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Word Equations
Definition
Given equation U = V , where U,V ∈ (Σ ∪ X )∗.
Is there an assignment S : X 7→ Σ∗ satisfying the solution?

Working example
XbaYb = ba3bab2ab has a solution S(X ) = ba3, S(Y ) = b2a
ba3bab2ab = ba3bab2ab

Write S(U), S(V ) with an obvious meaning, i.e.
S(XbaYb) = S(X )baS(Y )b.

First attempts
Markov: Hilbert 10th problem ≥r word equations.
wanted to show undecidability
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Why

Considered to be important
I unification
I equations in free semigroup
I interesting in general
I (helpful in equations in free group)
I word combinatorics

. . . and hard

Is this decidable at all?
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Makanin’s algorithm

Makanin 1977
Rewriting procedure. Difficult termination.

Did not care about complexity.

Improved over the years
Jaffar [1990] Schulz [1990] 4-NEXPTIME
Kościelski and Pacholski 3-NEXPTIME [1990]
Diekert to 2-EXPSPACE [unpublished]
Gutiérrez EXPSPACE [1998].

Only NP-hard.
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New approach
Theorem (Plandowski and Rytter, 1998)
Length minimal solution of length N is compressible into poly(logN).
This yields a poly(n, logN) algorithm.

A minimal solution has a LZ77 encoding of size O(n logN).

N is only known to be triply exponential (from Makanin’s algorithm).

Theorem (Plandowski 1999)
The size N of the minimal solution is at most doubly exponential.
This yields a NEXPTIME algorithm.

Theorem (Plandowski 1999)
PSPACE algorithm.
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Restricted cases

Simpler subcases
Some easier subcases (in P)?

Number of variables
for two variables (currently best O(n6) [Plandowski])
for one variables (currently best O(n + #X log n) [Plandowski &
Dąbrowski]
three variables: nothing is known (perhaps in NP, perhaps in P)
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This lecture

A simple and natural technique of local recompression.

Yields a non-deterministic algorithm for word equations
linear space
poly(n, logN) time
can be used to show the doubly-exponential bound on N
can be easily generalised to generator of all solutions
for one variable becomes deterministic and runs in O(n)
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Equality and Compression of Strings

a aa a bb a bc a bb a b c ab

a aa a bb a bc a bb a b c ab

Iterate!

Intuition: recompression
Think of new letters as nonterminals of a grammar
We build CFGs for both strings, bottom-up.
Everything is compressed in the same way!
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Compression
1: P ← all pairs from S(U), L← all letters from S(U)
2: for each a ∈ L do
3: replace each maximal block a` by a` . A fresh letter
4: for each ab ∈ P do
5: replace each ab by c . A fresh letter

Lemma
Each subword shortens by a constant factor (Ui , Vj , S(X ), S(U), . . . ).
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Idea at work

Working example
XbaYb = ba3bab2ab has a solution S(X ) = ba3, S(Y ) = b2a

We want to replace pair ba by a new letter c. Then

XbaYb = baaababbab for S(X ) = baaa S(Y ) = bba
XcYb = caacbcb for S(X ) = caa S(Y ) = bc

And what about replacing ab by d?

XbaYb = baaababbab for S(X ) = baaa S(Y ) = bba

There is a problem with ‘crossing pairs’. We will fix!
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Pair types

Definition (Pair types)
Appearance of ab is

explicit it comes from U or V ;
implicit comes solely from S(X );
crossing in other case.

ab is crossing if it has a crossing appearance, non-crossing otherwise.

XbaYb = baaababbab with S(X ) = baaa S(Y ) = bba
baaababbab [XbaYb]
baaababbab [XbaY b]
baaababbab [XbaYb]
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Lemma (Length-minimal solutions)
If ab has an implicit appearance, then it has crossing or explicit one.

Compression and Word Equations 26.0.6.2013 12 / 31



Lemma (Length-minimal solutions)
If ab has an implicit appearance, then it has crossing or explicit one.

Compression and Word Equations 26.0.6.2013 12 / 31



Compression of non-crossing pairs

PairComp
1: let c ∈ Σ be an unused letter
2: replace each explicit ab in U and V by c

XbaYa = baaababbaa has a solution S(X ) = baaa, S(Y ) = bba
ba is non-crossing
XcYa = caacbca has a solution S(X ) = caa, S(Y ) = bc
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Lemma
If U = V has a solution S such that ab is non-crossing then
PairComp(a, b) returns an equation U ′ = V ′ with a solution S ′ such that
S(U ′) is obtained by replacing each ab by c in S(U).
If ′b′ appeared in S(U) and was a non-crosing pair for S then it is for S ′.
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Dealing with crossing pairs
ab is a crossing pair
There is X such that S(X ) = bw and aX appears in U = V
(or symmetric).

Pop(a, b)
for X ∈ X do

if S(X ) = bw then . Guess
replace X with bX

. implicitly change solution S(X ) = bw to S(X ) = w
if S(X ) = ε then . Guess

remove X

Lemma
After Pop(a, b) ab is no longer crossing.

Compress the pair!
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Example

XbaYb = baaababbab for S(X ) = baaa S(Y ) = bba
ab is a crossing pair

replace X with Xa, Y with bYa
(new solution: S(X ) = baa, S(Y ) = b)
XababYab = baaababbab for S(X ) = baa S(Y ) = b
ab is not longer crossing, we replace it by c
XccY c = baaccbc for S(X ) = baa S(Y ) = b
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Lemma
If U = V has a solution S such that ab is crossing ten after Pop(a, b) the
returned equation U ′ = V ′ has a solution S ′ such that S(U) = S ′(U ′) and
ab is non crossing for S ′.
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Maximal blocks

Definition (maximal block of a)
When a` appears in S(U) = S(V ) and cannot be extended.
Block appearance can be explicit, implicit or crossing.
Letter a has crossing block if there is a crossing `-block of a.

Equivalents of pairs.
Compress them similarly.
Pop whole prefixes/suffixes, not single letters

Lemma (Length-minimal solutions)
For maximal a` block: ` ≤ 2cn.
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Blocks compression

Definition (Crossing block)
maximal block is crossing iff
it is contained in S(U) (S(V )) but not in explicit words nor in any S(X ).

When a has no crossing block
1: for all maximal blocks a` of a do
2: let a` ∈ Σ be a unused letter
3: replace each explicit maximal a` in U = V by a`

Lemma
If U = V has a solution S such that a has no crossing blocks then
BlockComp(a) returns an equation U ′ = V ′ with a solution S ′ such that
S(U ′) is obtained by replacing each a` by a` in S(U).
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What about crossing blocks?

Idea
change the equation
X defines a`X warX : change it to w
replace X in equation by a`X XiarX

CutPrefSuff(a)
1: for X ∈ X do
2: guess and remove a-prefix a`i and a-suffix arX of S(X )
3: replace each X in rules bodies by a`X XarX

Lemma
After CutPrefSuff(a) letter a has no crossing block.

So a’s blocks can be easily compressed.
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What about crossing blocks?
Idea

change the equation
X defines a`X wbrX : change it to w
replace X in equation by a`X XibrX

CutPrefSuff
1: for X ∈ X do
2: let X begin with a and end with b
3: calculate and remove a-prefix a`X and b-suffix brX of X
4: replace each X in rules bodies by a`X XbrX

Lemma
After CutPrefSuff no letter has a crossing block.

So all blocks can be easily compressed.
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Lemma
If U = V has a solution S then after BlockComp(a) the returned equation
U ′ = V ′ has a solution S ′ such that S(U) = S ′(U ′) and a has no crossing
blocks for S ′.
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Algorithm

while U /∈ Σ and V /∈ Σ do
L← letters from U = V
uncross the blocks
for a ∈ L do

compress a blocks

P ← noncrossing pairs of letters from U = V . Guess
P′ ← crossing pairs of letters from U = V . Guess, only O(n)
for ab ∈ P do

compress pair ab
for ab ∈ P′ do

uncross and compress pair ab
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Crucial property

Theorem (Main property: shortens the solution)
Let ab be a string in U = V or in S(X ) (for a length-minimal S).
For appropriat non-deterministic choices the returned equation U ′ = V ′
has a solution S ′ such that at least one of a, b is compressed in it.

Proof.
a = b By block compression.
a 6= b Pair compression tries to compress ab.

Fails, when one was compressed already.

Corollary (Running time)
The algorithm has O(logN) phases.
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Space consumption
Corollary (Space consumption)
For appropriate non-deterministic choices the equation has length O(n2).
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Solution upper bound

Idea
Running time is at most (cn2)cn2 .
there are O(logN) phases

So logN ∼ (cn2)cn2 .

Lemma
There are Ω(logN)/poly(n) phases

Proof.
We do not shorten too much (at most 2cn letters into one).

logN/poly(n) ≤ (cn2)cn2
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Block compression

Idea
when we replace a blocks, only equality matters, not length
pop a`X and arX from X but treat them as parameters

guess the equal blocks
check if they can be equal

replace them

Length of a block

Linear combination of {`X , rX}X∈X and constants.
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pop a`X and arX from X but treat them as parameters
guess the equal blocks
check if they can be equal
replace them

Length of a block
b

YX

b c c da a a a

X

b c c da a a a a aa a a a aa a

Linear combination of {`X , rX}X∈X and constants.
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pop a`X and arX from X but treat them as parameters
guess the equal blocks
check if they can be equal
replace them

Length of a block
b

YX

b c c d

X

b c c da a a a a a a a a aa a a a aa a

Linear combination of {`X , rX}X∈X and constants.
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Verification

Guessed equalities ⇐⇒ system of linear Diophantine equations in
{`X , rX}X∈X

has size proportional to equation

I encode variables as in the equation
I encode constants in unary

can be verified in linear space (nondeterministically)

I iteratively guess parity
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Univariate equations

Form of the equation A = B

A0XA1 . . .Ak−1XAk = XB1 . . .Bk−1XBk ,

where Ai ,Bi ∈ Σ∗, A0 6= ε.

Nondeterminism dissappears
only S(X ) 6= ε

first (last) letter of S(X ) is known
S(X ) ∈ a∗ are easy to check;
otherwise a-prefix of S(X ) and A0 have the same length

Whenever we pop, we test some solution.
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