
Summer 2014
Paweł Gawrychowski

Mayank Goswami
Patrick Nicholson

9

7

5

1 3 2

 This is a 9 credit point course: 2+2

 Prerequisites: Basic course in data structures
◦ You should know asymptotic analysis (𝑂, 𝑜, Θ, Ω,𝜔)
◦ You should know about linked lists/balanced trees
◦ You should know at least one programming language

 ADA DOC ASM AWK BASH BF C C# C++ 4.3.2 C++ 4.0.0-8 C99 strict CLPS CLOJ LISP sbcl LISP
clisp D ERL F# FORT GO HASK ICON ICK JAR JAVA JS LUA NEM NICE NODEJS CAML PAS fpc PAS
gpc PDF PERL PERL 6 PHP PIKE PS PRLG PYTH 2.7 PYTH 3.2.3 PYTH 3.2.3 n RUBY SCALA SCM

guile SCM qobi SED ST TCL TECS TEXT WSPC

 Marking scheme:
◦ 60% exam
◦ 30% homework sheets (must get 50% on homework)
◦ 10% project (research/survey/implementation)

 Groups of up to 3 people; more details will follow

 We will have weekly homework sheets
◦ Each homework sheet will have

 Theory problems (i.e., proofs)

 Programming problems (at most 20% of homework)

 These are to be submitted on SPOJ

 See homework sheet for details

 We will also have weekly tutorials
◦ Each tutorial review the previous week’s assignment

◦ You must actively participate in the tutorial sessions

 Models of computation
 Implicit Data Structures (Comparison)

◦ Membership (Dictionary) Problem, Multikey Search

 Succinct Data Structures (Word-RAM)
◦ Static problems: rank/select, trees, graphs, etc.
◦ Cell Probe lower bounds for succinct data structures
◦ Discussion of dynamic memory models

 Static predecessor searching (Word-RAM)
 Making data structures dynamic
 Persistence and applications (Pointer Machine/Word-RAM)
 Lower bounds (Comparison, Pointer Machine, Cell-probe, etc.)
 Introduction to the External Memory (I/O) Model

◦ classic data structures: B-trees, Buffer trees.

 Efficient data structures in external memory
◦ Generalizing word-RAM structures to the I/O model
◦ Lower bounds on external memory data structures

Pat

Paweł

Mayank

 Why do we do algorithm analysis?
◦ What are the goals?

 Compare different algorithms

 Determine which algorithm to use in which case

◦ What is the end result of the analysis?

 Input: an algorithm and some input parameters

 We want a number: lower better than higher

 How do we do the analysis?
◦ Computers are very complicated

◦ Instead we analyse simpler models of computation

 There are many different models
 Comparison-based, Word-RAM, Cell-Probe, I/O,

Pointer machine, Cache-oblivious, etc.

 It is important to understand the limitations
◦ This helps with understanding practicality

◦ Models often focus on one particular aspect

◦ We will discuss cases where it can be misleading

 Example: Sorting

Summer 2014

Efficient Data Structures

Patrick Nicholson

 Why do we care about space efficiency?
 Practical reasons:
 In many computations the limiting factor is memory

 The memory hierarchy

 Saving even a small constant factor in space means big money

 Many computing devices often have less memory resources:

 Smartphones

 Microcontrollers

 Sensors

 Facebook enabled toaster

 Why do we care about space efficiency?
 Theoretical Reasons:
 Answer fundamental questions about computation:

 “How much extra space do we need to answer queries about data?”

 “Can we compress data and still answer questions about it?”

 “Which types of queries are impossible to efficiently support?”

 “Are pointers necessary?”

 It is fun 

 What is the model?

◦ Basic Idea: data is stored in an array 𝐴[1. . 𝑛]
 The “structure” consists of the order of the data
 A “pointer” is just an integer in 𝐴[1. . 𝑛]

◦ Only need to know the value 𝑛
 AKA: strict implicit data structure
 Another option: 𝑂(1) extra data allowed

◦ Only allowed to make comparisons:

 𝑎 < 𝑏, 𝑎 = 𝑏, 𝑎 > 𝑏

 Comments?

 You probably already know one…

 Heaps perform the following operations:
 Insert(𝑥): add key 𝑥

 Delete-Min(): delete and return the smallest key

 Get-Min(): return the smallest key

◦ Insert(𝑥) and Delete-Min() take Θ log 𝑛 time

◦ Get-Min() takes Θ(1) time

 Heap Properties:
◦ Complete binary tree except for the last level

◦ Each node’s key is at least as small as its children’s

4

7

8 19

5

6 11

3

7

12 22

15

2

 The heap structure is a partial order
◦ A partial order is a binary relation that is:

 Reflexive, Antisymmetric, and Transitive

◦ Think of a directed acyclic graph with/without shortcuts

4

7

8 19

5

6 11

3

7

12 22

15

2

 The heap structure is a partial order
◦ A partial order is a binary relation that is:

 Reflexive, Antisymmetric, and Transitive

◦ Think of a directed acyclic graph with/without shortcuts

4

7

8 19

5

6 11

3

7

12 22

15

2

A
Maximum

Chain

 The heap structure is a partial order
◦ A partial order is a binary relation that is:

 Reflexive, Antisymmetric, and Transitive

◦ Think of a directed acyclic graph with/without shortcuts

4

7

8 19

5

6 11

3

7

12 22

15

2

A
Maximal

Chain

 The heap structure is a partial order
◦ A partial order is a binary relation that is:

 Reflexive, Antisymmetric, and Transitive

◦ Think of a directed acyclic graph with/without shortcuts

4

7

8 19

5

6 11

3

7

12 22

15

2

The
Maximum
Antichain

 Let 𝐶 and 𝐴 be maximum chain and antichain

 Dilworth’s Lemma: Given an arbitrary partial
order on 𝑛 elements the product 𝐶 × 𝐴 ≥ 𝑛
◦ 𝐴 = 7, 𝐶 = 4, 𝑛 = 13

 Seems to check out

4

7

8 19

5

6 11

3

7

12 22

15

2

Remember this
for later!

 Heap Embedding:
◦ Left-child of node 𝑖 = 2𝑖
◦ Right-child of node 𝑖 = 2𝑖 + 1
◦ Parent of 𝑖 = 𝑖/2

4

7

8 19

5

6 11

3

7

12 22

15

2

A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

13 2 4 3 7 5 7 15 8 19 6 11 12 22

 Insertion

4

7

8 19

5

6 11

3

7

12 22

15

2

A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

14 2 4 3 7 5 7 15 8 19 6 11 12

1

22 1

 Insertion

4

7

8 19

5

6 11

3

7

12 22

1

2

A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

14 2 4 3 7 5 7 1 8 19 6 11 12

15

22 15

 Insertion

4

7

8 19

5

6 11

1

7

12 22

3

2

A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

14 2 4 1 7 5 7 3 8 19 6 11 12

15

22 15

 Insertion

4

7

8 19

5

6 11

2

7

12 22

3

1

A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

14 1 4 2 7 5 7 3 8 19 6 11 12

15

22 15

 Deletion

4

7

8 19

5

6 11

2

7

12 22

3

1

A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

14 1 4 2 7 5 7 3 8 19 6 11 12

15

22 15

 Deletion

4

7

8 19

5

6 11

2

7

12 22

3

1

A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

14 1 4 2 7 5 7 3 8 19 6 11 12

15

22 15

 Deletion

4

7

8 19

5

6 11

2

7

12 22

3

15

A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

13 15 4 2 7 5 7 3 8 19 6 11 12 22

 Deletion

4

7

8 19

5

6 11

3

7

12 22

15

2

A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

13 2 4 3 7 5 7 15 8 19 6 11 12 22

 What else can be made implicit?

 Toy Problem: Dynamic Membership

◦ Design a data structure that can:

 Insert(𝑥)

 Delete(𝑥)

 Member(𝑥)

 Heap doesn’t work well for member
◦ Has very large antichains

 Dynamic Membership

 Insert(𝑥)

 Delete(𝑥)

 Member(𝑥)

◦ Heap:

 Insert → Θ(log 𝑛), Delete → Θ(𝑛), Member → Θ(𝑛)

◦ Unsorted list:

 Insert → Θ(1), Delete → Θ(𝑛), Member → Θ(𝑛)

◦ Sorted list:

 Insert → Θ(𝑛), Delete → Θ(𝑛), Member → Θ(log 𝑛)

 What other trade-offs exist?

 Beap Properties:

◦ Partitioned into 2𝑛 blocks:
 𝑖-th block [𝑖(𝑖 + 1)/2 + 1..𝑖(𝑖 + 1)/2]

◦ 𝑘-th element in the j-th block

is no larger than the 𝑘-th and
(𝑘 + 1)-th in (𝑗 + 1)-th block

5

7

22 19

7

13

11

5

8

4 3

6

2

A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

13 2 3 4 5 5 6 7 7 8 11 22 19 13

 Searching for 17

5

7

22 19

7

13

11

5

8

4 3

6

2

 Searching for 17

5

7

22 19

7

13

11

5

8

4 3

6

2

 Searching for 4

5

7

22 19

7

13

11

5

8

4 3

6

2

 Inserting 1

5

7

22 19

7

13

11

5

8

4 3

6

2

1

 Inserting 1

5

7

22 19

7

13

1

5

8

4 3

6

2

11

 Inserting 1

5

7

22 19

7

13

6

5

8

4 3

1

2

11

 Inserting 1

5

7

22 19

7

13

6

5

8

1 3

4

2

11

 Inserting 1

5

7

22 19

7

13

6

5

8

2 3

4

1

11

 Same idea as binary heap for deletion

 All three operations take Θ(𝑛) time

 Elements stored in fixed partial order
◦ Just as in the heap

 Theorem (Munro and Suwanda 1980): If an
implicit data structure containing 𝑛 elements
carries no structural information other than a
fixed partial order on the stored values, then
𝑈 ⋅ 𝑆 ≥ 𝑛

◦ 𝑈 ← worst case # of data moves during an update

◦ 𝑆 ← worst case # of comparisons made during a search

Source: XKCD (http://xkcd.com/1339/), Copyright Randall Munroe (2014),
CREATIVE COMMONS ATTRIBUTION-NONCOMMERCIAL 2.5 LICENSE.

 What about non-partial orders?

 A rotated list: {7, 11, 13, 14, 1, 4, 5, 6}
◦ Not hard to see that it is possible to modify binary

search to find the minimum in the list

 Caveat: (most) of the elements have to be distinct

 We can do better by using rotated lists
◦ But we must make the distinctness assumption!

 Data structure:
◦ Keep ~ 2𝑛 rotated lists, list 𝑖 is of length 𝑖.
◦ Invariant: Elements in list 𝑖 are smaller than list 𝑖 + 1

 Member:
◦ Find two consecutive blocks that straddle query element
◦ Search in the smaller block
◦ Total cost: Θ(log 𝑛)

 Insertion:
◦ Find block, insert
◦ Swap max to min for each larger block
◦ Total cost: Θ(𝑛 log 𝑛)

 Munro and Suwanda (1980):
◦ Combine Beap and Rotated List to get

 Θ(𝑛1/3 log 𝑛) for each operation

 Fredrickson (1983):
◦ Applied recursion to Rotated Lists to get

 Θ(log 𝑛) time for Member(𝑥)

 Θ(𝑛 2/ log 𝑛 log3/2 𝑛) time for Insert(𝑥) and Delete(𝑥)

 Fredrickson considered blocking schemes:
◦ Partition the array into 𝑟 blocks 𝐵 1 ,… , 𝐵 𝑟
◦ There is a function 𝑓 s.t. 𝐵 𝑖 = 𝑓(𝑖)

◦ The j-th block contains elements 1 + 𝑓(𝑖)
𝑗−1
𝑖=1 to 𝑓(𝑖)

𝑗
𝑖=1

 The Basic Rotated List Scheme has 𝑓 𝑖 = 𝑖

 Data structure idea: Bootstrapping
◦ Sometimes we can plug a data structure into itself

 Let 𝐷1 have 𝑓 𝑖 = 𝑖 and each block be a rotated list
 Let 𝐷2 have 𝑓 𝑖 = 𝑖2 and each block be 𝐷1*

 This gives us Θ(log 𝑛) search, and Θ(𝑛
1

3 log 𝑛) updates!

 Let 𝐷3 have …

*Numerous missing details regarding the base case

 Theorem (Munro 1986): There is an implicit data
structure for the membership problem that has
worst case Θ(log2 𝑛) time for Member(𝑥), Insert(𝑥),
and Delete(𝑥)

 What we really want is an balanced search tree
◦ So, lets see if we can make such a tree implicit

 Theorem (Munro 1986): There is a data structure for
the membership problem that occupies 𝑛 + 𝑘2 array
locations, and uses an additional 𝑘 + Θ(𝑛/𝑘) pointers,
counters, and flags. Member(𝑥) takes Θ(log 𝑛) time, and
Insert(𝑥) and Delete(𝑥) take time Θ(𝑘 + log 𝑛) time.

 Invariant #1: AVL node stores 𝑘 consecutive elements
◦ A 𝑛𝑜𝑑𝑒 consists of k locations for elements

 Also a constant number of pointers, flags, and counters
◦ We take node sized blocks from the end of the data array

90,91,
94,96

70,72,
74,77

50,52,
54,56

60,65,
67,68

30,31,
32,35

90

70

50

60 30

 We need some extra mechanism to update

90,91,
94,96

70,72,
74,77

50,52,
54,56

60,65,
66,67

30,31,
32,35

90

70

50

60 30

 Invariant: 0 to k-1 consecutive elements between AVL nodes

 The elements between two nodes are called a maniple

40,41,42

57,58

68 80

 We keep pointers to 𝑘 − 1 doubly linked lists
◦ Each linked list will also consist of nodes
◦ List 𝑖 will consist of all maniples of 𝑖 elements
◦ Each AVL node stores a pointer to its maniple

AVL nodes

List Nodes

40,41,42 70,71,72 60,61,63 26,27,28

30,31,
32,35

60,61,
62,65

50,51,
54,57

20,21,
23,25

3

 We keep pointers to 𝑘 − 1 doubly linked lists
◦ Each linked list will also consist of nodes
◦ List 𝑖 will consist of all maniples of 𝑖 elements
◦ Each AVL node stores a pointer to its maniple

 Each list node may contain maniples for up to k AVL nodes
◦ This set of AVL nodes is called the cohort of the list node

 We keep circular linked lists so we can find all AVL nodes in a cohort

(Yes, there are a lot of pointers!)

AVL nodes

List Nodes

40,41,42,70

30,31,
32,35

60,61,
62,65

50,51,
54,57

20,21,
23,25

71,72,60,61 63,26,27,28

0 3 2 1

3

 Memory Management:
◦ When we need a new node, get it from the array

 New list nodes inserted at the head of the list

◦ To delete a maniple, swap contents with head
 Must update maniple/cohort pointers in process

 If head underflows, swap with final node in array

 Overall this requires Θ log 𝑛 +𝑘 time

 Thus, we can assume the following primitives:
◦ PromoteManiple(𝑝, 𝑖, 𝑥): move maniple pointed to by 𝑝, of size 𝑖

into maniple list 𝑖 + 1, while inserting 𝑥 into the correct position

◦ DemoteManiple(𝑝, 𝑖, 𝑥): move maniple pointed to by 𝑝, of size 𝑖
into maniple list 𝑖 − 1, and delete 𝑥

 Insert is conceptually very easy:
◦ Two cases: both more or less the same

 Insert into an AVL node → bump max element into maniple
 OR Insert directly into maniple

◦ So, we what we really need is to handle maniple insertion:
 If the maniple is empty, make a new one in list 1
 If the maniple is already of size k-1, make AVL node
 Otherwise, we use PromoteManiple

 Deletion is analogous 

 Search:
◦ In the AVL tree: Θ(log 𝑛)
◦ In a node: Θ(log 𝑘)
◦ Total: Θ(log 𝑛)

90,91,
94,96

70,72,
74,76

50,52,
54,56

60,65,
66,67

30,31,
32,35

40,41,42

57,58

68 77,80
Insert 76
Bump 77

Promote

 Recall that nodes store 𝑘 consecutive values:
◦ We can encode 𝑘/2 bits in these values!

◦ Takes Θ(𝑘) time to decode/encode a pointer!

 We will set 𝑘 = log 𝑛 and get Θ(log2 𝑛) time for all ops.

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

3 2 4 5 12 7 13 17 20 18 29 22

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

2 3 4 5 7 12 13 17 18 20 22 29

1 0 1 0 1 1

 We set 𝑘 = 𝑐⌈log 𝑛⌉, where c is a big constant
◦ e.g., 𝑐 = 10 it will be large enough

 Dealing with the cruft:
◦ There are k-1linked lists of maniples

 Each list can have up to k-1 unused locations

 Thus, we are wasting Θ 𝑘2 locations in total!

 We store these in the final locations of the array

 Problem solved with extra pointers

 Are we done?

 Annoying issue:
◦ The value of ⌈log 𝑛⌉ will change eventually

◦ Luckily, there is an easy solution:

 Keep Θ(log log 𝑛) copies of the membership structure

 Structure 𝑖 stores 22
𝑖
 elements

 Perform search/updates on all the dictionaries

 Similar to the rotate list idea for updates

 We can maintain the running time of Θ(log2 𝑛)

 The end?

 Several improvements since:
◦ Franceschini et al. (2004):

 All operations Θ(log2 𝑛 / log log 𝑛)

◦ Franceschini and Grossi (2003,2006):

 All operations Θ (log 𝑛)

◦ Brodal et al. (2012, 2013)

 Other desirable properties

 Unlike the last problem, this one will be static

 Input:
◦ A set of n records, each record has k keys

 Goal:
◦ Order records for efficient searching using any key

 Sort the records according to key #1

 Break it up into blocks of size 𝑛

 Sort each block according to key #2

 Search using key #1 takes Θ(𝑛) time

 Search using key #2 takes Θ(𝑛 log 𝑛) time

 Can we do better?

 We store the elements in a BST layout (like the heap)
◦ Odd levels: split using key #1

◦ Even levels: split using key #2

 What is the running time?
◦ Θ(𝑛) for searching under either key

◦ If we know 𝑗 of 𝑘 keys: Θ(max (𝑛1−𝑗/𝑘 , log 𝑛))

1:F

5:B

4:A 6:D

3:G

2:J 7:G

12:K

10:E

9:H 11:I

15:N

8:C

13:M 16:O

This is really a
kd-tree

 We can also do orthogonal range reporting:
◦ Time complexity: 𝜃 𝑛 + 𝑡 where 𝑡 is output size

◦ Proof: Consider the number of cells that are cut by
a horizontal or vertical line…

 Theorem (Alt, Mehlhorn, Munro 1984): Assume all
comparisons are required to involve the element
for which we are searching. If 𝑛 elements can be
arranged in an array such that any of 𝑝 different
permutations of the ascending order may occur,

then searching requires Ω(𝑝1/𝑛) comparisons.

 Consider the following permutation:
◦ 𝜋 = (3,2,0,1,4,6,5) as a directed graph:

0 1 2 3 4 5 6

 A permutation induces a set of cycles
◦ The length of a cycle is the number of elements

 A permutation which is its own inverse is called an involution
◦ In an involution, all cycles are of length ≤ 2
◦ Example: 𝜋 = (1,0,3,2,5,4,7,6) or the bit encoding trick

 Consider the following ordering scheme:
◦ Take the first 𝑛/4 odd elements and pair them

arbitrarily with the last 𝑛/4 odd elements

 This admits (𝑛/4)! permutations

◦ Lower bound says search time should be Ω(𝑛1/4)…

 But we can still search in Θ(log 𝑛) time if we make
comparisons that don’t involve the query element!

 We will use the involution trick to show:

 Theorem (Munro 1987): The static two-key
search problem is solvable in Θ(log2 𝑛 log log 𝑛)
time for searching under either key.

 Feldman’s scheme:
◦ Elements in position 0 𝑚𝑜𝑑 2

in sorted order

◦ Elements in position 1 𝑚𝑜𝑑 2
permuted

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 3 4 5 7 9 12 14 17 19 22 25 29 31 33 37

9 7 12 22 46 17 11 13 33 34 37 10 2 3 8 1

 Munro’s 2-key scheme:
◦ Start by sorting by key 1

◦ Records in 0 𝑚𝑜𝑑 log 𝑛 sorted by key 1

 Call these 1-guides

◦ Conceptually log 𝑛 − 1 data structures

 𝐷𝑖 for records in position 𝑖 𝑚𝑜𝑑 log 𝑛

◦ Invariant: 𝑥 ∈ 𝐷𝑖 straddled by 1-guides

 For each 𝐷𝑖:
◦ Put first half of the records into second half of array sorted by key 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 3 4 5 7 9 12 14 17 19 22 25 29 31 33 37

9 7 12 22 46 17 11 13 33 34 37 10 2 3 8 1

 For each 𝐷𝑖:
◦ Put first half of the records into second half of array sorted by key 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 3 4 5 7 9 12 14 17 19 22 25 29 31 33 37

9 7 12 22 46 17 11 13 33 34 37 10 2 3 8 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 19 4 5 7 31 12 14 17 3 22 25 29 9 33 37

9 34 12 22 46 3 11 13 33 7 37 10 2 17 8 1

 For each 𝐷𝑖:
◦ Put first half of the records into second half of array sorted by key 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 3 4 5 7 9 12 14 17 19 22 25 29 31 33 37

9 7 12 22 46 17 11 13 33 34 37 10 2 3 8 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 19 33 5 7 31 22 14 17 3 12 25 29 9 4 37

9 34 8 22 46 3 37 13 33 7 11 10 2 17 12 1

 For each 𝐷𝑖:
◦ Put first half of the records into second half of array sorted by key 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 3 4 5 7 9 12 14 17 19 22 25 29 31 33 37

9 7 12 22 46 17 11 13 33 34 37 10 2 3 8 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 19 33 37 7 31 22 25 17 3 12 14 29 9 4 5

9 34 8 1 46 3 37 10 33 7 11 13 2 17 12 22

 Keep doing this recursively for each 𝐷𝑖:
◦ Put the first half into the second sorted by key 2
◦ Put the first quarter into the second sorted by key 2
◦ Put the first eighth into the second sorted by key 2
◦ …
◦ Stop after log log 𝑛 + 𝑐 recursive calls for some 𝑐 > 0
◦ Call the j-th sorted chunk from the right level j

Level 1 Level 2 Level 3 Unsorted

Θ
𝑛

log2 𝑛
 records

 We now show how to:
◦ Search among the 1-guides using key 2
◦ Search among the unsorted portions of 𝐷𝑖 (either key)

 Idea that we have seen before:
◦ Encode pointers in the pairs of records sorted by key 2
◦ We have Θ(𝑛) such records → can encode Θ(𝑛/ log 𝑛) pointers
◦ We can use these pointers to encode search trees

Level 1 Level 2 Level 3 Unsorted

 Next: how to search using key 2 on the remaining records
◦ We have Θ(log 𝑛) data structures

◦ Each structure has Θ(log log 𝑛) levels

◦ Each level is sorted using key 2

◦ Overall time: Θ(log2 𝑛 log log 𝑛)

Level 1 Level 2 Level 3 Unsorted

 Finally: searching using key 1
◦ The “much more interesting case”

◦ Remember (Invariant): each y ∈ 𝐷𝑖 is straddled by 1-guides

 Thus, we can determine where the query element 𝑥 should be

 That is, we can find a range 𝑟 of log 𝑛 positions (1 per 𝐷𝑖)

◦ We need to do a binary search within r

 Θ(log log 𝑛) to search 𝑟

 For each 𝐷𝑖 we have to track down the correct record

 How long does this take?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 ? ? ? 7 ? ? ? 17 ? ? ? 29 ? ? ?

 Consider a single 𝐷𝑖
a b c d e f g h i j k l m n o p q r s t u v w x

x s t m p u r q n w v o d i l e h g b c f k j a

o w v r n q m u p s t x d i l e h g b c f k j a

r q n o v w m u p s t x d i l e h g b c f k j a

r q n o v w m u p s t x d i l e h g b c f k j a

 Finally: searching using key 1
◦ The “much more interesting case”

◦ Remember (Invariant): each y ∈ 𝐷𝑖 is straddled by 1-guides

 Thus, we can determine where the query element 𝑥 should be

 That is, we can find a range 𝑟 of log 𝑛 positions (1 per 𝐷𝑖)

◦ We need to do a binary search within r

 Θ(log log 𝑛) to search 𝑟

 For each 𝐷𝑖 we have to track down the correct record

 Tracking down: Θ(log 𝑛) moves, each move: Θ(log 𝑛) cost

 Overall time: Θ(log2 𝑛 log log 𝑛)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 ? ? ? 7 ? ? ? 17 ? ? ? 29 ? ? ?

 These results all generalize to 3 or more keys

 Fiat et al. (1988) essentially settled it:
◦ With 𝑘 keys we can search in Θ(𝑘 log 𝑘 log 𝑛) time

◦ This solution is somewhat complicated

 Basic Idea: select guides using Hall’s Theorem

