- This problemset has *three* questions.
- For other questions, either send the solutions to gawry1+aos@gmail.com, or leave them in the envelope attached to the doors of my office (room 321).
- 1. Huffman code is defined as follows: given the probability p(c) of each character $c \in \Sigma$ we want to select all $code(c) \in \{0,1\}^+$ so that they are prefix-free, meaning that no code(c) is a proper prefix of code(c'), and that the expected $cost \sum_{c \in \Sigma} p(c)|code(c)|$ is minimized.
 - (a) Construct the Huffman code for $\Sigma = \{a, b, c, d, e\}$ and the probabilities $p(a) = \frac{12}{31}$, $p(b) = \frac{6}{31}$, $p(c) = \frac{5}{31}$, $p(d) = \frac{4}{31}$, $p(e) = \frac{4}{31}$. Compute the corresponding expected cost.
 - (b) Alphabetical Huffman code have the additional property that code(c) < code(c') if c < c', where the first inequality is understood as the lexicographical comparison. Show an example where this additional restriction increases the expected cost.
- 2. Recall that the zeroth order entropy was defined as $H(w[1..n]) = \sum_{c \in \Sigma} \frac{n_c}{n} \log \frac{n}{n_c}$, where n_c is the number of occurrences of the letter c in w[1..n].
 - (a) Compute the entropy for $w = a^{12}b^6c^5d^4e^4$.
 - (b) Prove that if the number l₁, l₂,..., l_k are chosen so that ∑_i 2^{-l_i} ≤ 1, it is possible to construct a binary tree on k leaves, where each l_i is a depth of one of the leaves. Hint: This is known as (one half) of the Kraft's inequality. Use induction on k.
 - (c) Show that the Huffman cost is less than H(w[1..n]) + 1. You might find the previous subquestion useful.
 Hint: show that some code with the expected cost not exceeding H(w[1..n]) + 1 exists, then argue that the Huffman code is the best possible, so can't be worse.
- (SPOJ) 3. Solve the BWHEELER problem, which asks you to reverse the Burrows-Wheeler transform.