Efficient Data Structures

Summer 2014 Paweł Gawrychowski Mayank Goswami Patrick Nicholson

About the course: Marking, etc.

This is a 9 credit point course: 2+2

- Prerequisites: Basic course in data structures
 - You *should* know asymptotic analysis $(0, o, \Theta, \Omega, \omega)$
 - You should know about linked lists/balanced trees
 - You *should* know at least one programming language
 - ADA DOC ASM AWK BASH BF C C# C++ 4.3.2 C++ 4.0.0-8 C99 strict CLPS CLOJ LISP sbcl LISP clisp D ERL F# FORT GO HASK ICON ICK JAR JAVA JS LUA NEM NICE NODEJS CAML PAS fpc PAS gpc PDF PERL PERL 6 PHP PIKE PS PRLG PYTH 2.7 PYTH 3.2.3 PYTH 3.2.3 n RUBY SCALA SCM guile SCM qobi SED ST TCL TECS TEXT WSPC

Marking scheme:

- 60% exam
- 30% homework sheets (must get 50% on homework)
- 10% project (research/survey/implementation)
 - Groups of up to 3 people; more details will follow

About the course: Marking, etc.

- We will have weekly homework sheets
 - Each homework sheet will have
 - Theory problems (i.e., proofs)
 - Programming problems (at most 20% of homework)
 - These are to be submitted on SPOJ
 - See homework sheet for details
- We will also have weekly tutorials
 - Each tutorial review the previous week's assignment
 - You must actively participate in the tutorial sessions

About the course: Short Outline

Pat

Paweł

Mayank

- Models of computation
- Implicit Data Structures (Comparison)
 - Membership (Dictionary) Problem, Multikey Search
- Succinct Data Structures (Word-RAM)
 - Static problems: rank/select, trees, graphs, etc.
 - Cell Probe lower bounds for succinct data structures
 - Discussion of dynamic memory models
- Static predecessor searching (Word-RAM)
- Making data structures dynamic
- Persistence and applications (Pointer Machine/Word-RAM)
- Lower bounds (Comparison, Pointer Machine, Cell-probe, etc.)
- Introduction to the External Memory (I/O) Model
 - classic data structures: B-trees, Buffer trees.
- Efficient data structures in external memory
 - Generalizing word-RAM structures to the I/O model
 - Lower bounds on external memory data structures

Let's get Philosophical

- > Why do we do algorithm analysis?
 - What are the goals?
 - Compare different algorithms
 - Determine which algorithm to use in which case
 - What is the end result of the analysis?
 - Input: an algorithm and some input parameters
 - We want a number: lower better than higher
- How do we do the analysis?
 - Computers are very complicated
 - Instead we analyse simpler *models of computation*

What model to use?

There are many different models

- Comparison-based, Word-RAM, Cell-Probe, I/O, Pointer machine, Cache-oblivious, etc.
- It is important to understand the limitations
 - This helps with understanding practicality
 - Models often focus on one particular aspect
 - We will discuss cases where it can be misleading
- Example: Sorting

IMPLICIT DATA STRUCTURES

Summer 2014 Efficient Data Structures Patrick Nicholson

Space Efficiency

- Why do we care about space efficiency?
 - Practical reasons:
 - In many computations the limiting factor is memory
 - The memory hierarchy
 - Saving even a small constant factor in space means big money
 - Many computing devices often have less memory resources:
 - Smartphones
 - Microcontrollers
 - Sensors
 - Facebook enabled toaster

Space Efficiency

- Why do we care about space efficiency?
 - Theoretical Reasons:
 - Answer fundamental questions about computation:
 - "How much extra space do we need to answer queries about data?"
 - "Can we compress data and still answer questions about it?"
 - "Which types of queries are impossible to efficiently support?"
 - "Are pointers necessary?"
 - It is fun ☺

Implicit Data Structures

• What is the model?

- Basic Idea: data is stored in an array A[1..n]
 - The "structure" consists of the order of the data
 - A "pointer" is just an integer in A[1..n]
- \circ Only need to know the value n
 - AKA: strict implicit data structure
 - Another option: *O*(1) extra data allowed
- Only allowed to make comparisons:
 - a < b, a = b, a > b

Comments?

Implicit Data Structures

You probably already know one...

- Heaps perform the following operations:
 - Insert(*x*): add key *x*
 - Delete-Min(): delete and return the smallest key
 - Get-Min(): return the smallest key
 - Insert(x) and Delete-Min() take $\Theta(\log n)$ time
 - Get-Min() takes $\Theta(1)$ time

- Heap Properties:
 - Complete binary tree except for the last level
 - Each node's key is at least as small as its children's

> The heap structure is a partial order

- A partial order is a binary relation that is:
 - Reflexive, Antisymmetric, and Transitive
- Think of a directed acyclic graph with/without shortcuts

R

Maximum

The heap structure is a partial order

• A partial order is a binary relation that is:

exive, Antisymmetric, and Transitive

a directed acyclic graph with/without shortcuts

Chain 2 4 7 5 7 15 8 19 6 11 12 22

4

19

R

Maximal

Chain

8

The heap structure is a partial order

• A partial order is a binary relation that is:

5

6

exive, Antisymmetric, and Transitive

11

2

12

a directed acyclic graph with/without shortcuts

3

22

15

> The heap structure is a partial order

- A partial order is a binary relation that is:
 - Reflexive, Antisymmetric, and Transitive
- Think of a directed acyclic graph with/without shortcuts

Partial Orders (Cont')

Let C and A be maximum chain and antichain
Dilworth's Lemma: Given an arbitrary partial order on n elements the product |C| × |A| ≥ n
|A| = 7, |C| = 4, n = 13

2

11

12

Seems to check out

6

19

Remember this for later!

Back to the Binary Heap

- Heap Embedding:
 - Left-child of node i = 2i
 - Right-child of node i = 2i + 1
 - Parent of $i = \lfloor i/2 \rfloor$

A[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]	[16]
13	2	4	3	7	5	7	15	8	19	6	11	12	22			

A[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]	[16]
14	2	4	3	7	5	7	15	8	19	6	11	12	22	1		
							A							R		
							B							B		

A[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]	[16]
14	2	4	3	7	5	7	1	8	19	6	11	12	22	15		
													(a)			

A[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]	[16]
14	2	4	1	7	5	7	3	8	19	6	11	12	22	15		

A[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]	[16]
14	1	4	2	7	5	7	3	8	19	6	11	12	22	15		

A[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]	[16]
14	1	4	2	7	5	7	3	8	19	6	11	12	22	15		

A[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]	[16]
14	1	4	2	7	5	7	3	8	19	6	11	12	22	15		

A	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]	[16]
	13	15	4	2	7	5	7	3	8	19	6	11	12	22			

A[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]	[16]
13	2	4	3	7	5	7	15	8	19	6	11	12	22			

Beyond the Heap

- What else can be made implicit?
- Toy Problem: Dynamic Membership
 - Design a data structure that can:
 - Insert(x)
 - Delete(x)
 - Member(x)

Heap doesn't work well for member
 Has very large antichains

Beyond the Heap

- Dynamic Membership
 - Insert(x)
 - Delete(x)
 - Member(x)
 - Heap:
 - Insert $\rightarrow \Theta(\log n)$, Delete $\rightarrow \Theta(n)$, Member $\rightarrow \Theta(n)$
 - Unsorted list:
 - Insert $\rightarrow \Theta(1)$, Delete $\rightarrow \Theta(n)$, Member $\rightarrow \Theta(n)$
 - Sorted list:
 - Insert $\rightarrow \Theta(n)$, Delete $\rightarrow \Theta(n)$, Member $\rightarrow \Theta(\log n)$
- What other trade-offs exist?

Beaps: <u>Biparental Heaps</u>

- Beap Properties:
 - Partitioned into $\sqrt{2n}$ blocks:
 - *i*-th block [i(i+1)/2 + 1..i(i+1)/2]
 - k-th element in the j-th block is no larger than the k-th and (k + 1)-th in (j + 1)-th block

Searching for 17

Searching for 17

Searching for 4

Beaps: Biparental Heaps

Inserting 1

Beaps: <u>Biparental Heaps</u>

- Same idea as binary heap for deletion
- All three operations take $\Theta(\sqrt{n})$ time
- Elements stored in fixed partial order
 Just as in the heap

Beaps: <u>Biparental Heaps</u>

- Theorem (Munro and Suwanda 1980): If an implicit data structure containing n elements carries no structural information other than a fixed partial order on the stored values, then $U \cdot S \ge n$
 - $U \leftarrow$ worst case # of data moves during an update
 - $S \leftarrow$ worst case # of comparisons made during a search

But there is an assumption...

Source: XKCD (http://xkcd.com/1339/), Copyright Randall Munroe (2014), CREATIVE COMMONS ATTRIBUTION-NONCOMMERCIAL 2.5 LICENSE.

Rotated Lists

What about non-partial orders?

- A rotated list: {7, 11, 13, 14, 1, 4, 5, 6}
 - Not hard to see that it is possible to modify binary search to find the minimum in the list
 - Caveat: (most) of the elements have to be distinct
- We can do better by using rotated lists
 - But we must make the distinctness assumption!

Basic Rotated List Scheme

Data structure:

- Keep $\sim \sqrt{2n}$ rotated lists, list *i* is of length *i*.
- Invariant: Elements in list *i* are smaller than list i + 1

Member:

- Find two consecutive blocks that straddle query element
- Search in the smaller block
- Total cost: $\Theta(\log n)$

Insertion:

- Find block, insert
- Swap max to min for each larger block
- Total cost: $\Theta(\sqrt{n} \log n)$

Extensions to Rotated Lists

Munro and Suwanda (1980):

- Combine Beap and Rotated List to get
 - $\Theta(n^{1/3} \log n)$ for each operation

Fredrickson (1983):

- Applied recursion to Rotated Lists to get
 - $\Theta(\log n)$ time for Member(x)
 - $\Theta(n^{\sqrt{2/\log n}} \log^{3/2} n)$ time for Insert(*x*) and Delete(*x*)

Fredrickson's Rotated Lists

- Fredrickson considered blocking schemes:
 - Partition the array into r blocks B(1), ..., B(r)
 - There is a function f s.t. |B(i)| = f(i)
 - The j-th block contains elements $1 + \sum_{i=1}^{j-1} f(i)$ to $\sum_{i=1}^{j} f(i)$
 - The Basic Rotated List Scheme has f(i) = i
- Data structure idea: *Bootstrapping*
 - Sometimes we can plug a data structure into itself
 - Let D_1 have f(i) = i and each block be a rotated list
 - Let D_2 have $f(i) = i^2$ and each block be D_1^*
 - This gives us $\Theta(\log n)$ search, and $\Theta(n^{\frac{1}{3}}\log n)$ updates!
 - Let *D*₃ have ...

*Numerous missing details regarding the base case

Beyond Rotated Lists

- Theorem (Munro 1986): There is an implicit data structure for the membership problem that has worst case Θ(log² n) time for Member(x), Insert(x), and Delete(x)
- What we really want is an balanced search tree
 So, lets see if we can make such a tree implicit

Semi-Implicit AVL Tree

- Theorem (Munro 1986): There is a data structure for the membership problem that occupies $n + k^2$ array locations, and uses an additional $k + \Theta(n/k)$ pointers, counters, and flags. Member(x) takes $\Theta(\log n)$ time, and Insert(x) and Delete(x) take time $\Theta(k + \log n)$ time.
- Invariant #1: AVL node stores k consecutive elements
 - A node consists of k locations for elements
 - Also a constant number of pointers, flags, and counters
 - We take node sized blocks from the end of the data array

Semi–Implicit AVL Tree (2)

We need some extra mechanism to update

- ▶ Invariant: 0 to k-1 consecutive elements between AVL nodes
- > The elements between two nodes are called a *maniple*

Managing Maniples (Logical)

- We keep pointers to k 1 doubly linked lists
 - Each linked list will also consist of nodes
 - List *i* will consist of all maniples of *i* elements
 - Each AVL node stores a pointer to its maniple

Managing Maniples (Physical)

- We keep pointers to k 1 doubly linked lists
 - Each linked list will also consist of nodes
 - List *i* will consist of all maniples of *i* elements
 - Each AVL node stores a pointer to its maniple

- Each list node may contain maniples for up to k AVL nodes
 - This set of AVL nodes is called the *cohort* of the list node

• We keep circular linked lists so we can find all AVL nodes in a cohort

(Yes, there are a lot of pointers!)

Managing Maniples (Updates)

- Memory Management:
 - When we need a new node, get it from the array
 - New list nodes inserted at the head of the list
 - To delete a maniple, swap contents with head
 - Must update maniple/cohort pointers in process
 - If head underflows, swap with final node in array
 - Overall this requires $\Theta(\log n + k)$ time

Thus, we can assume the following primitives:

- PromoteManiple(p, i, x): move maniple pointed to by p, of size i into maniple list i + 1, while inserting x into the correct position
- DemoteManiple(p, i, x): move maniple pointed to by p, of size i into maniple list i 1, and delete x

Performing Operations

- Insert is conceptually very easy:
 - Two cases: both more or less the same
 - Insert into an AVL node \rightarrow bump max element into maniple
 - OR Insert directly into maniple
 - So, we what we really need is to handle maniple insertion:
 - If the maniple is empty, make a new one in list 1
 - If the maniple is already of size k-1, make AVL node
 - Otherwise, we use PromoteManiple
- Deletion is analogous ☺
- Search:
 - In the AVL tree: $\Theta(\log n)$
 - In a node: $\Theta(\log k)$
 - Total: $\Theta(\log n)$

Making it Implicit

- Recall that nodes store k consecutive values:
 - We can encode k/2 bits in these values!

- Takes $\Theta(k)$ time to decode/encode a pointer!
 - We will set $k = \log n$ and get $\Theta(\log^2 n)$ time for all ops.

Making it Implicit (2)

We set k = c[log n], where c is a big constant
e.g., c = 10 it will be large enough

- Dealing with the cruft:
 - There are k-1linked lists of maniples
 - Each list can have up to k-1 unused locations
 - Thus, we are wasting $\Theta(k^2)$ locations in total!
 - We store these in the final locations of the array
 - Problem solved with extra pointers

Are we done?

Making it Implicit (3)

Annoying issue:

- The value of $\lceil \log n \rceil$ will change eventually
- Luckily, there is an easy solution:
 - Keep $\Theta(\log \log n)$ copies of the membership structure
 - Structure *i* stores 2^{2^i} elements
 - Perform search/updates on all the dictionaries
 - Similar to the rotate list idea for updates
 - We can maintain the running time of $\Theta(\log^2 n)$

The end?

Wrap Up

- Several improvements since:
 - Franceschini et al. (2004):
 - All operations $\Theta(\log^2 n / \log \log n)$
 - Franceschini and Grossi (2003,2006):
 - All operations $\Theta(\log n)$
 - Brodal et al. (2012, 2013)
 - Other desirable properties

Next Problem: Multikey Search

- Unlike the last problem, this one will be **static**
- Input:
 - A set of n records, each record has k keys
- <u>Goal</u>:
 - Order records for efficient searching using *any* key

- Sort the records according to key #1
- Break it up into blocks of size \sqrt{n}
- Sort each block according to key #2
- Search using key #1 takes $\Theta(\sqrt{n})$ time
- Search using key #2 takes $\Theta(\sqrt{n}\log n)$ time
- Can we do better?

We store the elements in a BST layout (like the heap)

- Odd levels: split using key #1 0
- Even levels: split using key #2
- What is the running time?
 - $\Theta(\sqrt{n})$ for searching under either key
 - If we know *j* of *k* keys: $\Theta(\max(n^{1-j/k}, \log n))$

This is really a

Kd-trees

• We can also do *orthogonal range reporting:*

- Time complexity: $\theta(\sqrt{n} + t)$ where t is output size
- Proof: Consider the number of *cells* that are cut by a horizontal or vertical line...

A Relevant Lower Bound

Theorem (Alt, Mehlhorn, Munro 1984): Assume all comparisons are required to involve the element for which we are searching. If *n* elements can be arranged in an array such that any of *p* different permutations of the ascending order may occur, then searching requires Ω(p^{1/n}) comparisons.

Permutations, Cycles, and Involutions

Consider the following permutation:

• $\pi = (3,2,0,1,4,6,5)$ as a directed graph:

- A permutation induces a set of *cycles*
 - The length of a cycle is the number of elements
- A permutation which is its own inverse is called an *involution*
 - In an involution, all cycles are of length ≤ 2
 - Example: $\pi = (1,0,3,2,5,4,7,6)$ or the bit encoding trick

Feldman's Involution Idea

- Consider the following ordering scheme:
 - Take the first n/4 odd elements and pair them arbitrarily with the last n/4 odd elements
 - This admits (n/4)! permutations
 - Lower bound says search time should be $\Omega(n^{1/4})...$
 - But we can still search in $\Theta(\log n)$ time if we make comparisons that **don't** involve the query element!

• We will use the involution trick to show:

Theorem (Munro 1987): The static two-key search problem is solvable in O(log² n log log n) time for searching under either key.

Feldman's scheme:

- Elements in position 0 mod 2 in sorted order
- Elements in position 1 *mod* 2 permuted

Munro's 2-key scheme:

- Start by sorting by key 1
- Records in 0 mod log n sorted by key 1
 - Call these 1-guides
- Conceptually $\log n 1$ data structures
 - D_i for records in position $i \mod \log n$
- Invariant: $x \in D_i$ straddled by 1-guides

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	3	4	5	7	9	12	14	17	19	22	25	29	31	33	37
9	7	12	22	46	17	11	13	33	34	37	10	2	3	8	1

- For each D_i :
 - Put first half of the records into second half of array sorted by key 2

- For each D_i :
 - Put first half of the records into second half of array sorted by key 2

- For each D_i :
 - Put first half of the records into second half of array sorted by key 2

- For each D_i :
 - Put first half of the records into second half of array sorted by key 2

- Keep doing this recursively for each D_i :
 - Put the first half into the second sorted by key 2
 - Put the first quarter into the second sorted by key 2
 - Put the first eighth into the second sorted by key 2
 - •
 - Stop after $\log \log n + c$ recursive calls for some c > 0
 - Call the j-th sorted chunk from the right *level* j

Supporting Search (Part 1)

- We now show how to:
 - Search among the 1-guides using key 2
 - Search among the unsorted portions of D_i (either key)
- Idea that we have seen before:
 - Encode pointers in the pairs of records sorted by key 2
 - We have $\Theta(n)$ such records \rightarrow can encode $\Theta(n/\log n)$ pointers
 - We can use these pointers to encode search trees

Supporting Search (Part 2)

- Next: how to search using key 2 on the remaining records
 - We have $\Theta(\log n)$ data structures
 - Each structure has $\Theta(\log \log n)$ levels
 - Each level is sorted using key 2
 - Overall time: $\Theta(\log^2 n \log \log n)$

Searching (Part 3)

Finally: searching using key 1

- The "much more interesting case"
- **Remember (Invariant)**: each $y \in D_i$ is straddled by 1-guides
 - Thus, we can determine where the query element *x* should be
 - That is, we can find a range r of $\log n$ positions (1 per D_i)
- We need to do a binary search within r
 - $\Theta(\log \log n)$ to search r
 - For each D_i we have to track down the correct record
 - How long does this take?

Tracking down elements

• Consider a single D_i

Supporting Search (Part 3)

Finally: searching using key 1

- The "much more interesting case"
- **Remember (Invariant)**: each $y \in D_i$ is straddled by 1-guides
 - Thus, we can determine where the query element x should be
 - That is, we can find a range r of $\log n$ positions (1 per D_i)
- We need to do a binary search within r
 - $\Theta(\log \log n)$ to search r
 - For each D_i we have to track down the correct record
 - Tracking down: $\Theta(\log n)$ moves, each move: $\Theta(\log n)$ cost
- Overall time: $\Theta(\log^2 n \log \log n)$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	?	?	?	7	?	?	?	17	?	?	?	29	?	?	?

Wrap Up

> These results all generalize to 3 or more keys

- Fiat et al. (1988) essentially settled it:
 - With k keys we can search in $\Theta(k \log k \log n)$ time
 - This solution is somewhat complicated
 - Basic Idea: select guides using Hall's Theorem