
Approximate pattern matching
Algorithms on Strings

Paweł Gawrychowski

June 19, 2013

Pattern matching with mismatches Pattern matching with errors Pattern matching with don’t cares

Outline

Pattern matching with mismatches

Pattern matching with errors

Pattern matching with don’t cares

June 19, 2013 2/19

Pattern matching with mismatches Pattern matching with errors Pattern matching with don’t cares

We already know how to find an exact occurrence of the pattern
in the text (very efficiently). But do we really care about exact
occurrences?

Pattern matching with k mismatches
Given a pattern p[1..m] and a text t [1..n], does p occur in t with at
most k mismatches, i.e., is there i such that p and t [i ..i + m − 1]
differ at at most k positions?

Trivial solution works in O(nm) time, so we will see how to solve
this in O(nk) time. For small k , this is very fast, and for large k ...
well, large k are not that interesting anyway.

June 19, 2013 3/19

Pattern matching with mismatches Pattern matching with errors Pattern matching with don’t cares

Recall that we have the following useful tool.

Suffix array + constant time RMQ queries
Given a text w , we can construct in linear time a structure of size
O(|w |) which allows us to answer any query of the form “what is
the longest common prefix of w [i ..|w |] and w [j ..|w |]?” in constant
time.

We apply the tool to w = t$p. Then we can compute the longest
common prefix of any t [i ..n] and p[j ..m] in constant time.

June 19, 2013 4/19

Pattern matching with mismatches Pattern matching with errors Pattern matching with don’t cares

We iterate over all possible starting positions in t . For a fixed
starting position, we want to check if the pattern occurs there with
at most k mismatches.

i

We iteratively compute and cut the longest common prefix of both
the remaining part of the pattern and the remaining part of the
corresponding part of the text. We stop when we either process
the whole pattern or detect more than k mismatches.

Lemma
The above algorithm correctly solves pattern matching with k
mismatches in O(nk) time.

June 19, 2013 5/19

Pattern matching with mismatches Pattern matching with errors Pattern matching with don’t cares

We iterate over all possible starting positions in t . For a fixed
starting position, we want to check if the pattern occurs there with
at most k mismatches.

a

b

i

We iteratively compute and cut the longest common prefix of both
the remaining part of the pattern and the remaining part of the
corresponding part of the text. We stop when we either process
the whole pattern or detect more than k mismatches.

Lemma
The above algorithm correctly solves pattern matching with k
mismatches in O(nk) time.

June 19, 2013 5/19

Pattern matching with mismatches Pattern matching with errors Pattern matching with don’t cares

We iterate over all possible starting positions in t . For a fixed
starting position, we want to check if the pattern occurs there with
at most k mismatches.

a

b

i
b

a

We iteratively compute and cut the longest common prefix of both
the remaining part of the pattern and the remaining part of the
corresponding part of the text. We stop when we either process
the whole pattern or detect more than k mismatches.

Lemma
The above algorithm correctly solves pattern matching with k
mismatches in O(nk) time.

June 19, 2013 5/19

Pattern matching with mismatches Pattern matching with errors Pattern matching with don’t cares

We iterate over all possible starting positions in t . For a fixed
starting position, we want to check if the pattern occurs there with
at most k mismatches.

a

b

i
b

a

a

b

We iteratively compute and cut the longest common prefix of both
the remaining part of the pattern and the remaining part of the
corresponding part of the text. We stop when we either process
the whole pattern or detect more than k mismatches.

Lemma
The above algorithm correctly solves pattern matching with k
mismatches in O(nk) time.

June 19, 2013 5/19

Pattern matching with mismatches Pattern matching with errors Pattern matching with don’t cares

We iterate over all possible starting positions in t . For a fixed
starting position, we want to check if the pattern occurs there with
at most k mismatches.

a

b

i
b

a

a

b

We iteratively compute and cut the longest common prefix of both
the remaining part of the pattern and the remaining part of the
corresponding part of the text. We stop when we either process
the whole pattern or detect more than k mismatches.

Lemma
The above algorithm correctly solves pattern matching with k
mismatches in O(nk) time.

June 19, 2013 5/19

Pattern matching with mismatches Pattern matching with errors Pattern matching with don’t cares

We iterate over all possible starting positions in t . For a fixed
starting position, we want to check if the pattern occurs there with
at most k mismatches.

a

b

i
b

a

a

b

We iteratively compute and cut the longest common prefix of both
the remaining part of the pattern and the remaining part of the
corresponding part of the text. We stop when we either process
the whole pattern or detect more than k mismatches.

Lemma
The above algorithm correctly solves pattern matching with k
mismatches in O(nk) time.

June 19, 2013 5/19

Pattern matching with mismatches Pattern matching with errors Pattern matching with don’t cares

But what if k is large? Can we do better?

Abrahamson 1987
We can compute for each i the number of mismatches between
t [i ..i + m − 1 and p in O(n

√
m log m) total time.

We will see the idea later. It’s really cute.
Another question is whether O(nk) is the best you can do for
small values of k?

Amir, Lewenstein, Porat 2004
Pattern matching with k mismatches can be solved in
O(n

√
k log k) time.

This is super complicated, and we are not going to talk how to
achieve such complexity.

June 19, 2013 6/19

Pattern matching with mismatches Pattern matching with errors Pattern matching with don’t cares

Is pattern matching with mismatches what we really really want to
solve in real-life?
Maybe, but the notion is surely not perfect. For instance removing
just a single character might increase the number of mismatches
in the best alignment to m. So, maybe we should modify the
problem?

Pattern matching with k errors
Given a pattern p[1..m] and a text t [1..n], does p occur in t with at
most k errors, i.e., is there i ≤ j such that the edit distance
between p and t [i ..j] is at most k?

June 19, 2013 7/19

Pattern matching with mismatches Pattern matching with errors Pattern matching with don’t cares

Given that we are dealing with the edit distance, it’s maybe not
surprising that dynamic programming is the way to go. We will
see how to apply it to solve the problem in O(nm) time.

June 19, 2013 8/19

Pattern matching with mismatches Pattern matching with errors Pattern matching with don’t cares

Hmm, actually, we have seen the solution already! We compute a
big table T [1..n][1..m].

T [i][j] = min(

T [i − 1][j] + 1,
T [i][j − 1] + 1,
T [i − 1][j − 1] + [s[i] 6= t [j]]

)

T [i][j] is supposed to be the smallest edit distance between p[1..j]
and (some) suffix of t [1..i]. The only difference is that we initialize
the table by setting T [i][0] = 0 for all i (not just T [0][0] = 0!).

How to detect an occurrence with at most k errors by looking at
the table?

June 19, 2013 9/19

Pattern matching with mismatches Pattern matching with errors Pattern matching with don’t cares

When k is small (and probably it is, right?), O(nm) is
disappointing. Can we do better?

Landau and Vishkin 1989
Pattern matching with k errors can be solved in O(nk) time.

...actually, the O(nd) time algorithm for edit distance is quite
similar to the above result. It does need some modifications,
though, and we are not going to talk about this.
It’s possible to do even better.

Cole and Hariharan 1998

Pattern matching with k errors can be solved in O(n k4

m + n) time.

Very high-brow stuff!

June 19, 2013 10/19

Pattern matching with mismatches Pattern matching with errors Pattern matching with don’t cares

Another possible definition of approximate pattern matching is
that we allow our pattern to contain wildcards, usually denoted by
?. They can be replaced with any other character, so for instance
aab?a matches both aabaa and aabba.

Pattern matching with don’t cares
Given a pattern p[1..m] containing any number of wildcards and a
text t [1..n], does p occur in t?

Sometimes people allow the text to contain wildcards, too.
Pattern matching with wildcards is maybe less practical, but it’s a
beautiful example of a somewhat unexpected method. The
method is based on the Fast Fourier Transform (FFT).

June 19, 2013 11/19

Pattern matching with mismatches Pattern matching with errors Pattern matching with don’t cares

A polynomial of degree d is a sum p(x) =
∑d

i=0 aix i , where
a0,a1, . . . ,ad are its coefficients. In our case the coefficients will
be always (not very big) natural numbers.

June 19, 2013 12/19

Pattern matching with mismatches Pattern matching with errors Pattern matching with don’t cares

Polynomial multiplication

Given two polynomials f (x) =
∑N

i=0 aix i and g(x) =
∑M

j=0 bjx j

their product is a polynomial of degree N + M of the form∑N+M
k=0 ckxk , where ck = a0bk + a1bk−1 + . . . + akb0.

Convolution
If the coefficients are written as vectors [a0,a1, . . . ,aN] and
[b0,b1, . . . ,bM], their convolution is the vector [c0, c1, . . . , cN+M],
with all ck defined as above.

FFT
Given two vectors, their convolution can be computed in
O((N + M) log(N + M)) time.

June 19, 2013 13/19

Pattern matching with mismatches Pattern matching with errors Pattern matching with don’t cares

We will see how to apply convolution to compute for each i the
number of mismatches between t [i ..i + m − 1] and p[1..m], with
both t and p being allowed to contain any number of wildcards.
First the simple case with Σ = {a,b}.

What is a mismatch?
a where we would expect b, or the other way around.

So, for each position i we should count the number of
mismatches of each type. Say that we want to count j such that
t [i + j − 1] = a but p[j] = b. How to apply FFT here?

June 19, 2013 14/19

Pattern matching with mismatches Pattern matching with errors Pattern matching with don’t cares

So, for each position i we should count the number of
mismatches of each type. Say that we want to count j such that
t [i + j − 1] = a but p[j] = b. How to apply FFT here?

Our small trick
Define binary vectors with N = n − 1 and ai = 1 iff t [i + 1] = a,
M = m − 1 and bj = 1 iff p[m − j] = b. Then look at their
convolution.

Lemma
ck is exactly the number of mismatches of the first type
corresponding to the starting position i = k −m + 1.

June 19, 2013 15/19

Pattern matching with mismatches Pattern matching with errors Pattern matching with don’t cares

So, we just have to apply FFT twice, and we get O(n log n) time
algorithm. But what happens for larger Σ?

First algorithm

Apply FFT for each pair of a,b ∈ Σ, a 6= b. Time is O(|Σ|2n log n).

Second algorithm
Apply FFT for each pair of b ∈ Σ to count mismatches such that
we would expect b but we get something else. Time is
O(|Σ|n log n).

But we just want to detect an occurrence, not count the
mismatches for each starting position. So maybe we could do
better?

June 19, 2013 16/19

Pattern matching with mismatches Pattern matching with errors Pattern matching with don’t cares

If a 6= b, then the i-th bit of a is 1 and the i-th bit of b is 0, or the
other way around, for some i ∈ {0,1, . . . , log |Σ|}.

Call them i-mismatches of type 1 and 2, respectively.

Third algorithm
For each i ∈ {0,1, . . . , log |Σ|} apply FFT to detect starting
positions resulting in a i-mismatch of type 1 and 2. Time is
O(log |Σ|n log n).

June 19, 2013 17/19

Pattern matching with mismatches Pattern matching with errors Pattern matching with don’t cares

That log |Σ| is annoying. It was known how to remove it, but the
solutions were kind of complicated. Until...

Clifford and Clifford 2007
Pattern matching with don’t cares can be solved in O(n log n)
time for any alphabet.

The idea is VERY simple.

a 6= b iff (a− b)2 is nonzero. Then write (a− b)2 = a2 − 2ab + b2

and compute each part separately!

More precisely, for each i compute∑m
j=1 t [i + j − 1]p[j](t [i + j − 1]− p[j])2, where ? is 0, and other

letters are positive numbers. Then the sum is 0 exactly when we
have a match!

June 19, 2013 18/19

Pattern matching with mismatches Pattern matching with errors Pattern matching with don’t cares

Something to think about: O(n log n) can be actually decreased
to O(n log m) in a very simple manner. Do you see how?

June 19, 2013 19/19

	Pattern matching with mismatches
	Pattern matching with errors
	Pattern matching with don't cares

