Algorithms on Strings Problemset 9 July 27, 2013

e This problemset has four questions.

e For other questions, either send the solutions to gawryl+aos@gmail.com, or leave
them in the envelope attached to the doors of my office (room 321).

1. Huffman code is defined as follows: given the probability p(c) of each character ¢ € £ we want
to select all code(c) € {0, 1} so that they are prefix-free, meaning that no code(c) is a proper
prefix of code(c’), and that the expected cost ) . s p(c)lcode(c)| is minimized.

(a) Construct the Huffman code for £ ={a, b, c, d, e} and the probabilities p(a) = %, p(b) =

%, plc) = %, p(d) = %, ple) = %. Compute the corresponding expected cost.

Solution: To construct the code we can use a greedy method: iteratively combine two
symbols with the smallest probability. The probability of the combination is simply
the sum of the corresponding two probabilities. So, we first combine d and e to get
symbol « with p(x) = %, then combine b and c to get 3 with p(f3) = %, then we
combine « and (3 to get vy with p(y) = %, and finally we combine v and a. The

resulting code is shown below, it’s cost is g—?.

d e b c

(b) Alphabetical Huffman code have the additional property that code(c) < code(c’) if ¢ <
¢/, where the first inequality is understood as the lexicographical comparison. Show an
example where this additional restriction increases the expected cost.

Solution: Let’s try to find such an example of three elements {a,b,c}. We should
choose the probabilities in such a way that the “usual” Huffman tree must orders them
differently. So, let’s check p(a) = 0.25, p(b) = 0.5 and p(c) = 0.25. Then the optimal
Huffman tree first merges a and c, so its cost is 0.5 1 +0.25%x 2+ 0.25%x2 = 1.5. If
we want the tree to be alphabetical, there are just two possibilities: first merge a and
b, or first merge b and c. They are symmetric, so it’s enough to look at just one. Its
cost is 0.25%2+0.5%2+0.25%x1=1.75> 1.5.

Even though the alphabetical cost is larger, being able to compare the characters by
looking at their codes is useful. So the question is how to compute the optimal alpha-
betical Huffman code quickly? It turns out that it can be done in O(nlogn), so the
same complexity as for the “usual” variant by the Hu-Tucker algorithm, but it’s quite

Due: August 5, 2013 Max-Planck-Institut fiir Informatik, Saarbriicken


gawry1+aos@gmail.com

nontrivial to prove its correctness. There is a simpler O(n?) dynamic programming
solution that can be found in the Knuth’s TAOCP.

2. Recall that the zeroth order entropy was defined as H(w[l..n]) = 3 _; 7 log n%’ where 1. is
the number of occurrences of the letter ¢ in w[l..n].

(a) Compute the entropy for w = a'’b®c’d*e?.

Solution: The answer rounded up is 2.18.

(b) Prove that if the number {;,(;,...,{; are chosen so that ) ; 274 < 1, it is possible to
construct a binary tree on k leaves, where each {; is a depth of one of the leaves.

Hint: This is known as (one half) of the Kraft’s inequality. Use induction on k.

Solution: For k = 1, the claim is obvious. So assume that it holds for k, and look
at the situation for k + 1. Choose two largest depths {; and {;, where i < j. We
want to construct the tree on k — 1 leaves on depths &1,...,8 1, 8i11,..., 61, {41,
.oy b, min({i, ¢) — 1. If we can do so, then we can simply attach two new leaves to
the one corresponding to depth min({;, {;) —1, they will be at depth min({;, {;) < &, ;.
So, we only have to check if the assumption holds for this new smaller set of depths.
Observe that the sum corresponding to the smaller set is the old sum minus 2% 425
plus 2-(min(tu)=1) 56 the difference is

1 1 2
20 + 26 omin(,0)

and we should show that this value is at least 0. Then the new sum will be at most
1, because the old sum was at most 1.

If ¢; = {;, the sum is exactly 0. So what can be done if {; > {;? Remember that
we have chosen the two largest depths, which means that we have {; and a bunch of
strictly smaller depths. Now, we know that ) ; 27% < 1. If we look at 274 + Z#j 2-h,
we can observe that the sum is actually at most 1 — 24! This is because the binary
expansion of the second part cannot contain ones at positions ¢;,¢; + 1,..., as all
fractions in this sum are at least 2-%*'. Hence we can safely decrease {; by one, and
still have ZiZ*ei < 1. By repeating this we reduce the general case to the one with
€i = BJ

(c) Show that the Huffman cost is less than H(w([1..n]) + 1. You might find the previous
subquestion useful.

Hint: show that some code with the expected cost not exceeding H(w[1..n]) + 1 exists,
then argue that the Huffman code is the best possible, so can’t be worse.

Page 2



Solution: Set {; = |log nl—‘ , Where n; is the number of occurrences of the i-th letter.
We want to show that there exists a binary tree where each {; is a depth of one of the
leaves. For this we first compute ), 274.

_ 1 1 1 n
P ] T E TR T e

2 log

So from the previous part, such binary tree exists. Now let’s compute its expected
cost:

S

so the cost of our code is at most 1+ H(w([1..n]). The Huffman code has the smallest
possible cost, so might be only better (or the same).

(SPOJ) 3. Solve the BWHEELER problem, which asks you to reverse the Burrows-Wheeler transform.

Solution: We discussed this during the lecture.

Page 3



