
Algorithms on Strings Problemset 5 July 11, 2013

� This problemset has three questions.

� To get the credit for questions marked as SPOJ, you must get them accepted on
http://www.spoj.com/AOS, but you don’t have to send any explanation!

� For other questions, either send the solutions to gawry1+aos@gmail.com, or leave
them in the envelope attached to the doors of my office (room 321).

1. Given two strings s and t, we are interested in computing the length of their longest common
substring, which is a string occurring in both s and t. Show how to solve this problem in linear
time using the suffix array. You can assume that the lcp array is available, too.

Solution: Construct the suffix array for the concatenation w = s#t of both strings. Then
it’s enough to locate, for each suffix t[i..|t|] of t, the suffix s[j..|t|] of s maximizing the
longest common prefix. Each t[i..|t|] is also suffix of w, so it occurs in the suffix array. For
each i we would like to find the suffix w[j..|w|] with j ≤ |s| maximizing the longest common
prefix. We find two candidates for this j, one being before and one being after t[i..|t|] in
the suffix array. Situation is symmetric so let’s focus on finding the former.

Among all suffixes w[j..|w|] with j ≤ |s| occurring before t[i..|t|] in the suffix array we are
interested in the one which is as close to t[i..|t|] as possible. So, we can sweep through the
suffix array from left to right. Whenever we encounter a suffix w[j..|w|] with j ≤ |s| we
update the best suffix seen so far. Whenever we encounter a suffix t[i..|t|] we take the best
suffix seen so far as the suffix maximizing the longest common prefix among all suffixes
w[j..|w|] with j ≤ |s| occurring before t[i..|t|] in the suffix array.

By repeating this twice, we get two candidates for each i. To check which of them is better,
we can use the constant time longest common prefix machinery (although simpler solution
is also possible: maintain not only the best suffix but also its longest common prefix with
the current suffix, this can be updated using the lcp array). Then choose i maximizing the
answer.

2. Given a permutation on {1, 2, . . . , n}, we want to find a word w ∈ Σn such that its suffix array
SAw is exactly the given permutation.

(a) Show a linear time algorithm solving the problem for Σ = {a, b}.

Solution: We want to construct w[1..n] such that its suffix array is a given permu-
tation SA[1..n]. In the suffix array you first have the suffixes starting with a, then
starting with b. If you know where the boundary between these two groups is, you
know the whole word. Think what happens when w[1..n] ends with bak. Then the
suffix array begins with n, n− 1, n− 2, ..., n− k+ 1, and n− k is somewhere further
to the right (so, the suffix array looks like [n,n − 1, n − 2, ..., n − k + 1, ..., n − k, ...]
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with something between n − k + 1 and n − k; if there is nothing between them, the
text looks like bb...bbaa...aaa, but then aa...aa gives the same suffix array). Then
the boundary must be between n − k and its predecessor. This is because in other
case we would have a suffix starting with b that appears before bak in the suffix array.
So, such suffix is bx < bak, but this is only possible when the length of x is smaller
than k, and all such suffixes start with a.
This gives us a characterization: find largest k such that the suffix array begins with
n,n − 1, n − 2, ..., n − k + 1, and n − k is somewhere further. The position of n − k

gives us the boundary, and we can reconstruct w (and construct its suffix array, and
check if it’s the same permutation as the given one).

(b) For extra credit: show a linear time algorithm solving the problem for Σ = {a, b, . . . , z}.

Solution: See Theorem 6 in http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.57.7800.

3.(SPOJ) Given two strings of length n, p = p1 . . . pn and q = q1 . . . qn, define M(i, j, k) as the number
of mismatches between pi . . . pi+k−1 and qj . . . qj+k−1 (basically it is a substring Hamming
distance). Given an integer K, find the maximum length L such that there exists pair of
indices (i, j) for which we have M(i, j, L) ≤ K.

Solution: Guess δ = i− j. Then image that you align p and q with a shift of δ. Then find
the longest fragment p[i..i+ k− 1] such that the part of q below, so q[δ+ i..δ+ i+ k− 1]
is exactly the same. This can be done by (conceptually) creating a new string t, where
t[i] = 1 or 0 depending on whether p[i] = q[δ + i]. Then if K = 0 we are simply looking
for the longest run of ones in t. If K > 0 the situation is slightly more complex: we want
to find the longest substring containing at most K zeroes. So, sweep t from left to right.
For each j maintain the smallest i such that t[i..j] contains at most K zeroes. Then when
we increase j by one, we should either keep i unchanged, or increase it by one, too. The
complexity, for a fixed δ, is O(n), so the total time is quadratic.
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