
Algorithms on Strings Problemset 4 July 10, 2013

� This problemset has three questions.

� To get the credit for questions marked as SPOJ, you must get them accepted on
http://www.spoj.com/AOS, but you don’t have to send any explanation!

� For other questions, either send the solutions to gawry1+aos@gmail.com, or leave
them in the envelope attached to the doors of my office (room 321).

1. Prove that the lexicographical order is a total order:

Solution: Recall that s ≤ t if either s is a prefix or t, or s and t agree on first i−1 letters,
and then s[i] < t[i]. To make life simpler, assume that all strings are zero-terminated.
Then s ≤ t if either s = t or s[1] = t[1], ..., s[i− 1] = t[i− 1] and then s[i] < t[i].

(a) for any string a: a ≤ a,

Solution: a = a so a ≤ a.

(b) for any strings a and b: if a ≤ b and b ≤ a then a = b,

Solution: If a = b, then a = b. Similarly for b = a. The remaining case is that
a[1] = b[1], a[2] = b[2], ..., a[i] < b[i] and at the same time a[1] = b[1], a[2] = b[2],
..., a[i ′] > b[i ′]. But then i = i ′, and we get that a[i] < b[i] and a[i] > b[i] at the
same time, which is absurd.

(c) for any strings a, b, and c: if a ≤ b and b ≤ c then a ≤ c,

Solution: If a = b or b = c the claim is obvious. So, assume that a[1] = b[1],
a[2] = b[2], ..., a[i] < b[i] and at the same time b[1] = c[1], b[2] = c[2], ..., b[i ′] < c[i ′].
Then we have three cases, i < i ′, i = i ′, and i > i ′. In all of them we get that a ≤ c.

(d) for any strings a and b: either a ≤ b or b ≤ a.

Solution: If a = b, the claim is obvious. Otherwise a[1] = b[1], a[2] = b[2], ...,
a[i] 6= b[i]. Depending on the relation between a[i] and b[i] we get that a ≤ b or
b ≤ a.

2. The goal of this question is to make sure that you are familiar with binary search. The first
part is straightforward, while the second requires some additional insight. Try to solve both!

(a) You are given a sorted sequence of numbers a1 ≤ a2 ≤ . . . ≤ an. You can access any of
them in constant time. Show how to check if the sequence contains a number x in just
O(logn) steps. Provide either some pseudocode or a clear description of your method.

Due: July 17, 2013 Max-Planck-Institut für Informatik, Saarbrücken

Solution: Check if a1 = x or an = x. Otherwise, assume that a1 < x and x < an, if
not terminate. Start with ` = 1 and r = n. While ` + 1 < r, set m = b `+r

2 c, compare
am with x. If am = x, we have our x. If am < x, set ` = m, if x < am set r = m.

(b) You are given an n×n matrix containing numbers ai,j. Each row and each column of the
matrix is sorted, i.e., ai,j ≤ ai+1,j and ai,j ≤ ai,j+1. You can access any ai,j in constant
time. Show how to check if the matrix contains a number x in just O(n) steps. For
extra credit: show an asymptotically better solution or prove that one cannot beat linear
complexity here.

Solution: Start with i = 1 and j = 1. While i ≤ n repeat the following: increase j

by one as long as ai,j ≤ x, then if ai,j = x we have our x, otherwise increase i by one.
The correctness follows from the observation that for each row we find the smallest j
such that ai,j > x, and these values of j cannot decrease as we increase i. The number
of operations is O(n) because every step increases i + j, and the sum can be at most
2n.
For extra credit, we prove the lower bound. More precisely, one can show that for
some arrays any algorithm has to access at least n cells, otherwise we could fool it into
answering NO while the answer is actually YES. The array are very simple: zeroes
above the main diagonal, ones below the main diagonal, and undetermined values on
the diagonal. For n = 4 the situation looks like this:

0 0 0 ?

0 0 ? 1

0 ? 1 1

? 1 1 1

As long as each ? is replaced by something from [0, 1], we get a proper row- and
column-sorted array. Now we run the algorithm with x = 1

2 . Each time it accesses
a diagonal entry, we put 0 there. At some the algorithm terminates. If all diagonal
cells contain 0, the algorithm asked n questions, so it was slow. If some diagonal
cell contain ? and the algorithm answered NO, we put 1

2 in the corresponding cell,
so the answer becomes incorrect. If the algorithm answered YES, we put 0 in the
corresponding cell, so the answer becomes incorrect, too. Hence there can be no ?

which we could replace, so the algorithm must have asked at least n questions.

3.(SPOJ) Extra credit: Given two strings x and y, find the minimum number of characters to be removed
from x in order to obtain a string x ′ that does not contain y as a substring.

Solution: The limits suggest that your complexity should O(|x||y|), so it’s probably some
kind of dynamic programming. First let’s think how we could check if x ′ contains y as
a substring. We have covered the Knuth-Morris-Pratt algorithm, which can be seen as a

Page 2

deterministic state automaton. The states of the automaton are prefixes of the string we are
looking for, so they correspond to all y[1..i], where i = 0, 1, . . . , |y|. Then we have a function
next(i, c) telling us what should be state after reading letter c if the current state is i. More
precisely, next(i, c) is the longest suffix of y[1..i]c which is a prefix of y. All next(i, c) can
be precomputed using the method from the lecture. Now in the dynamic programming
we compute for each prefix x[1..j] of x and each i denoting the state of the automaton the
smallest number of characters to be removed from the remaining part x[j + 1..|x|] of x so
that the automaton doesn’t find any occurrence if it starts in state i and reads the non-
removed characters of x[j+1..|x|]. If we denote by T [i, j] the corresponding smallest number
of characters, we get the following relation T [i, j] = min(1+T [i+1, j], T [i+1, next(j, x[i])]).

Page 3

