
Algorithms on Strings Problemset 9 July 27, 2013

� This problemset has four questions.

� For other questions, either send the solutions to gawry1+aos@gmail.com, or leave
them in the envelope attached to the doors of my office (room 321).

1. Huffman code is defined as follows: given the probability p(c) of each character c ∈ Σ we want
to select all code(c) ∈ {0, 1}+ so that they are prefix-free, meaning that no code(c) is a proper
prefix of code(c ′), and that the expected cost

∑
c∈Σ p(c)|code(c)| is minimized.

(a) Construct the Huffman code for Σ = {a, b, c, d, e} and the probabilities p(a) = 12
31 , p(b) =

6
31 , p(c) =

5
31 , p(d) =

4
31 , p(e) =

4
31 . Compute the corresponding expected cost.

Solution: To construct the code we can use a greedy method: iteratively combine two
symbols with the smallest probability. The probability of the combination is simply
the sum of the corresponding two probabilities. So, we first combine d and e to get
symbol α with p(α) = 8

31 , then combine b and c to get β with p(β) = 11
31 , then we

combine α and β to get γ with p(γ) = 19
31 , and finally we combine γ and a. The

resulting code is shown below, it’s cost is 69
31 .

d e b c

a

(b) Alphabetical Huffman code have the additional property that code(c) < code(c ′) if c <
c ′, where the first inequality is understood as the lexicographical comparison. Show an
example where this additional restriction increases the expected cost.

Solution: Let’s try to find such an example of three elements {a, b, c}. We should
choose the probabilities in such a way that the “usual” Huffman tree must orders them
differently. So, let’s check p(a) = 0.25, p(b) = 0.5 and p(c) = 0.25. Then the optimal
Huffman tree first merges a and c, so its cost is 0.5 ∗ 1 + 0.25 ∗ 2 + 0.25 ∗ 2 = 1.5. If
we want the tree to be alphabetical, there are just two possibilities: first merge a and
b, or first merge b and c. They are symmetric, so it’s enough to look at just one. Its
cost is 0.25 ∗ 2+ 0.5 ∗ 2+ 0.25 ∗ 1 = 1.75 > 1.5.
Even though the alphabetical cost is larger, being able to compare the characters by
looking at their codes is useful. So the question is how to compute the optimal alpha-
betical Huffman code quickly? It turns out that it can be done in O(n logn), so the
same complexity as for the “usual” variant by the Hu-Tucker algorithm, but it’s quite

Due: August 5, 2013 Max-Planck-Institut für Informatik, Saarbrücken

gawry1+aos@gmail.com

nontrivial to prove its correctness. There is a simpler O(n2) dynamic programming
solution that can be found in the Knuth’s TAOCP.

2. Recall that the zeroth order entropy was defined as H(w[1..n]) =
∑
c∈Σ

nc
n log n

nc
, where nc is

the number of occurrences of the letter c in w[1..n].

(a) Compute the entropy for w = a12b6c5d4e4.

Solution: The answer rounded up is 2.18.

(b) Prove that if the number `1, `2, . . . , `k are chosen so that
∑
i 2

−`i ≤ 1, it is possible to
construct a binary tree on k leaves, where each `i is a depth of one of the leaves.
Hint: This is known as (one half) of the Kraft’s inequality. Use induction on k.

Solution: For k = 1, the claim is obvious. So assume that it holds for k, and look
at the situation for k + 1. Choose two largest depths `i and `j, where i < j. We
want to construct the tree on k − 1 leaves on depths `1, . . . , `i−1, `i+1, . . . , `j−1, `j+1,
. . . , `k,min(`i, `j) − 1. If we can do so, then we can simply attach two new leaves to
the one corresponding to depth min(`i, `j)−1, they will be at depth min(`i, `j) ≤ `i, `j.
So, we only have to check if the assumption holds for this new smaller set of depths.
Observe that the sum corresponding to the smaller set is the old sum minus 2−`i +2−`j

plus 2−(min(`i,`j)−1), so the difference is

1

2`i
+
1

2`j
−

2

2min(`i,`j)

and we should show that this value is at least 0. Then the new sum will be at most
1, because the old sum was at most 1.
If `i = `j, the sum is exactly 0. So what can be done if `j > `i? Remember that
we have chosen the two largest depths, which means that we have `j and a bunch of
strictly smaller depths. Now, we know that

∑
i 2

−`i ≤ 1. If we look at 2−`j +
∑
i 6=j 2

−`i ,
we can observe that the sum is actually at most 1 − 2−`j ! This is because the binary
expansion of the second part cannot contain ones at positions `j, `j + 1, . . ., as all
fractions in this sum are at least 2−`j+1. Hence we can safely decrease `j by one, and
still have

∑
i 2

−`i ≤ 1. By repeating this we reduce the general case to the one with
`i = `j.

(c) Show that the Huffman cost is less than H(w[1..n]) + 1. You might find the previous
subquestion useful.
Hint: show that some code with the expected cost not exceeding H(w[1..n]) + 1 exists,
then argue that the Huffman code is the best possible, so can’t be worse.

Page 2

Solution: Set `i =
⌈
log n

ni

⌉
, where ni is the number of occurrences of the i-th letter.

We want to show that there exists a binary tree where each `i is a depth of one of the
leaves. For this we first compute

∑
i 2

−`i .

∑
i

2−`i =
∑
i

1

2

⌈
log n

ni

⌉ ≤∑
i

1

2
log n

ni

=
∑
i

1
n
ni

=
∑
i

ni
n

=
n

n
= 1

So from the previous part, such binary tree exists. Now let’s compute its expected
cost:

∑
i

ni
n
`i =

∑
i

ni
n

⌈
log

n

ni

⌉
≤

∑
i

ni
n

+
∑
i

ni
n

log
n

ni
= 1+H(w[1..n])

so the cost of our code is at most 1+H(w[1..n]). The Huffman code has the smallest
possible cost, so might be only better (or the same).

3.(SPOJ) Solve the BWHEELER problem, which asks you to reverse the Burrows-Wheeler transform.

Solution: We discussed this during the lecture.

Page 3

