
Algorithms on Strings Problemset 6 July 11, 2013

� This problemset has four questions.

� For other questions, either send the solutions to gawry1+aos@gmail.com, or leave
them in the envelope attached to the doors of my office (room 321).

1. Show that deciding whether a system of word equations is satisfiable is NP-hard, even if one
side of each equation is constant.

Solution: We reduce one-in-three SAT. Given a conjunction of clauses (x1,1∨x1,2∨x1,3)∧
. . .∧(xk,1∨xk,2∨xk,3), where each xi,j is either a variable or its negation, we want to assign
a true/false value to each variable so that in each xi,1 ∨ xi,2 ∨ xi,3 exactly one element is
true. For each variable p we create two variables Xp, Yp in our system of equations. We
add an equation XpYp = 1 to enforce that either Xp = 1 and Yp = ε or Xp = ε and Yp = 1.
The former corresponds to making p true, and the latter to making it false. Then for each
xi,1 ∨ xi,2 ∨ xi,3 we add one equation. For example, for p ∨ ¬q ∨ r we add an equation
XpYqXr = 1. Then the system of equations has a solution iff the conjuction is satisfiable.

2. Consider a word w over an alphabet Σ such that none of its two consecutive letters are identical.
Show that there exist a partition of Σ into two disjoint sets Σ` and Σr such that there are at
least |w|−1

4 appearances of pairs from Σ`Σr in w.

Solution: For each letter a ∈ Σ put it in Σ` with probability 1
2 and in Σr with probability

1
2 . The choice is independent for each letter. Then let S (as score) be the number of
appearance of pairs from Σ`Σr in w. We have:

S =

|w|−1∑
i=1

[wi ∈ Σ` ∨wi+1 ∈ Σr] =
|w|−1∑
i=1

[wi ∈ Σ`] ∗ [wi+1 ∈ Σr]

where [b] is 1 when b is true and 0 otherwise. Because our choice of Σ` and Σr was random,
S is a random variable. Let’s calculate its expected value:

E[S] = E[

|w|−1∑
i=1

[wi ∈ Σ`] ∗ [wi+1 ∈ Σr]] =
|w|−1∑
i=1

E[[wi ∈ Σ`] ∗ [wi+1 ∈ Σr]]] =

We used the linearity of expectation. Now let’s use the fact that wi and wi+1 are different,
so the corresponding events are independent:

|w|−1∑
i=1

E[[wi ∈ Σ`] ∗ [wi+1 ∈ Σr]]] =
|w|−1∑
i=1

E[[wi ∈ Σ`]] ∗ E[[wi+1 ∈ Σr]]] =
|w|−1∑
i=1

1

2
∗ 1
2
=

|w|− 1

4

Due: July 18, 2013 Max-Planck-Institut für Informatik, Saarbrücken

gawry1+aos@gmail.com

But if the expected score is |w|−1
4 , then for at least one choice of random values the resulting

score must be at least |w|−1
4 .

This only shows that a good partition exists. Actually, we can also find one efficiently
and deterministically. If you want to know how, read about the method of conditional
probabilities.

3. Consider a word-equation over one-variable (but perhaps many appearances of it) and its
solution in a∗.

(a) show that for each a: either there are no solutions from a∗, there is a unique such solution
or each ak is a solution of this equation;

(b) devise a linear-time algorithm which, given a letter a and an equation, decides which of
those three cases holds.

Solution: First consider the case Σ = {a}. Then the equation looks like

aaXaaXXaaa = XXaaXaa

The only thing that matters is the number of a’s and X’s on both sides. If there is an a on
both sides, we can erase it. Similarly, if there is a X on both sides, we can erase it. After
repeating this we will get a reduced equation of the form ai = Xj. Now we consider two
cases:

� j = 0, then if i = 0 any X = ak is a valid solution, if i > 0 there are no solutions,

� j > 0, then we should have i = jk, so either j doesn’t divide i and we have no
solutions, or the unique solution is X = ai/j.

Now assume that the alphabet can contain other letters, so the equation looks like

aabXaaXXcabaa = bXXacaXaba

We erase all a’s and all X’s and check if the resulting word are the same. If not, there is
no solution. If yes, so what’s left looks like bcb, we construct one equation of the simpler
type for each pair of consecutive letters, and for the first and last letter. Each equation is
created by taking the removed part (consisting of a’s and X’s) on both sides, so for instance
for bc we construct XaaXX = XXa. Then we check if the resulting system of equation has
a solution, which can be done by considering each equation separately. If any of them has
no solution, the whole system has no solution. If any of them has exactly one solution, we
have at most one candidate. Finally, if for all of them any X = ak is a valid solution, then
any such X = ak is a valid solution to the whole system.

This actually gives a linear time algorithm if you’re careful.

Page 2

4.(SPOJ) For extra credit: solve Morphing is fun problem. A longer version of the statement with a
story is available there, and a short version is: given an alphabet Σ of size at most 26 and a
morphism f : Σ → Σ+, consider the sequence of words a, f(a), f(f(a)), f(f(f(a))), ... Such a
sequence converges if for any k = 0, 1, 2, . . . the k-th letter of fi(a) eventually stabilizes, which
means that the k-th letter of all fi(a) is the same, for i = i0, i0 + 1, i0 + 2, . . . (or there is no
k-th letter in all these words). Given a description of f, check if the corresponding sequence
stabilizes.

Solution: This is just a hint: for each letter c check if fi(c) becomes a fixed finite word
after a number of iterations. So, check if for some i we have fi+1(c) = fi(c), and if so call
the letter finite. Then for each non-finite letter d look at f(d). First few letters of f(d)
could be finite, and then we have the first non-finite letter. Create an edge from d to this
first non-finite letter. Then look at your starting letter a. If in the defined graph it lies on
a cycle of size > 1, the sequence doesn’t stabilize.

Page 3

