(80)

(20)

Efficient Data Structures Homework Sheet 2 June 2, 2014

e This problemset has two questions, and one (substantially more difficult) bonus ques-
tion. The programming problems may be harder, or require more time, than their
point value suggests.

e Please type your solutions to the written component and send a pdf file to
REDACTED. The pdf filename should be “EDS-A2-<your_user_name>.pdf”

e The deadline is 9.05.2014 anywhere on Earth.

1.

2.

Computing the Inverse: Given a permutation 7, let 7(i) denote the position that the i-th
element is swapped to according to 7: e.g., if 7 = (2,3,4,1) then 7(1) = 2, 7(2) = 3, etc. One
way of representing a permutation is by storing an array containing the values of each 7(i).
Since each 7(4) is a number between 1 and n, we can clearly store this array using n[log(n+1)]
bits (assuming that we know n). This array representation allows us to access each 7(i) in
constant time. However, it is often useful to also be able to compute the inverse m (i),
which is the value j such that 7(j) = ¢. Obviously, we could store these values explicitly in
another array, but that would take twice the space. Alternatively, we can apply 7 (i) repeatedly,
examining the entire cycle to determine 7~1(4). This uses no extra space (beyond ©(1) words
of working space), but could take linear time if 7 contains long cycles. Your task: show how
to use the FKS hashing scheme to speed up the computation of 7~1(i), for any i € [1,n]. You
should be able to get a space/time trade off. How much extra space in words do you need to
compute 7 1(i) in O(t) time for some parameter 1 < ¢t < n? Don’t try to work out the exact
constant factors: an asymptotic bound will suffice. What about in bits? Hint: it might be
helpful to complete Question 2 before trying to count the number of bits.

Universal Hashing: This is a programming question, but you need not submit it on SPOJ;
instead you will run a small experiment, plot a graph of the results, and include that in
your pdf file. The set up: for each n € {2%, ...,2!9} generate a set of n distinct integers,
which we will call keys, uniformly at random from the range [0,22° — 1]. For each m €
{n?/8,n2/4,n%/2,n% 2n?,4n? 8n?} create a hash table of size m. Now, attempt to hash the
keys into the hash table using the strategy described in the Carter and Wegman paper (Ref. 12
on the course website; the Wikipedia article on Universal Hashing might be easier to read, in
particular the section called “Constructions”). A single test will count the number of attempts
you make before succeeding to hash without collisions. What to plot: you can create a single
plot, where each n will be represented by a different curve. The z-axis will be m/n?, and
should be plotted on a logarithmic scale. The y-axis of the plot will be the average number of
attempts you had to make during a test to hash the n keys without collisions into the table.
The y-axis should also be plotted on a log scale. Connect the points for a given n with a line
in your plot. Experiment with how many sets of keys you generate as well as how many tests
you perform per set, in order to reduce noise.




(SPOJ)

¢
-l

T I

Figure 1: Illustration of the permutations 7, and the two involutions [; and I5 into which 7 can
be decomposed.

3. Bonus Programming Question: Involutions In class we saw how involutions can be used

to speed up multikey search in the implicit model. We applied several levels of involutions to
the keys in each D;, but each involution was not arbitrary, so length of cycles induced in the
final permutation of D;’s keys were also not arbitrary. In this programming question we will
show that composing two arbitrary involutions can lead to a permutation with linear length
cycles!

Suppose we are given an arbitrary permutation . The problem we wish to solve is to construct
two involutions I; and I such that, when composed, are identical to . For example, consider
the permutation 7 = (2,3,4,5,6,7,8,1), which is just a cycle of length 8. We can construct
the following involutions I = (1,8,7,6,5,4,3,2) and I = (2,1,8,7,6,5,4,3), as shown in
Figure 1. Thus, for each i € [1,n] we have 7(i) = I2(I1(7)): for example w(2) = 3, I1(2) = 8
and I2(8) = 3. This illustrates one method of decomposing such a permutation, and there are
other examples on the problem website. http://www.spoj.com/DS/problems/INVDECOM/

Page 2



