D.

err(h) :=probx∼D[h(x) 6= c(x)]

If the error probability is small, say at most ε , the hypothesis is approximately correct. We say that h
is ε-good if err(h)≤ ε and ε-bad otherwise.
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Since the algorithm learns through random examples, one can never guarantee that an algorithm
always finds an approximately correct hypothesis. The best one can hope for is that the algorithm fails
with small probability, say at most δ , i.e.,

prob(err(h)> ε)≤ δ .

The probability is with respect to the runs of the algorithm. If the algorithm is deterministic, this is
simply the probability of seeing the particular sequence of examples that lead the algorithm to the
hypothesis h.

We are now ready for the formal definition of PAC-learning.

Definition 1 A concept class C is PAC-learnable by a hypothesis class H, if there is an algorithm A
with the following properties: For all concepts c ∈ C, positive ε > 0, positive δ > 0, and distribu-
tions D on the examples, the algorithm takes some number m of examples (x1,c(x1)), (x2,c(x2)), . . . ,
(xm,c(xm)) and produces a hypothesis h such that prob(err(h) > ε) ≤ δ . The number m of examples
must be polynomial in 1/ε and 1/δ .

If a particular sequence of examples causes the algorithm to produce an incorrect hypothesis, the
probability of this sample sequence contributes to the error probability.

The algorithm is efficient if it runs in time polynomial in 1/ε and 1/δ (equivalently, polynomial
in m).

A First Example (not from Valiant’s article): Our concept class C is equal to the set of positive
rays on the real line, i.e., if r ∈ R is a real number, it defines the concept c = [rc,∞]. A positive
example is any number greater or equal to r, and a negative example is any number smaller than r.

The set of hypothesis is the same set of intervals. It is clear what a learning algorithm should do.
After seeing some number of example, it should output an interval [h,∞], where h is larger than all
the negative examples and no larger than any of the positive examples. For concreteness, we let the
algorithm output the smallest possible example as its hypothesis.

For how many examples should the algorithm ask before it commits?
Which examples are misclassified by a hypothesis h? Exactly the examples in the interval I =

[rc,h). Examples less than rc are classified as negative by c and h, examples no smaller than h are
classified as positive by c and h, and points in I are classified as positive by c and as negative by h.

Let b+ > rc be such that the interval R+ = [rc,b+] has probability ε according to D (= the unknown
distribution according to which samples are drawn).

h is a bad hypothesis, if h > b+. This can only be the case no sample in R+ was drawn. Since
samples are drawn independently, we have

prob(x1 6∈ R+∧ . . .xn 6∈ R+)≤ (1− ε)m.

We want the error probability to be at most δ and hence should choose m such that (1− ε)m ≤ δ .
Taking logarithm gives us m ln(1− ε) ≤ lnδ . Since ln(1− ε) ≤ −ε , we have m ln(1− ε) ≤ lnδ if
−mε ≤ lnδ or m≥ 1

ε
ln(1/δ ). We summarize the discussion in:

The algorithm above is a PAC-learning algorithm: m = 1
ε

ln(1/δ ) questions are sufficient.

Learning Monotone Boolean Formulae (from Valiant’s article): The concept class C is the set of
all monotone boolean functions on t variables. We extend the boolean domain {0,1} by an element
∗ with ∗< 0 < 1 and extend f as follows: f (v) = 1 if and only if f (w) = 1 for all vectors w obtained
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from v by replacing every ∗ by a concrete value. Samples are in {∗,0,1}t . If a position in a sample is
equal to ∗, the position is irrelevant for the concept.

Let f be the concept to be learned. I write f instead of c since the concept is a function. Here
is the learning algorithm. The algorithm starts with the hypothesis equal to the all-zero function and
maintains the invariant h ≤ f . In each iteration it asks for a positive example v, i.e., an example
with f (v) = 1. Negative examples are not needed for this algorithm. It then finds out whether the
example can be generalized. It sets every position in v which is determined to ∗ and asks whether the
generalized example belongs to the concept.

1 initialize h to the all-zero function;
2 for L times do
3 v := some positive example, i.e., f (v) = 1;
4 if h(v) = 0 then
5 for i = 1 to t do
6 obtain ṽ from v by setting vi to ∗;
7 if f (ṽ) = 1 (a call to ORACLE) then v := ṽ

8 let m be the product of all variables with vi = 1;
9 h :=h+m; // m is a prime implicant of f

A prime implicant of a function f is a minimal (= least number of variables) monomial m with
m≤ f . Any function can be written as a disjunction of its prime implicants. In general, a subset of the
prime implicants suffices. Let the degree d of a function be the smallest number of prime implicants
that suffice to express f as their sum. For monotone functions all prime implicants a required in the
sum.

Theorem 1 Let f be a monotone function of degree d in t variables and let L≥ 2
ε
max(d,4ln 1

δ
). Then

the algorithm above terminates with a hypothesis h with err(h)≤ ε with probability at least 1−δ .

We proceed in two steps:
(a) We show that each iteration with h(v) = 0 adds a prime implicant to h. In particular, h ≤ f

always.
(b) We determine the right value of L.
Let v0 be the example produced in line 3 and let vi be the value of v after the i-th execution of the

inner for-loop; vt is the final value of v. In vt any component is either ∗ or 1. Moreover, f (vt) = 1, and
if z is obtained from vt by setting a component which is 1 to 0, f (z) = 0. This is easily seen. Consider
the i-th iteration of the loop. Let w = vi−1 and let wb be obtained from w by setting the i-th bit of w to
b ∈ {0,1,∗}. Then f (w0) ≤ f (w1) = 1. The inequality and the equality follows from monotonicity
of f ; observe that w≤ w1. If f (w0) = 1, then f (w∗) = 1 by definition and hence vt

i = ∗. If f (w0) = 0,
vt

i = 1. Moreover, if z is obtained from vt by turning the i-th component to zero, then z≤w0 and hence
f (z) = 0. We conclude that each execution of the inner for-loop adds a prime implicant of f to h.
Thus the inner for-loop is executed at most d times and there are at most dt calls to the ORACLE.

What is the correct value of L? Let R be the set of examples x with h(x) = 0 < 1 = f (x). The set
R shrinks over time. If prob(x ∈ R)≤ ε at termination, the algorithm succeeds. If prob(x ∈ R)> ε at
termination, the algorithm fails.
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Let Xi be a 0,1-random variable with Xi = 1 if the i-th execution of line 3 generates a v with
h(v) = 0. If the algorithm fails, X = X1 + . . .+XL < d and prob(Xi = 1) ≥ ε for all i. The following
Lemma tells us how to choose L.

Lemma 1 (Chernoff Bound) Let X1, . . . ,XL be L independent 0,1-valued random variables with prob(Xi =
1)≥ ε for all i and let X = X1 + . . .+XL be the total number of successes. Then for any γ > 0

prob(X ≤ (1− γ)εL)≤ e−γ2εL/2.

We apply the Lemma with d = (1− γ)εL or γ = 1− d/(εL). We want e−γ2εL/2 ≤ δ . For
εL ≥ 2d we have γ ≥ 1/2 and hence e−γ2εL/2 ≤ eεL/8. The latter quantity is bounded by δ for
L≥ (8/eps) ln(1/δ ). We therefore work with L = max(2d/ε,(8/ε) ln(1/δ )).

Is the restriction to monotone function necessary? At least the algorithm above does not general-
ize. Observe that we need to test whether h(v) = 1, where v is a vector over {0,1,∗} and h is given as
a sum of monomials. This test is an NP-complete problem. Observe if v = ∗t , the question amounts
to asking whether h is identically 1, i.e., is a tautology. However, if one restricts to boolean functions
in the strict sense, the algorithm works. It is only the ORACLE that has to solve an NP-complete
problem.

Valiant gives more positive examples in his paper.

Negative Results: Can everything be learned in the PAC-model. In his original paper, Valiant argues
informally that the answer is no. The argument was made precise by Kearns and Valiant in 1989.

Valiant argues the class of functions computable by polynomial-sized circuits is not learnable.
Consider a cryptographic scheme that uses an encryption function Ek, where k is the key. Also as-
sume that the encryption function can be computed by a polynomial-size circuit. Learnability of Ek
would imply that Ek is vulnerable by a chosen plaintext attack. Observe that PAC-learnability of Ek
means that with good probability the learner can deduce a good approximation of Ek after choos-
ing a polynomial number of plaintexts m1 to mL to which the ORACLE provides the corresponding
encoding. If cryptographic schemes immune to chosen plaintext attacks exist (which is a common
assumption in cryptography), there are easy to compute functions that cannot be learned.

2 Further Literature

The book by Kearns and Vazirani [KV94] is an excellent textbook on computational learning theory.
Valiant has extended his theory of learning to a theory of evolution (= learning by a population)[Val13].
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