
Algorithms on Strings Problemset 1 May 9, 2013

� This problemset has six questions.

� To get the credit for questions marked as SPOJ, you must get them accepted on
http://www.spoj.com/AOS, but you don’t have to send any explanation!

� For other questions, either send the solutions to gawry1+aos@gmail.com, or leave
them in the envelope attached to the doors of my office (room 321).

1. Prove the following: a polynomial f(x) of degree d over the integers modulo a prime p cannot
have more than d different roots. For instance, f(x) = x3 + 2x + 2 has just two roots {2, 3}

modulo 7.

Solution: See http://en.wikipedia.org/wiki/Lagrange’s_theorem_(number_theory).

2.(SPOJ) Given q and r, compute the signature (as defined during the lecture) of a string S. The string
consists of letters a and b, and we treat them as digits 0 and 1, i.e., the signature of a string
baba is (r3 + r) (mod q).

Solution: The simplest way is to use Horner’s rule. Start with the fingerprint of the empty
string (0), and then append letters one-by-one updating the current fingerprint.

3.(SPOJ) We consider a different scheme for computing the signatures φ(S[1..n]) = (S[1]∗rm−1 xor S[2]∗
rm−2 xor . . . xor S[n] ∗ r0) mod 232. The string consists of letters a and b, and we again
treat them as digits 0 and 1. Given r and a string S, find a different S ′ with exactly the same
signature.

Solution: Let the binary expansion of rm−i+1 be vi = 〈bi(31), bi(30), . . . , bi(0)〉. If you
look at the condition that the fingerprint of S and S ′ should be the same, it makes sense
to define di ∈ {0, 1} which tells us whether S[i] = S ′[i] or not. Then the condition that
S 6= S ′ becomes di 6= 0 for some i, and the condition that the fingerprints are the same
translates into a system of 32 linear equations. The j-th equation is of the form d1b1(j) +

d2b2(j)+d3b3(j)+. . . dmbm(j) = 0 mod 0. So, we have 32 linear equations overm variables.
Because the equations, and we are operating modulo 2 (which is a field), we can use Gauss
elimination (see http://en.wikipedia.org/wiki/Gaussian_elimination). This might
be a little bit too slow, but one can observe that we never need to use more than 33
variables: the rest can be just set to 0. This is because we are really looking for a dependent
set of vectors in a vector space of dimension 32 (if you don’t know what a vector space is,
just ignore this sentence). So, construct the system of 32 equations in at most 33 variables
d1, d2, . . . , d33, and solve it using Gauss elimination.

Due: May 18, 2013 Max-Planck-Institut für Informatik, Saarbrücken

4. Compute the values of the π function for the word ababbabaabaab.

Solution: The values are (starting from i = 1, 2, 3, . . . , 13): 0, 0, 1, 2, 0, 1, 2, 3, 1, 2, 3, 1, 2.

5. Consider a modification of the failure function π known as the strong failure function π ′. It is
defined as follows: for each i = 1, 2, . . . , |w|− 1 we choose π ′[i] to be the longest proper border
of w[1..i] such that w[π ′[i] + 1] 6= w[i+ 1]. If there is no such border, π ′[i] = −1.

(a) Compute the values of the π ′ function for the word ababbabaabaab.

Solution:
The values are (starting from i = 1, 2, 3, . . . , 12): 0,−1, 0, 2,−1, 0,−1, 3, 0,−1, 3, 0.

(b) Show how to (quickly) compute the values of π ′ given the values of π.

Solution:

Compute-π ′-From-π(π)

1 π ′[0]← −1

2 for i← 1 to n− 1

3 do if π[i+ 1] = π[i] + 1
4 then π ′[i]← π ′[π[i]]

5 else π ′[i]← π[i]

6. Consider a simplification of the Boyer-Moore algorithm, where we use only the bad character
rule. Show an infinite family of instances on which such modification has quadratic running
time.

Solution: Many solutions are possible. The simplest seems to be t = aaa...aaa and
p = baaa...aaaa. Notice that choosing p = aaa...aaa would work if we were interested
in generating all occurrences, but if we want just the leftmost, it’s better to make sure that
p doesn’t occur in t.

Page 2

