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 This is a 9 credit point course: 2+2 
 

 Prerequisites: Basic course in data structures 
◦ You should know asymptotic analysis (𝑂, 𝑜, Θ, Ω,𝜔) 
◦ You should know about linked lists/balanced trees 
◦ You should know at least one programming language 

 ADA DOC ASM AWK BASH BF C C# C++ 4.3.2 C++ 4.0.0-8 C99 strict CLPS CLOJ LISP sbcl LISP 
clisp D ERL F# FORT GO HASK ICON ICK JAR JAVA JS LUA NEM NICE NODEJS CAML PAS fpc PAS 
gpc PDF PERL PERL 6 PHP PIKE PS PRLG PYTH 2.7 PYTH 3.2.3 PYTH 3.2.3 n RUBY SCALA SCM 

guile SCM qobi SED ST TCL TECS TEXT WSPC 

 
 

 Marking scheme: 
◦ 60% exam  
◦ 30% homework sheets (must get 50% on homework) 
◦ 10% project (research/survey/implementation) 

 Groups of up to 3 people; more details will follow 
 



 We will have weekly homework sheets 
◦ Each homework sheet will have 

 Theory problems (i.e., proofs) 

 Programming problems (at most 20% of homework) 

 These are to be submitted on SPOJ  

 See homework sheet for details 

 

 We will also have weekly tutorials 
◦ Each tutorial review the previous week’s assignment 

◦ You must actively participate in the tutorial sessions 



 Models of computation 
 Implicit Data Structures (Comparison) 

◦ Membership (Dictionary) Problem, Multikey Search  

 Succinct Data Structures (Word-RAM) 
◦ Static problems: rank/select, trees, graphs, etc. 
◦ Cell Probe lower bounds for succinct data structures 
◦ Discussion of dynamic memory models 

 Static predecessor searching (Word-RAM) 
 Making data structures dynamic 
 Persistence and applications (Pointer Machine/Word-RAM) 
 Lower bounds (Comparison, Pointer Machine, Cell-probe, etc.)  
 Introduction to the External Memory (I/O) Model 

◦ classic data structures: B-trees, Buffer trees. 

 Efficient data structures in external memory 
◦ Generalizing word-RAM structures to the I/O model 
◦ Lower bounds on external memory data structures 
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 Why do we do algorithm analysis? 
◦ What are the goals? 

 Compare different algorithms 

 Determine which algorithm to use in which case 

◦ What is the end result of the analysis? 

 Input: an algorithm and some input parameters 

 We want a number: lower better than higher 

 

 How do we do the analysis? 
◦ Computers are very complicated 

◦ Instead we analyse simpler models of computation 

 



 There are many different models 
 Comparison-based, Word-RAM, Cell-Probe, I/O, 

Pointer machine, Cache-oblivious, etc. 

 

 It is important to understand the limitations 
◦ This helps with understanding practicality  

◦ Models often focus on one particular aspect 

◦ We will discuss cases where it can be misleading 

 

 Example: Sorting 
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 Why do we care about space efficiency? 
 Practical reasons: 
 In many computations the limiting factor is memory 

 The memory hierarchy 

 Saving even a small constant factor in space means big money 

 Many computing devices often have less memory resources: 

 Smartphones 

 Microcontrollers 

 Sensors 

 Facebook enabled toaster 



 Why do we care about space efficiency? 
 Theoretical Reasons: 
 Answer fundamental questions about computation:  

 “How much extra space do we need to answer queries about data?” 

 “Can we compress data and still answer questions about it?” 

 “Which types of queries are impossible to efficiently support?” 

 “Are pointers necessary?” 

 It is fun  



 What is the model? 
 

◦ Basic Idea: data is stored in an array 𝐴[1. . 𝑛] 
 The “structure” consists of the order of the data 
 A “pointer” is just an integer in 𝐴[1. . 𝑛] 
 

◦ Only need to know the value 𝑛 
 AKA: strict implicit data structure 
 Another option: 𝑂(1) extra data allowed 
 

◦ Only allowed to make comparisons:  

 𝑎 <  𝑏, 𝑎 =  𝑏, 𝑎 >  𝑏 

 
 Comments? 

 



 You probably already know one… 

 

 Heaps perform the following operations: 
 Insert(𝑥): add key 𝑥 

 Delete-Min(): delete and return the smallest key 

 Get-Min(): return the smallest key 

 
◦ Insert(𝑥) and Delete-Min() take Θ log 𝑛  time 

◦ Get-Min() takes Θ(1) time 
 



 Heap Properties: 
◦ Complete binary tree except for the last level 

◦ Each node’s key is at least as small as its children’s 
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 The heap structure is a partial order 
◦ A partial order is a binary relation that is: 

 Reflexive, Antisymmetric, and Transitive 

◦ Think of a directed acyclic graph with/without shortcuts 
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 The heap structure is a partial order 
◦ A partial order is a binary relation that is: 

 Reflexive, Antisymmetric, and Transitive 

◦ Think of a directed acyclic graph with/without shortcuts 
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 The heap structure is a partial order 
◦ A partial order is a binary relation that is: 

 Reflexive, Antisymmetric, and Transitive 

◦ Think of a directed acyclic graph with/without shortcuts 
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 The heap structure is a partial order 
◦ A partial order is a binary relation that is: 

 Reflexive, Antisymmetric, and Transitive 

◦ Think of a directed acyclic graph with/without shortcuts 
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 Let 𝐶 and 𝐴 be maximum chain and antichain 

 Dilworth’s Lemma: Given an arbitrary partial 
order on 𝑛 elements the product 𝐶 × 𝐴 ≥ 𝑛  
◦ 𝐴 = 7, 𝐶 = 4, 𝑛 = 13 

 Seems to check out 
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 Heap Embedding: 
◦ Left-child of node 𝑖 =  2𝑖 
◦ Right-child of node 𝑖 =  2𝑖 + 1 
◦ Parent of 𝑖 =  𝑖/2  
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A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] 

13 2 4 3 7 5 7 15 8 19 6 11 12 22 



 Insertion 
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 Insertion 
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 Insertion 
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 Insertion 
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 Deletion 

4 

7 

8 19 

5 

6 11 

2 

7 

12 22 

3 

1 

A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] 

14 1 4 2 7 5 7 3 8 19 6 11 12 

15 

22 15 



 Deletion 
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 Deletion 
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 Deletion 
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 What else can be made implicit? 

 

 Toy Problem: Dynamic Membership 

◦ Design a data structure that can: 

 Insert(𝑥) 

 Delete(𝑥) 

 Member(𝑥) 

 

 Heap doesn’t work well for member 
◦ Has very large antichains 



 Dynamic Membership 

 Insert(𝑥) 

 Delete(𝑥) 

 Member(𝑥) 

◦ Heap: 

 Insert → Θ(log 𝑛), Delete → Θ(𝑛), Member → Θ(𝑛) 

◦ Unsorted list: 

 Insert → Θ(1), Delete → Θ(𝑛), Member → Θ(𝑛) 

◦ Sorted list:  

 Insert → Θ(𝑛), Delete → Θ(𝑛), Member → Θ(log 𝑛) 

 What other trade-offs exist? 
 

 



 Beap Properties: 
 

◦ Partitioned into 2𝑛 blocks:  
 𝑖-th block  [𝑖(𝑖 + 1)/2 + 1..𝑖(𝑖 + 1)/2] 

 
◦ 𝑘-th element in the j-th block 

is no larger than the 𝑘-th and 
(𝑘 + 1)-th in (𝑗 + 1)-th block 

 

5 

7 

22 19 

7 

13 

11 

5 

8 

4 3 

6 

2 

A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] 

13 2 3 4 5 5 6 7 7 8 11 22 19 13 



 Searching for 17 
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 Searching for 17 
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 Searching for 4 

5 

7 

22 19 

7 

13 

11 

5 

8 

4 3 

6 

2 



 Inserting 1 
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 Inserting 1 
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 Inserting 1 
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 Inserting 1 
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 Inserting 1 
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 Same idea as binary heap for deletion 

 

 All three operations take Θ( 𝑛) time 

 

 Elements stored in fixed partial order 
◦ Just as in the heap 



 Theorem (Munro and Suwanda 1980): If an 
implicit data structure containing 𝑛 elements 
carries no structural information other than a 
fixed partial order on the stored values, then 
𝑈 ⋅ 𝑆 ≥  𝑛 

 
◦ 𝑈 ← worst case # of data moves during an update 

◦ 𝑆 ← worst case # of comparisons made during a search 

 



Source: XKCD (http://xkcd.com/1339/), Copyright Randall Munroe (2014), 
CREATIVE COMMONS ATTRIBUTION-NONCOMMERCIAL 2.5 LICENSE. 



 What about non-partial orders? 

 

 A rotated list: {7, 11, 13, 14, 1, 4, 5, 6} 
◦ Not hard to see that it is possible to modify binary 

search to find the minimum in the list 

 Caveat: (most) of the elements have to be distinct 

 

 We can do better by using rotated lists 
◦ But we must make the distinctness assumption! 

 



 Data structure: 
◦ Keep ~ 2𝑛 rotated lists, list 𝑖 is of length 𝑖. 
◦ Invariant: Elements in list 𝑖 are smaller than list 𝑖 +  1 

 

 Member:  
◦ Find two consecutive blocks that straddle query element 
◦ Search in the smaller block 
◦ Total cost: Θ(log 𝑛) 
 

 Insertion:  
◦ Find block, insert   
◦ Swap max to min for each larger block 
◦ Total cost: Θ( 𝑛 log 𝑛) 
 



 Munro and Suwanda (1980): 
◦ Combine Beap and Rotated List to get 

 Θ(𝑛1/3 log 𝑛) for each operation 

 

 Fredrickson (1983): 
◦ Applied recursion to Rotated Lists to get 

 Θ(log 𝑛) time for Member(𝑥) 

 Θ(𝑛 2/ log 𝑛 log3/2 𝑛) time for Insert(𝑥) and Delete(𝑥) 



 Fredrickson considered blocking schemes: 
◦ Partition the array into 𝑟 blocks 𝐵 1 ,… , 𝐵 𝑟  
◦ There is a function 𝑓 s.t. 𝐵 𝑖 = 𝑓(𝑖) 

◦ The j-th block contains elements 1 +  𝑓(𝑖)
𝑗−1
𝑖=1  to  𝑓(𝑖)

𝑗
𝑖=1  

 The Basic Rotated List Scheme has 𝑓 𝑖 = 𝑖 

 
 Data structure idea: Bootstrapping 
◦ Sometimes we can plug a data structure into itself 

 Let 𝐷1 have 𝑓 𝑖 = 𝑖 and each block be a rotated list 
 Let 𝐷2 have 𝑓 𝑖 = 𝑖2 and each block be 𝐷1* 

 This gives us Θ(log 𝑛) search, and Θ(𝑛
1

3 log 𝑛) updates! 

 Let 𝐷3 have … 

 
*Numerous missing details regarding the base case 



 Theorem (Munro 1986): There is an implicit data 
structure for the membership problem that has 
worst case Θ(log2 𝑛) time for Member(𝑥), Insert(𝑥), 
and Delete(𝑥) 

 

 What we really want is an balanced search tree 
◦ So, lets see if we can make such a tree implicit 

 

 

 

 



 Theorem (Munro 1986):  There is a data structure for 
the membership problem that occupies 𝑛 + 𝑘2  array 
locations, and uses an additional 𝑘 +  Θ(𝑛/𝑘) pointers, 
counters, and flags. Member(𝑥) takes Θ(log 𝑛) time, and 
Insert(𝑥) and Delete(𝑥) take time Θ(𝑘 + log 𝑛) time. 
 

 Invariant #1: AVL node stores 𝑘 consecutive elements 
◦ A 𝑛𝑜𝑑𝑒 consists of k locations for elements 

 Also a constant number of pointers, flags, and counters 
◦ We take node sized blocks from the end of the data array 
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 We need some extra mechanism to update 

90,91,
94,96 

70,72,
74,77 

50,52,
54,56 

60,65,
66,67 

30,31,
32,35 

90 

70 

50 

60 30 

 Invariant: 0 to k-1 consecutive elements between AVL nodes 

 The elements between two nodes are called a maniple 

40,41,42 

57,58 

68 80 



 We keep pointers to 𝑘 − 1 doubly linked lists 
◦ Each linked list will also consist of nodes 
◦ List 𝑖 will consist of all maniples of 𝑖 elements 
◦ Each AVL node stores a pointer to its maniple 

 
 

AVL nodes 

List Nodes 

40,41,42 70,71,72 60,61,63 26,27,28 

30,31,
32,35 

60,61,
62,65 

50,51,
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20,21,
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 We keep pointers to 𝑘 − 1 doubly linked lists 
◦ Each linked list will also consist of nodes 
◦ List 𝑖 will consist of all maniples of 𝑖 elements 
◦ Each AVL node stores a pointer to its maniple 

 Each list node may contain maniples for up to k AVL nodes 
◦ This set of AVL nodes is called the cohort of the list node 

 We keep circular linked lists so we can find all AVL nodes in a cohort 

(Yes, there are a lot of pointers!) 

AVL nodes 

List Nodes 

40,41,42,70 

30,31,
32,35 

60,61,
62,65 

50,51,
54,57 

20,21,
23,25 

71,72,60,61 63,26,27,28 

0 3 2 1 

3 



 Memory Management: 
◦ When we need a new node, get it from the array 

 New list nodes inserted at the head of the list 

◦ To delete a maniple, swap contents with head 
 Must update maniple/cohort pointers in process 

 If head underflows, swap with final node in array 

 Overall this requires Θ log 𝑛 +𝑘  time 
  

 Thus, we can assume the following primitives: 
◦ PromoteManiple(𝑝, 𝑖, 𝑥): move maniple pointed to by 𝑝, of size 𝑖 

into maniple list 𝑖 + 1, while inserting 𝑥 into the correct position 

◦ DemoteManiple(𝑝, 𝑖, 𝑥): move maniple pointed to by 𝑝, of size 𝑖 
into maniple list 𝑖 − 1, and delete 𝑥 



 Insert is conceptually very easy: 
◦ Two cases: both more or less the same 

 Insert into an AVL node → bump max element into maniple 
 OR Insert directly into maniple 

◦ So, we what we really need is to handle maniple insertion: 
 If the maniple is empty, make a new one in list 1 
 If the maniple is already of size k-1, make AVL node 
 Otherwise, we use PromoteManiple 

 

 Deletion is analogous  
 

 Search: 
◦ In the AVL tree: Θ(log 𝑛)  
◦ In a node: Θ(log 𝑘) 
◦ Total: Θ(log 𝑛) 

90,91, 
94,96 

70,72, 
74,76 

50,52, 
54,56 

60,65, 
66,67 

30,31, 
32,35 

40,41,42 

57,58 

68 77,80 
Insert 76 
Bump 77 

Promote 



 Recall that nodes store 𝑘 consecutive values: 
◦ We can encode 𝑘/2 bits in these values! 

 

 

 

 

 

 

 

◦ Takes Θ(𝑘) time to decode/encode a pointer! 

 We will set 𝑘 = log 𝑛 and get Θ(log2 𝑛) time for all ops. 

 

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] 

3 2 4 5 12 7 13 17 20 18  29 22 

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] 

2 3 4 5 7 12 13 17 18 20  22 29 

1 0 1 0 1 1 



 We set 𝑘 = 𝑐⌈log 𝑛⌉, where c is a big constant 
◦ e.g., 𝑐 = 10 it will be large enough 

 

 Dealing with the cruft: 
◦ There are k-1linked lists of maniples 

 Each list can have up to k-1 unused locations 

 Thus, we are wasting Θ 𝑘2  locations in total! 

 We store these in the final locations of the array 

 Problem solved with extra pointers 

 

 Are we done? 



 Annoying issue: 
◦ The value of ⌈log 𝑛⌉ will change eventually 

◦ Luckily, there is an easy solution: 

 Keep Θ(log log 𝑛) copies of the membership structure 

 Structure 𝑖 stores 22
𝑖
 elements 

 Perform search/updates on all the dictionaries  

 Similar to the rotate list idea for updates 

 We can maintain the running time of Θ(log2 𝑛) 

 

 The end? 



 Several improvements since: 
◦ Franceschini et al. (2004):  

 All operations Θ(log2 𝑛 / log log 𝑛) 

 

◦ Franceschini and Grossi (2003,2006): 

 All operations Θ ( log 𝑛) 

 

◦ Brodal et al. (2012, 2013) 

 Other desirable properties 

 



 Unlike the last problem, this one will be static 

 

 Input:  
◦ A set of n records, each record has k keys 

 Goal: 
◦ Order records for efficient searching using any key 

 

 



 Sort the records according to key #1 

 Break it up into blocks of size 𝑛 

 Sort each block according to key #2 

 

 Search using key #1 takes Θ( 𝑛) time 

 Search using key #2 takes Θ( 𝑛 log 𝑛) time 

 

 Can we do better? 



 We store the elements in a BST layout (like the heap) 
◦ Odd levels: split using key #1 

◦ Even levels: split using key #2 

 What is the running time? 
◦ Θ( 𝑛) for searching under either key 

◦ If we know 𝑗 of 𝑘 keys: Θ(max ( 𝑛1−𝑗/𝑘  , log 𝑛)) 

 

1:F 

5:B 

4:A 6:D 

3:G 

2:J 7:G 

12:K 

10:E 

9:H 11:I 

15:N 

8:C 

13:M 16:O 

This is really a 
kd-tree 



 We can also do orthogonal range reporting:  
◦ Time complexity: 𝜃 𝑛 + 𝑡  where 𝑡 is output size 

◦ Proof: Consider the number of cells that are cut by 
a horizontal or vertical line… 



 Theorem (Alt, Mehlhorn, Munro 1984): Assume all 
comparisons are required to involve the element 
for which we are searching. If 𝑛 elements can be 
arranged in an array such that any of 𝑝 different 
permutations of the ascending order may occur, 

then searching requires Ω(𝑝1/𝑛) comparisons. 



 Consider the following permutation: 
◦ 𝜋 = (3,2,0,1,4,6,5) as a directed graph: 

 

0 1 2 3 4 5 6 

 A permutation induces a set of cycles 
◦ The length of a cycle is the number of elements 

 

 A permutation which is its own inverse is called an involution 
◦ In an involution, all cycles are of length ≤ 2 
◦ Example: 𝜋 = (1,0,3,2,5,4,7,6) or the bit encoding trick 

 
 



 Consider the following ordering scheme: 
◦ Take the first 𝑛/4 odd elements and pair them 

arbitrarily with the last 𝑛/4 odd elements 

 This admits (𝑛/4)! permutations 

 

◦ Lower bound says search time should be Ω(𝑛1/4)… 

 But we can still search in Θ(log 𝑛) time if we make 
comparisons that don’t involve the query element! 

 

 



 We will use the involution trick to show: 

 

 Theorem (Munro 1987): The static two-key 
search problem is solvable in Θ(log2 𝑛 log log 𝑛) 
time for searching under either key. 



 Feldman’s scheme: 
◦ Elements in position 0 𝑚𝑜𝑑 2 

in sorted order 

◦ Elements in position 1 𝑚𝑜𝑑 2 
permuted 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 3 4 5 7 9 12 14 17 19 22 25 29 31 33 37 

9 7 12 22 46 17 11 13 33 34 37 10 2 3 8 1 

 Munro’s 2-key scheme: 
◦ Start by sorting by key 1 

◦ Records in 0 𝑚𝑜𝑑 log 𝑛 sorted by key 1 

 Call these 1-guides 

◦ Conceptually log 𝑛 − 1 data structures  

 𝐷𝑖 for records in position 𝑖 𝑚𝑜𝑑 log 𝑛 

◦ Invariant: 𝑥 ∈  𝐷𝑖 straddled by 1-guides 

 



 For each 𝐷𝑖:  
◦ Put first half of the records into second half of array sorted by key 2 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 3 4 5 7 9 12 14 17 19 22 25 29 31 33 37 

9 7 12 22 46 17 11 13 33 34 37 10 2 3 8 1 



 For each 𝐷𝑖:  
◦ Put first half of the records into second half of array sorted by key 2 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 3 4 5 7 9 12 14 17 19 22 25 29 31 33 37 

9 7 12 22 46 17 11 13 33 34 37 10 2 3 8 1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 19 4 5 7 31 12 14 17 3 22 25 29 9 33 37 

9 34 12 22 46 3 11 13 33 7 37 10 2 17 8 1 



 For each 𝐷𝑖:  
◦ Put first half of the records into second half of array sorted by key 2 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 3 4 5 7 9 12 14 17 19 22 25 29 31 33 37 

9 7 12 22 46 17 11 13 33 34 37 10 2 3 8 1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 19 33 5 7 31 22 14 17 3 12 25 29 9 4 37 

9 34 8 22 46 3 37 13 33 7 11 10 2 17 12 1 



 For each 𝐷𝑖:  
◦ Put first half of the records into second half of array sorted by key 2 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 3 4 5 7 9 12 14 17 19 22 25 29 31 33 37 

9 7 12 22 46 17 11 13 33 34 37 10 2 3 8 1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 19 33 37 7 31 22 25 17 3 12 14 29 9 4 5 

9 34 8 1 46 3 37 10 33 7 11 13 2 17 12 22 



 Keep doing this recursively for each 𝐷𝑖: 
◦ Put the first half into the second sorted by key 2 
◦ Put the first quarter into the second sorted by key 2 
◦ Put the first eighth into the second sorted by key 2 
◦ … 
◦ Stop after log log 𝑛 + 𝑐 recursive calls for some 𝑐 >  0 
◦ Call the j-th sorted chunk from the right level j 

Level 1 Level 2 Level 3 Unsorted 

Θ
𝑛

log2 𝑛
  records 



 We now show how to: 
◦ Search among the 1-guides using key 2 
◦ Search among the unsorted portions of 𝐷𝑖 (either key) 

 Idea that we have seen before: 
◦ Encode pointers in the pairs of records sorted by key 2 
◦ We have Θ(𝑛) such records → can encode Θ(𝑛/ log 𝑛) pointers 
◦ We can use these pointers to encode search trees 

Level 1 Level 2 Level 3 Unsorted 



 Next: how to search using key 2 on the remaining records 
◦ We have Θ(log 𝑛) data structures 

◦ Each structure has Θ(log log 𝑛) levels 

◦ Each level is sorted using key 2 

◦ Overall time: Θ(log2 𝑛 log log 𝑛) 

Level 1 Level 2 Level 3 Unsorted 



 Finally: searching using key 1 
◦ The “much more interesting case” 

◦ Remember (Invariant): each y ∈  𝐷𝑖 is straddled by 1-guides 

 Thus, we can determine where the query element 𝑥 should be 

 That is, we can find a range 𝑟 of log 𝑛 positions (1 per 𝐷𝑖) 

◦ We need to do a binary search within r 

 Θ(log log 𝑛) to search 𝑟  

 For each 𝐷𝑖 we have to track down the correct record 

 How long does this take? 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 ? ? ? 7 ? ? ? 17 ? ? ? 29 ? ? ? 



 Consider a single 𝐷𝑖 
a b c d e f g h i j k l m n o p q r s t u v w x 

x s t m p u r q n w v o d i l e h g b c f k j a 

o w v r n q m u p s t x d i l e h g b c f k j a 

r q n o v w m u p s t x d i l e h g b c f k j a 

r q n o v w m u p s t x d i l e h g b c f k j a 



 Finally: searching using key 1 
◦ The “much more interesting case” 

◦ Remember (Invariant): each y ∈  𝐷𝑖 is straddled by 1-guides 

 Thus, we can determine where the query element 𝑥 should be 

 That is, we can find a range 𝑟 of log 𝑛 positions (1 per 𝐷𝑖) 

◦ We need to do a binary search within r 

 Θ(log log 𝑛) to search 𝑟  

 For each 𝐷𝑖 we have to track down the correct record 

 Tracking down: Θ(log 𝑛) moves, each move: Θ(log 𝑛) cost 

 Overall time: Θ(log2 𝑛 log log 𝑛) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 ? ? ? 7 ? ? ? 17 ? ? ? 29 ? ? ? 



 These results all generalize to 3 or more keys 

 

 Fiat et al. (1988) essentially settled it: 
◦ With 𝑘 keys we can search in Θ(𝑘 log 𝑘 log 𝑛) time 

◦ This solution is somewhat complicated 

 Basic Idea: select guides using Hall’s Theorem 


