
1 Pointer machine model

This can be found in Chazelle’s paper, [Ref. 37] Bernard Chazelle Lower
bounds for orthogonal range searching: the reporting case.

2 Multi-partitioning

This lower bound is a short argument using Ben-Or’s theorem. It is section
4 of the following paper:

Amr Elmasry: Distribution-sensitive set multi-partitioning.
available at
http://www.kurims.kyoto-u.ac.jp/EMIS/journals/DMTCS/pdfpapers/dmAD0132.pdf
There is also a very interesting upper bound mentioned in this paper,

which matches the above lower bound.

3 Multi-partitioning in external memory

Once you’ve read Section 4 in the above paper, you know that the number
of permutations required to check is at least

n/2!
n1! · · ·nk!

In the external memory model, as in the proof of the sorting lower bound,
the maximum fan-out at an I/O is

(
M
B

)
, since this is the number of ways

to place B (incoming) elements into M −B (already in memory) elements.
Assume that a linear scan is done at first, which ends up sorting all the
blocks. Finding the number of permutations now required, taking logarithm
of that, and dividing by log

(
M
B

)
gives the desired lower bound:

Ω

(
n

B
logM/B

n

B
−

k∑
i=1

ni

B
logM/B

ni

B
+

n

B

)
where the last term is a scan-everything-lower-bound.

4 Batched predecessor problem

Both X and Y are sorted and distinct. The number of ways to place X in
Y is clearly at least

(
y
x

)
≥ (y/x)x. A comparison between an element in Y

and an element in X can reduce this number by a factor of at most 2. Thus

1



we get the desired lower bound. Again, the +x at the end is a lower bound,
since we must scan all elements of X.

Collect every (y/x)th element of Y to from another array Y
′

of size x.
Now merge Y

′
and X. This takes O(x) time, and ends up telling us for

every x ∈ X the “chunk” of size y/x it belongs to in Y . Now do binary
search on this chunk, which takes log(y/x) comparisons, and we have the
desired upper bound.

In the external memory model we will argue the lower bound using an
adversary argument. The main problem is that as long as the search spaces
of x ∈ X intersect, an element of Y can “help” search for multiple elements
in X. Our adversary strategy is as follows.

• The adversary first arbitrarily separates the search spaces of elements
of X. That is, to every element in X it assigns a chunk of size y/x
in Y , and tells the algorithm that x is in this chunk. Basically it
gives the first x bits for free. This extra information can only help the
algorithm. After giving this information, the number of bits needed to
achive is x log(y/x). (Initially it was x log y, and the adversary gave
x log x for free.)

• Now we can assume that the algorithm keeps all the elements in X
in internal memory for free (it can only do so if X < M , but we are
arguing a lower bound, so this does not hurt us).

• Now consider an incoming block of B elements from from Y . These
B elements can help at most B elements from X, as an element in Y
cannot help more than one element in X(because it can help only if it
comes from the current search space, and the search spaces for different
xs are disjoint). It is easy to see that if these B elements help j < B
elements from X, the maximum number of bits they can achieve is
j log(B/j + 1). This is maximized at j = B, so the maximum number
of bits achieved during an I/O is B (B elements half their search space
when this block has the median pivot from their current search spaces).

• Dividing the number of bits needed to achieve by thenumber of bits
achievable in one I/O gives us the desired lower bound.

2


