
Approximating the shortest superstring &
recap

Algorithms on Strings

Paweł Gawrychowski

July 17, 2013

Outline

July 17, 2013 2/1

In all problems considered so far we were looking for polynomial
algorithms. Well, in fact anything larger than linear was frowned
upon. Alas, real world ain’t that nice.
Consider the following question. There is an unknown sequence
that we would like to learn. Using a process known as shotgun
sequencing, we extract a bunch of its (probably short) substrings.

AGGTGGTC

AGGTG...
....GGTC
.GGTG...

Given the substrings, how do we reconstruct the sequence?

July 17, 2013 3/1

Shortest superstring
Input: a collection of strings s1, s2, . . . , sn ∈ Σ+ Output: shortest
word w such that all si are substrings of w .

Why shortest?
Wishful thinking. Doesn’t really have to be our original string, but
with enough data we hope the answer to be unique that way.

Simplifying assumption

No si is a substring of some other sj .

Do you see why?

July 17, 2013 4/1

Now the sad thing is that the problem is NP-hard, so we can’t
hope to solve it efficiently. So the story is over?

Not quite. There are two ways around:

relax the requirement that the algorithm should work in
polynomial time,
relax the requirement that the algorithm should produce the
shortest solution.

July 17, 2013 5/1

Now the sad thing is that the problem is NP-hard, so we can’t
hope to solve it efficiently. So the story is over?

Not quite. There are two ways around:

relax the requirement that the algorithm should work in
polynomial time,
relax the requirement that the algorithm should produce the
shortest solution.

July 17, 2013 5/1

Now the sad thing is that the problem is NP-hard, so we can’t
hope to solve it efficiently. So the story is over?

Not quite. There are two ways around:

relax the requirement that the algorithm should work in
polynomial time,
relax the requirement that the algorithm should produce the
shortest solution.

Shortest superstring can be solved in O(2nn2) time and O(2nn)
space. The space can be improved to polynomial.

July 17, 2013 5/1

Now the sad thing is that the problem is NP-hard, so we can’t
hope to solve it efficiently. So the story is over?

Not quite. There are two ways around:

relax the requirement that the algorithm should work in
polynomial time,
relax the requirement that the algorithm should produce the
shortest solution.

Today’s lecture.

July 17, 2013 5/1

Approximation algorithm

We are interested in constructing an algorithm which will find (in
polynomial time) a superstring of length at most c ∗OPT , where
OPT is the shortest possible superstring. We call such procedure
a c-approximation algorithm.

Large c is boring and useless. For instance, c = n is very simple
to achieve. So, we would like c to be a constant, and hopefully a
small one.

Theorem
There is a (polynomial time) 4-approximation algorithm for
shortest superstring.

July 17, 2013 6/1

First we need some insight into the structure of the optimal
solution. Take the shortest superstring, and mark the first
occurrence of each si .

s3

s1

s5

s2

s4

OPT =
∑

i

|si | −
∑
i>1

|overlap(sji−1 , sji ,)|

July 17, 2013 7/1

What is overlap(s, t)? It is the longest suffix of s that is also a
prefix of t .

What is overlap(aabaa, baaba)?

We will also need to know what is prefix(s, t). It is the prefix of s
left after removing the suffix corresponding to overlap(s, t).

What is prefix(aabaa, baaba)?

July 17, 2013 8/1

Let’s first look at a very natural method. As long as we have more
than two strings, choose si and sj with the longest overlap(si , sj),
and replace the two strings with their merge prefix(si , sj)sj . This
is known as the Greedy Algorithm.

Blum, Jiang, Li, Tromp, and Yannakakis 1991
Greedy is a 4-approximation algorithm.

Kaplan and Shafrir 2005
Well, Greedy is actually a 3.5-approximation algorithm.

Conjecture
Greedy is a 2-approximation algorithm.

Prove this and you will be very famous ,
July 17, 2013 9/1

We will analyse an algorithm which is maybe less natural, but
easier to reason about. First we need to look at OPT in a slightly
way.

s3

s1

s5

s2

s4

This is not very symmetric, so we additionally observe that

s4 = prefix(s4, s3)overlap(s4, s3)

.

July 17, 2013 10/1

We will analyse an algorithm which is maybe less natural, but
easier to reason about. First we need to look at OPT in a slightly
way.

s3

s1

s5

s2

s4

prefix(s3, s1)

This is not very symmetric, so we additionally observe that

s4 = prefix(s4, s3)overlap(s4, s3)

.

July 17, 2013 10/1

We will analyse an algorithm which is maybe less natural, but
easier to reason about. First we need to look at OPT in a slightly
way.

s3

s1

s5

s2

s4

prefix(s3, s1)prefix(s1, s5)

This is not very symmetric, so we additionally observe that

s4 = prefix(s4, s3)overlap(s4, s3)

.

July 17, 2013 10/1

We will analyse an algorithm which is maybe less natural, but
easier to reason about. First we need to look at OPT in a slightly
way.

s3

s1

s5

s2

s4

prefix(s3, s1)prefix(s1, s5) prefix(s5, s2)

This is not very symmetric, so we additionally observe that

s4 = prefix(s4, s3)overlap(s4, s3)

.

July 17, 2013 10/1

We will analyse an algorithm which is maybe less natural, but
easier to reason about. First we need to look at OPT in a slightly
way.

s3

s1

s5

s2

s4

prefix(s3, s1)prefix(s1, s5) prefix(s5, s2) prefix(s2, s4)

This is not very symmetric, so we additionally observe that

s4 = prefix(s4, s3)overlap(s4, s3)

.

July 17, 2013 10/1

We will analyse an algorithm which is maybe less natural, but
easier to reason about. First we need to look at OPT in a slightly
way.

s3

s1

s5

s2

s4

prefix(s3, s1)prefix(s1, s5) prefix(s5, s2) prefix(s2, s4) s4

This is not very symmetric, so we additionally observe that

s4 = prefix(s4, s3)overlap(s4, s3)

.

July 17, 2013 10/1

Lemma
The optimal solution j1, j2, . . . , jn has cost

|overlap(sjn , sj1)|+
∑

i

|prefix(sji , sji+1)|

where jn+1 = j1.

Prefix graph
Create one node for each string si . Add an edge si → sj with cost
|prefix(si , sj)|.

Crucial observation
The sum corresponds to the cost of a travelling salesman tour in
the prefix graph. So, the cheapest such tour is a lower bound on
OPT .

July 17, 2013 11/1

So, maybe we could construct the prefix graph, find the cheapest
tour there, and then use it to construct a short superstring? It
would result in a 2-approximation algorithm.

Not really: finding the cheapest travelling salesman tour is
NP-hard. Nevertheless, there is something that we can find
efficiently: cheapest cycle cover, which is simply a collection of
cycles such that each node is on exactly one cycle.

Lemma
Cheapest cycle cover can be found in polynomial time.

See the whiteboard.

July 17, 2013 12/1

But now the problem is that we have a collection of possibly more
than one cycle. How can we construct a superstring?

w(C) and σ(C)

Take a cycle C = sj1 → sj2 → . . .→ sjk . Construct the word:

w(C) = prefix(sj1 , sj2)prefix(sj2 , sj3) . . . prefix(sjk , sj1)

and finally the word:
σ(C) = w(C)sj1

If your cycle cover is C = {C1,C2, . . . ,C`}, concatenate all σ(Ci)
to get a superstring.

July 17, 2013 13/1

Let ri be the first string on the cycle Ci . Then the total cost is the
sum of all |σ(Ci)|, which is

∑
i |w(Ci)| plus

∑
i |ri |. The first part is

really the cost of the cycle cover, so at most OPT . We only have
bound

∑
i |ri |.

For this we look at OPT again. All ri occur in the shortest
superstring, so:

OPT ≥ |r1| − overlap(r1, r2) + |r2| − overlap(r2, r3) + |r3|+ . . .+ |r`|

Why? See the whiteboard.

July 17, 2013 14/1

So, now we have that:∑
i

|ri | ≤ OPT +
∑
i>1

overlap(ri−1, ri)

hence to upperbound
∑

i |ri | we only have to upperbound∑
i>1 overlap(ri−1, ri)!

Lemma
Let C and C′ be two cycles in the cheapest cycle cover, and r , r ′

their first strings. Then:

overlap(r , r ′) < |w(C)|+ |w(C′)|

Now using the above inequality:∑
i

|ri | ≤ OPT +
∑
i>1

|w(Ci−1)|+|w(Ci)| ≤ OPT +2
∑

i

|w(Ci)| ≤ 3OPT

July 17, 2013 15/1

Lemma
Let C and C′ be two cycles in the cheapest cycle cover, and r , r ′

their first strings. Then:

overlap(r , r ′) < |w(C)|+ |w(C′)|

Assume that overlap(r , r ′) ≥ |w(C)|+ |w(C′)|. r begins w∞(C)
and r ′ begins w∞(C′), so we can choose a rotation α of w(C)
and a rotation α′ of w(C′) such that overlap(r , r ′) is a prefix of α∞

and α′∞ at the same time. But then from the periodicity lemma α
and α′ are actually both powers of the same word t , where
|t | ≤ |w(C)|, |w(C′).
It follows that all strings on C and C′ are substrings of t∞, as they
were substrings of w∞(C) or w∞(C′). Then we claim that we can
actually construct one cycle of cost at most |t | containing all of
them, which would decrease the total cost by at least |w(C′)| > 0.

July 17, 2013 16/1

So, the only remaining part is to show that if we have a collection
of strings which all occur in t∞, there is a cycle of cost |t | in the
prefix graph containing all of them.

t t t tt

July 17, 2013 17/1

So, the only remaining part is to show that if we have a collection
of strings which all occur in t∞, there is a cycle of cost |t | in the
prefix graph containing all of them.

t t t tt

July 17, 2013 17/1

So, the only remaining part is to show that if we have a collection
of strings which all occur in t∞, there is a cycle of cost |t | in the
prefix graph containing all of them.

t t t tt

July 17, 2013 17/1

So, the only remaining part is to show that if we have a collection
of strings which all occur in t∞, there is a cycle of cost |t | in the
prefix graph containing all of them.

t t t tt

July 17, 2013 17/1

So, the only remaining part is to show that if we have a collection
of strings which all occur in t∞, there is a cycle of cost |t | in the
prefix graph containing all of them.

t t t tt

|t|

July 17, 2013 17/1

So, we get 4-approximation. Can we do better?

Yes!
3-approximation is possible.

Sweedyk 1999
2.5-approximation is possible.

...and the story is not over yet!

Mucha 2013

211
23 -approximation is possible.

July 17, 2013 18/1

The road so far...

July 17, 2013 19/1

	Shortest superstring
	Recap

