- This problemset has *one* question. The programming problems may be harder, or require more time, than their point value suggests.
- Please send the solutions to gawry1+EDSCourse2014@gmail.com
- The deadline is 08.06.2014 anywhere on Earth.
- (80) 1. We want to construct a family of universal hash functions. We assume that the numbers that we are hashing consist of w bits and we want to hash them into ℓ bits. Then it turns out that a nice family is

$$\mathcal{H} = \{\mathsf{H}_{\mathfrak{a}} : \mathfrak{a} \in [1, 2^w) \text{ and } \mathfrak{a} \text{ is odd}\}.$$

where $H_a = \lfloor \frac{a \cdot x}{2^{w-\ell}} \rfloor \mod 2^{\ell}$. Observe that H_a simply takes a range of bits from $a \cdot x$.

- (a) Why such functions might be better than $a \cdot x \mod p$, where p is a prime?
- (b) Prove that, for any l∈ [1, w] and distinct x, y∈ [0, 2^w), if we choose a function H_a ∈ H uniformly at random, then the chance that H_a(x) = H_b(y) is at most 1/(2^{ℓ-1}). Hint: Take x < y and try to count all odd a ∈ [0, 2^w) such that H_a(x) = H_a(y). First bound the difference |a ⋅ x mod 2^w - a ⋅ y mod 2^w|. Then denote z = y - x and look at the expression a ⋅ z mod 2^w. Notice that the bound on the difference implies that the value of the expression belongs to one of two continguous intervals, each of length 2^{w-ℓ} (so far everything holds even if we allow even a's). Now write z = z'2^s with z' odd. Think what happens when s = 0. This special case is enough for (large) partial credit.
- (c) Use the previous bound to show that for any set of n integers $S \subseteq [0, 2^w)$, if we choose a function $H_a \in \mathcal{H}$ uniformly at random, then the chance that H_a is injective (i.e., assigns different outputs to different inputs) on S is at least $1 \frac{n^2}{2\ell}$.