
Faster searching and RMQ in constant time
Algorithms on Strings

Paweł Gawrychowski

June 12, 2013

Speeding up searching in suffix arrays RMQ in constant time

Outline

Speeding up searching in suffix arrays

RMQ in constant time

June 12, 2013 2/18

Speeding up searching in suffix arrays RMQ in constant time

Recall that suffix array is simply the lexicographically sorted list of
all suffixes of a given word w .

w = mississippi

SA[1] = 11 = i
SA[2] = 8 = ippi
SA[3] = 5 = issippi
SA[4] = 2 = ississippi
SA[5] = 1 = mississippi
SA[6] = 10 = pi
SA[7] = 9 = ppi
SA[8] = 7 = sippi
SA[9] = 4 = sissippi
SA[10] = 6 = ssippi
SA[11] = 3 = ssissippi

June 12, 2013 3/18

Speeding up searching in suffix arrays RMQ in constant time

And recall that we wanted to use the suffix array to locate any (or
all) occurrences of a given pattern.

Searching for an occurrence of p
We want to locate the smallest i such that SA[i] ≥ p. Then either
SA[i] begins with p, and hence p occurs at position i , or there is
no occurrence at all.

Binary search
Binary search uses log n iterations, but each of them might cost
even Ω(m) operations! Hence the whole procedure is O(m log n).

June 12, 2013 4/18

Speeding up searching in suffix arrays RMQ in constant time

Now the question is whether we can do better. It seems that we
are wasting lots of time comparing very similar blocks of texts
again and again. That is not cool!

lcp for the rescue
Recall that lcp(i , j) is the longest common prefix of the suffixes
w [i ..n] and w [j ..n]. Last week you have seen how to compute
lcp[i], and two weeks ago we observed that computing lcp(i , j)
reduces to the so-called Range Minimum Query on the lcp[i]
array.

For the time being assume that we know how to answer the RMQ
queries on any array in constant time. Then we can compute any
lcp(i , j) in constant time. Can this help us to speed up the binary
searching?

June 12, 2013 5/18

Speeding up searching in suffix arrays RMQ in constant time

June 12, 2013 6/18

Speeding up searching in suffix arrays RMQ in constant time

L

M

R

June 12, 2013 6/18

Speeding up searching in suffix arrays RMQ in constant time

June 12, 2013 6/18

Speeding up searching in suffix arrays RMQ in constant time

June 12, 2013 6/18

Speeding up searching in suffix arrays RMQ in constant time

June 12, 2013 6/18

Speeding up searching in suffix arrays RMQ in constant time

June 12, 2013 6/18

Speeding up searching in suffix arrays RMQ in constant time

June 12, 2013 6/18

Speeding up searching in suffix arrays RMQ in constant time

June 12, 2013 6/18

Speeding up searching in suffix arrays RMQ in constant time

June 12, 2013 6/18

Speeding up searching in suffix arrays RMQ in constant time

Invariant
We maintain a range [L,R] such that the answer is somewhere
inside, and we know the longest common prefix of SA[L] and p,
and SA[R] and p.

We choose M ∈ (L,R). Of course we know that the longest
common prefix of SA[M] and p is at least as long as the minimum
of the two known prefixes, but we can notice even more.
Let ` be the longest common prefix of SA[L] and p, and r be the
longest common prefix of SA[R] and p. Assume that ` ≤ r , the
situation is symmetric so the other case is very similar.

June 12, 2013 7/18

Speeding up searching in suffix arrays RMQ in constant time

`

r

L

R

June 12, 2013 8/18

Speeding up searching in suffix arrays RMQ in constant time

`

r

L

R

M

Look at lcp(SA[M],SA[R]).

June 12, 2013 8/18

Speeding up searching in suffix arrays RMQ in constant time

`

r

L

R

M

If lcp(SA[M],SA[R]) < r , set L = M and ` = lcp(SA[M],SA[R]).

June 12, 2013 8/18

Speeding up searching in suffix arrays RMQ in constant time

r

R

L

`

If lcp(SA[M],SA[R]) < r , set L = M and ` = lcp(SA[M],SA[R]).

June 12, 2013 8/18

Speeding up searching in suffix arrays RMQ in constant time

`

r

L

R

M

If lcp(SA[M],SA[R]) > r , set R = M and keep old ` and r .

June 12, 2013 8/18

Speeding up searching in suffix arrays RMQ in constant time

`

L

R

r

If lcp(SA[M],SA[R]) > r , set R = M and keep old ` and r .

June 12, 2013 8/18

Speeding up searching in suffix arrays RMQ in constant time

`

r

L

R

M

If lcp(SA[M],SA[R]) = r , compute the longest common prefix of
SA[M] and p, but start from the r -th character. Depending on the
next character set L = M or R = M.

June 12, 2013 8/18

Speeding up searching in suffix arrays RMQ in constant time

`

r

L

R

M

If lcp(SA[M],SA[R]) = r , compute the longest common prefix of
SA[M] and p, but start from the r -th character. Depending on the
next character set L = M or R = M.

June 12, 2013 8/18

Speeding up searching in suffix arrays RMQ in constant time

Let’s look again at the last case. Say that the longest common
prefix of SA[M] and p be m. We have two cases:

the next character of SA[M] is less than p[m + 1], then we set
L = M and ` = m,
the next character of SA[M] is greater than p[m + 1], then we
set R = M and r = m.

In both cases we spent just O(m − r + 1) time computing the
longest common prefix.

The value of ` + r doesn’t decrease.

It follows that the sum of O(m − r) over all steps of the procedure
is just O(m) in the worst possible case. We additionally spent
O(1) time per step to look at SA[M], hence the total complexity is
O(m + log n).

June 12, 2013 9/18

Speeding up searching in suffix arrays RMQ in constant time

Recall that we assumed that computing any lcp(i , j) takes
constant time. While it can be done (as we will soon see), that’s
an overkill. Do we really need to compute any such value?

L = 1, R = n

L = 1, R = n
2 L = n

2 , R = n

L = 1, R = n
4

L = n
4 , R = n

2 L = n
2 , R = 3n

4
L = 3n

4 , R = n

Each node of the recursion tree generates just two values
lcp(SA[L],SA[M]) and lcp(SA[M],SA[R]) to be computed. Hence
we have just O(n) values in total!

June 12, 2013 10/18

Speeding up searching in suffix arrays RMQ in constant time

Recall that we assumed that computing any lcp(i , j) takes
constant time. While it can be done (as we will soon see), that’s
an overkill. Do we really need to compute any such value?

L = 1, R = n

L = 1, R = n
2 L = n

2 , R = n

L = 1, R = n
4

L = n
4 , R = n

2 L = n
2 , R = 3n

4
L = 3n

4 , R = n

Each node of the recursion tree generates just two values
lcp(SA[L],SA[M]) and lcp(SA[M],SA[R]) to be computed. Hence
we have just O(n) values in total!

June 12, 2013 10/18

Speeding up searching in suffix arrays RMQ in constant time

Recall that we assumed that computing any lcp(i , j) takes
constant time. While it can be done (as we will soon see), that’s
an overkill. Do we really need to compute any such value?

L = 1, R = n

L = 1, R = n
2 L = n

2 , R = n

L = 1, R = n
4

L = n
4 , R = n

2 L = n
2 , R = 3n

4
L = 3n

4 , R = n

Each node of the recursion tree generates just two values
lcp(SA[L],SA[M]) and lcp(SA[M],SA[R]) to be computed. Hence
we have just O(n) values in total!

June 12, 2013 10/18

Speeding up searching in suffix arrays RMQ in constant time

All those values can be actually computed in O(n) time in a
bottom-top manner.

L

M

R

Lemma
lcp(SA[L],SA[R]) = min(lcp(SA[L],SA[M]), lcp(SA[M],SA[R]))

Proof: see the whiteboard.
June 12, 2013 11/18

Speeding up searching in suffix arrays RMQ in constant time

Even though we have shown that having just the lcp[i] array
allows us to execute the binary search efficiently, being able to
answer any lcp(i , j) would be great. Recall that we were able to
reduce the question to the s-called RMQ problem.

RMQ
Given an array A[1..n], preprocess it so that the minimum of any
fragment A[i],A[i + 1], . . . ,A[j] can be computed efficiently.

For starters, observe that answering any query in O(1) is trivial if
we allow O(n2) time and space preprocessing.

June 12, 2013 12/18

Speeding up searching in suffix arrays RMQ in constant time

Lemma
RMQ can be solved in constant time after O(n log n) time and
space preprocessing.

To prove the lemma, we will (again) apply the simple-yet-powerful
doubling paradigm. For each k = 0,1, . . . , log n construct a table
Bk .

Bk [i] = min{A[i],A[i + 1],A[i + 2], . . . ,A[i + 2k − 1]}

How? Well, B0[i] = A[i], and Bk+1[i] = min(Bk [i],Bk [i + 2k]).
Hence we can easily answer a query concerning a fragment of
length that is a power of 2. But, unfortunately, not all numbers are
powers of 2...

June 12, 2013 13/18

Speeding up searching in suffix arrays RMQ in constant time

...or are they?

June 12, 2013 14/18

Speeding up searching in suffix arrays RMQ in constant time

...or are they?

June 12, 2013 14/18

Speeding up searching in suffix arrays RMQ in constant time

...or are they?

Any query can be split into at most log n power-of-two queries.

June 12, 2013 14/18

Speeding up searching in suffix arrays RMQ in constant time

...or are they?

Any query can be covered with 2 power-of-two queries.

June 12, 2013 14/18

Speeding up searching in suffix arrays RMQ in constant time

...or are they?

Any query can be covered with 2 power-of-two queries.

Answering a query concerning a range [i,j]

To figure out the two power-of-two queries, compute
k = blog j − i + 1c. Then return min(Bk [i],Bk [j − 2k + 1]).

June 12, 2013 14/18

Speeding up searching in suffix arrays RMQ in constant time

Lemma
RMQ can be solved in O(log n) time after O(n) time and space
preprocessing.

We apply another simple-yet-powerful paradigm: micro-macro
decomposition. Chop the input array into blocks of length
b = log n.

Construct a new array A′, where
A′[i] = min{A[ib + 1],A[ib + 2], . . . ,A[(i + 1)b]}. Build the
previously described structure for A′.

June 12, 2013 15/18

Speeding up searching in suffix arrays RMQ in constant time

Lemma
RMQ can be solved in O(log n) time after O(n) time and space
preprocessing.

We apply another simple-yet-powerful paradigm: micro-macro
decomposition. Chop the input array into blocks of length
b = log n.

Construct a new array A′, where
A′[i] = min{A[ib + 1],A[ib + 2], . . . ,A[(i + 1)b]}. Build the
previously described structure for A′.

June 12, 2013 15/18

Speeding up searching in suffix arrays RMQ in constant time

Lemma
RMQ can be solved in O(log n) time after O(n) time and space
preprocessing.

We apply another simple-yet-powerful paradigm: micro-macro
decomposition. Chop the input array into blocks of length
b = log n.

Construct a new array A′, where
A′[i] = min{A[ib + 1],A[ib + 2], . . . ,A[(i + 1)b]}. Build the
previously described structure for A′.

June 12, 2013 15/18

Speeding up searching in suffix arrays RMQ in constant time

Lemma
RMQ can be solved in O(log n) time after O(n) time and space
preprocessing.

We apply another simple-yet-powerful paradigm: micro-macro
decomposition. Chop the input array into blocks of length
b = log n.

Construct a new array A′, where
A′[i] = min{A[ib + 1],A[ib + 2], . . . ,A[(i + 1)b]}. Build the
previously described structure for A′.

June 12, 2013 15/18

Speeding up searching in suffix arrays RMQ in constant time

For each block, precompute the maximum in each prefix and
each suffix, which takes just O(n) time and space. Then, using
the structure built for A′, we can answer any query in constant
time.
Unfortunately, life is not that simple.
But the only case when we cannot answer a query in constant
time is when the range is strictly inside a single block. Revert to
the naive one-by-one computation!

June 12, 2013 16/18

Speeding up searching in suffix arrays RMQ in constant time

For each block, precompute the maximum in each prefix and
each suffix, which takes just O(n) time and space. Then, using
the structure built for A′, we can answer any query in constant
time.
Unfortunately, life is not that simple.
But the only case when we cannot answer a query in constant
time is when the range is strictly inside a single block. Revert to
the naive one-by-one computation!

June 12, 2013 16/18

Speeding up searching in suffix arrays RMQ in constant time

For each block, precompute the maximum in each prefix and
each suffix, which takes just O(n) time and space. Then, using
the structure built for A′, we can answer any query in constant
time.
Unfortunately, life is not that simple.
But the only case when we cannot answer a query in constant
time is when the range is strictly inside a single block. Revert to
the naive one-by-one computation!

June 12, 2013 16/18

Speeding up searching in suffix arrays RMQ in constant time

OK, but we promised the best of both worlds: constant query and
linear space.

Lemma
RMQ can be solved in O(1) time after O(n) time and space
preprocessing.

We “only” have to deal with the strictly-inside-a-block case. We
will show how to do that for a very restricted case, when
|A[i + 1]− A[i]| ≤ 1.

June 12, 2013 17/18

Speeding up searching in suffix arrays RMQ in constant time

The exact values of the elements don’t matter that much. So, for
each block we compute its type, which is the sequence of
differences A[i + 1]− A[i]. Additionally, for each such sequence
we precompute the answers to all possible

(b
2

)
queries. The

answer is the position of the element with the smallest value.

How much space do we need for that?

3b−1(b
2

)
= O(3bb2).

As long as b ≤ 0.001 log n, this is small, or o(n). Then to answer
a query strictly inside a block, we look at its type, retrieve the
precomputed answer, and then return the value at the
corresponding position in A, all in constant time.

June 12, 2013 18/18

	Speeding up searching in suffix arrays
	RMQ in constant time

