
Summer 2014
Paweł Gawrychowski

Mayank Goswami
Patrick Nicholson

9

7

5

1 3 2

 This is a 9 credit point course: 2+2

 Prerequisites: Basic course in data structures
◦ You should know asymptotic analysis (𝑂, 𝑜, Θ, Ω,𝜔)
◦ You should know about linked lists/balanced trees
◦ You should know at least one programming language

 ADA DOC ASM AWK BASH BF C C# C++ 4.3.2 C++ 4.0.0-8 C99 strict CLPS CLOJ LISP sbcl LISP
clisp D ERL F# FORT GO HASK ICON ICK JAR JAVA JS LUA NEM NICE NODEJS CAML PAS fpc PAS
gpc PDF PERL PERL 6 PHP PIKE PS PRLG PYTH 2.7 PYTH 3.2.3 PYTH 3.2.3 n RUBY SCALA SCM

guile SCM qobi SED ST TCL TECS TEXT WSPC

 Marking scheme:
◦ 60% exam
◦ 30% homework sheets (must get 50% on homework)
◦ 10% project (research/survey/implementation)

 Groups of up to 3 people; more details will follow

 We will have weekly homework sheets
◦ Each homework sheet will have

 Theory problems (i.e., proofs)

 Programming problems (at most 20% of homework)

 These are to be submitted on SPOJ

 See homework sheet for details

 We will also have weekly tutorials
◦ Each tutorial review the previous week’s assignment

◦ You must actively participate in the tutorial sessions

 Models of computation
 Implicit Data Structures (Comparison)

◦ Membership (Dictionary) Problem, Multikey Search

 Succinct Data Structures (Word-RAM)
◦ Static problems: rank/select, trees, graphs, etc.
◦ Cell Probe lower bounds for succinct data structures
◦ Discussion of dynamic memory models

 Static predecessor searching (Word-RAM)
 Making data structures dynamic
 Persistence and applications (Pointer Machine/Word-RAM)
 Lower bounds (Comparison, Pointer Machine, Cell-probe, etc.)
 Introduction to the External Memory (I/O) Model

◦ classic data structures: B-trees, Buffer trees.

 Efficient data structures in external memory
◦ Generalizing word-RAM structures to the I/O model
◦ Lower bounds on external memory data structures

Pat

Paweł

Mayank

 Why do we do algorithm analysis?
◦ What are the goals?

 Compare different algorithms

 Determine which algorithm to use in which case

◦ What is the end result of the analysis?

 Input: an algorithm and some input parameters

 We want a number: lower better than higher

 How do we do the analysis?
◦ Computers are very complicated

◦ Instead we analyse simpler models of computation

 There are many different models
 Comparison-based, Word-RAM, Cell-Probe, I/O,

Pointer machine, Cache-oblivious, etc.

 It is important to understand the limitations
◦ This helps with understanding practicality

◦ Models often focus on one particular aspect

◦ We will discuss cases where it can be misleading

 Example: Sorting

Summer 2014

Efficient Data Structures

Patrick Nicholson

 Why do we care about space efficiency?
 Practical reasons:
 In many computations the limiting factor is memory

 The memory hierarchy

 Saving even a small constant factor in space means big money

 Many computing devices often have less memory resources:

 Smartphones

 Microcontrollers

 Sensors

 Facebook enabled toaster

 Why do we care about space efficiency?
 Theoretical Reasons:
 Answer fundamental questions about computation:

 “How much extra space do we need to answer queries about data?”

 “Can we compress data and still answer questions about it?”

 “Which types of queries are impossible to efficiently support?”

 “Are pointers necessary?”

 It is fun

 What is the model?

◦ Basic Idea: data is stored in an array 𝐴[1. . 𝑛]
 The “structure” consists of the order of the data
 A “pointer” is just an integer in 𝐴[1. . 𝑛]

◦ Only need to know the value 𝑛
 AKA: strict implicit data structure
 Another option: 𝑂(1) extra data allowed

◦ Only allowed to make comparisons:

 𝑎 < 𝑏, 𝑎 = 𝑏, 𝑎 > 𝑏

 Comments?

 You probably already know one…

 Heaps perform the following operations:
 Insert(𝑥): add key 𝑥

 Delete-Min(): delete and return the smallest key

 Get-Min(): return the smallest key

◦ Insert(𝑥) and Delete-Min() take Θ log 𝑛 time

◦ Get-Min() takes Θ(1) time

 Heap Properties:
◦ Complete binary tree except for the last level

◦ Each node’s key is at least as small as its children’s

4

7

8 19

5

6 11

3

7

12 22

15

2

 The heap structure is a partial order
◦ A partial order is a binary relation that is:

 Reflexive, Antisymmetric, and Transitive

◦ Think of a directed acyclic graph with/without shortcuts

4

7

8 19

5

6 11

3

7

12 22

15

2

 The heap structure is a partial order
◦ A partial order is a binary relation that is:

 Reflexive, Antisymmetric, and Transitive

◦ Think of a directed acyclic graph with/without shortcuts

4

7

8 19

5

6 11

3

7

12 22

15

2

A
Maximum

Chain

 The heap structure is a partial order
◦ A partial order is a binary relation that is:

 Reflexive, Antisymmetric, and Transitive

◦ Think of a directed acyclic graph with/without shortcuts

4

7

8 19

5

6 11

3

7

12 22

15

2

A
Maximal

Chain

 The heap structure is a partial order
◦ A partial order is a binary relation that is:

 Reflexive, Antisymmetric, and Transitive

◦ Think of a directed acyclic graph with/without shortcuts

4

7

8 19

5

6 11

3

7

12 22

15

2

The
Maximum
Antichain

 Let 𝐶 and 𝐴 be maximum chain and antichain

 Dilworth’s Lemma: Given an arbitrary partial
order on 𝑛 elements the product 𝐶 × 𝐴 ≥ 𝑛
◦ 𝐴 = 7, 𝐶 = 4, 𝑛 = 13

 Seems to check out

4

7

8 19

5

6 11

3

7

12 22

15

2

Remember this
for later!

 Heap Embedding:
◦ Left-child of node 𝑖 = 2𝑖
◦ Right-child of node 𝑖 = 2𝑖 + 1
◦ Parent of 𝑖 = 𝑖/2

4

7

8 19

5

6 11

3

7

12 22

15

2

A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

13 2 4 3 7 5 7 15 8 19 6 11 12 22

 Insertion

4

7

8 19

5

6 11

3

7

12 22

15

2

A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

14 2 4 3 7 5 7 15 8 19 6 11 12

1

22 1

 Insertion

4

7

8 19

5

6 11

3

7

12 22

1

2

A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

14 2 4 3 7 5 7 1 8 19 6 11 12

15

22 15

 Insertion

4

7

8 19

5

6 11

1

7

12 22

3

2

A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

14 2 4 1 7 5 7 3 8 19 6 11 12

15

22 15

 Insertion

4

7

8 19

5

6 11

2

7

12 22

3

1

A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

14 1 4 2 7 5 7 3 8 19 6 11 12

15

22 15

 Deletion

4

7

8 19

5

6 11

2

7

12 22

3

1

A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

14 1 4 2 7 5 7 3 8 19 6 11 12

15

22 15

 Deletion

4

7

8 19

5

6 11

2

7

12 22

3

1

A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

14 1 4 2 7 5 7 3 8 19 6 11 12

15

22 15

 Deletion

4

7

8 19

5

6 11

2

7

12 22

3

15

A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

13 15 4 2 7 5 7 3 8 19 6 11 12 22

 Deletion

4

7

8 19

5

6 11

3

7

12 22

15

2

A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

13 2 4 3 7 5 7 15 8 19 6 11 12 22

 What else can be made implicit?

 Toy Problem: Dynamic Membership

◦ Design a data structure that can:

 Insert(𝑥)

 Delete(𝑥)

 Member(𝑥)

 Heap doesn’t work well for member
◦ Has very large antichains

 Dynamic Membership

 Insert(𝑥)

 Delete(𝑥)

 Member(𝑥)

◦ Heap:

 Insert → Θ(log 𝑛), Delete → Θ(𝑛), Member → Θ(𝑛)

◦ Unsorted list:

 Insert → Θ(1), Delete → Θ(𝑛), Member → Θ(𝑛)

◦ Sorted list:

 Insert → Θ(𝑛), Delete → Θ(𝑛), Member → Θ(log 𝑛)

 What other trade-offs exist?

 Beap Properties:

◦ Partitioned into 2𝑛 blocks:
 𝑖-th block [𝑖(𝑖 + 1)/2 + 1..𝑖(𝑖 + 1)/2]

◦ 𝑘-th element in the j-th block

is no larger than the 𝑘-th and
(𝑘 + 1)-th in (𝑗 + 1)-th block

5

7

22 19

7

13

11

5

8

4 3

6

2

A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

13 2 3 4 5 5 6 7 7 8 11 22 19 13

 Searching for 17

5

7

22 19

7

13

11

5

8

4 3

6

2

 Searching for 17

5

7

22 19

7

13

11

5

8

4 3

6

2

 Searching for 4

5

7

22 19

7

13

11

5

8

4 3

6

2

 Inserting 1

5

7

22 19

7

13

11

5

8

4 3

6

2

1

 Inserting 1

5

7

22 19

7

13

1

5

8

4 3

6

2

11

 Inserting 1

5

7

22 19

7

13

6

5

8

4 3

1

2

11

 Inserting 1

5

7

22 19

7

13

6

5

8

1 3

4

2

11

 Inserting 1

5

7

22 19

7

13

6

5

8

2 3

4

1

11

 Same idea as binary heap for deletion

 All three operations take Θ(𝑛) time

 Elements stored in fixed partial order
◦ Just as in the heap

 Theorem (Munro and Suwanda 1980): If an
implicit data structure containing 𝑛 elements
carries no structural information other than a
fixed partial order on the stored values, then
𝑈 ⋅ 𝑆 ≥ 𝑛

◦ 𝑈 ← worst case # of data moves during an update

◦ 𝑆 ← worst case # of comparisons made during a search

Source: XKCD (http://xkcd.com/1339/), Copyright Randall Munroe (2014),
CREATIVE COMMONS ATTRIBUTION-NONCOMMERCIAL 2.5 LICENSE.

 What about non-partial orders?

 A rotated list: {7, 11, 13, 14, 1, 4, 5, 6}
◦ Not hard to see that it is possible to modify binary

search to find the minimum in the list

 Caveat: (most) of the elements have to be distinct

 We can do better by using rotated lists
◦ But we must make the distinctness assumption!

 Data structure:
◦ Keep ~ 2𝑛 rotated lists, list 𝑖 is of length 𝑖.
◦ Invariant: Elements in list 𝑖 are smaller than list 𝑖 + 1

 Member:
◦ Find two consecutive blocks that straddle query element
◦ Search in the smaller block
◦ Total cost: Θ(log 𝑛)

 Insertion:
◦ Find block, insert
◦ Swap max to min for each larger block
◦ Total cost: Θ(𝑛 log 𝑛)

 Munro and Suwanda (1980):
◦ Combine Beap and Rotated List to get

 Θ(𝑛1/3 log 𝑛) for each operation

 Fredrickson (1983):
◦ Applied recursion to Rotated Lists to get

 Θ(log 𝑛) time for Member(𝑥)

 Θ(𝑛 2/ log 𝑛 log3/2 𝑛) time for Insert(𝑥) and Delete(𝑥)

 Fredrickson considered blocking schemes:
◦ Partition the array into 𝑟 blocks 𝐵 1 ,… , 𝐵 𝑟
◦ There is a function 𝑓 s.t. 𝐵 𝑖 = 𝑓(𝑖)

◦ The j-th block contains elements 1 + 𝑓(𝑖)
𝑗−1
𝑖=1 to 𝑓(𝑖)

𝑗
𝑖=1

 The Basic Rotated List Scheme has 𝑓 𝑖 = 𝑖

 Data structure idea: Bootstrapping
◦ Sometimes we can plug a data structure into itself

 Let 𝐷1 have 𝑓 𝑖 = 𝑖 and each block be a rotated list
 Let 𝐷2 have 𝑓 𝑖 = 𝑖2 and each block be 𝐷1*

 This gives us Θ(log 𝑛) search, and Θ(𝑛
1

3 log 𝑛) updates!

 Let 𝐷3 have …

*Numerous missing details regarding the base case

 Theorem (Munro 1986): There is an implicit data
structure for the membership problem that has
worst case Θ(log2 𝑛) time for Member(𝑥), Insert(𝑥),
and Delete(𝑥)

 What we really want is an balanced search tree
◦ So, lets see if we can make such a tree implicit

 Theorem (Munro 1986): There is a data structure for
the membership problem that occupies 𝑛 + 𝑘2 array
locations, and uses an additional 𝑘 + Θ(𝑛/𝑘) pointers,
counters, and flags. Member(𝑥) takes Θ(log 𝑛) time, and
Insert(𝑥) and Delete(𝑥) take time Θ(𝑘 + log 𝑛) time.

 Invariant #1: AVL node stores 𝑘 consecutive elements
◦ A 𝑛𝑜𝑑𝑒 consists of k locations for elements

 Also a constant number of pointers, flags, and counters
◦ We take node sized blocks from the end of the data array

90,91,
94,96

70,72,
74,77

50,52,
54,56

60,65,
67,68

30,31,
32,35

90

70

50

60 30

 We need some extra mechanism to update

90,91,
94,96

70,72,
74,77

50,52,
54,56

60,65,
66,67

30,31,
32,35

90

70

50

60 30

 Invariant: 0 to k-1 consecutive elements between AVL nodes

 The elements between two nodes are called a maniple

40,41,42

57,58

68 80

 We keep pointers to 𝑘 − 1 doubly linked lists
◦ Each linked list will also consist of nodes
◦ List 𝑖 will consist of all maniples of 𝑖 elements
◦ Each AVL node stores a pointer to its maniple

AVL nodes

List Nodes

40,41,42 70,71,72 60,61,63 26,27,28

30,31,
32,35

60,61,
62,65

50,51,
54,57

20,21,
23,25

3

 We keep pointers to 𝑘 − 1 doubly linked lists
◦ Each linked list will also consist of nodes
◦ List 𝑖 will consist of all maniples of 𝑖 elements
◦ Each AVL node stores a pointer to its maniple

 Each list node may contain maniples for up to k AVL nodes
◦ This set of AVL nodes is called the cohort of the list node

 We keep circular linked lists so we can find all AVL nodes in a cohort

(Yes, there are a lot of pointers!)

AVL nodes

List Nodes

40,41,42,70

30,31,
32,35

60,61,
62,65

50,51,
54,57

20,21,
23,25

71,72,60,61 63,26,27,28

0 3 2 1

3

 Memory Management:
◦ When we need a new node, get it from the array

 New list nodes inserted at the head of the list

◦ To delete a maniple, swap contents with head
 Must update maniple/cohort pointers in process

 If head underflows, swap with final node in array

 Overall this requires Θ log 𝑛 +𝑘 time

 Thus, we can assume the following primitives:
◦ PromoteManiple(𝑝, 𝑖, 𝑥): move maniple pointed to by 𝑝, of size 𝑖

into maniple list 𝑖 + 1, while inserting 𝑥 into the correct position

◦ DemoteManiple(𝑝, 𝑖, 𝑥): move maniple pointed to by 𝑝, of size 𝑖
into maniple list 𝑖 − 1, and delete 𝑥

 Insert is conceptually very easy:
◦ Two cases: both more or less the same

 Insert into an AVL node → bump max element into maniple
 OR Insert directly into maniple

◦ So, we what we really need is to handle maniple insertion:
 If the maniple is empty, make a new one in list 1
 If the maniple is already of size k-1, make AVL node
 Otherwise, we use PromoteManiple

 Deletion is analogous

 Search:
◦ In the AVL tree: Θ(log 𝑛)
◦ In a node: Θ(log 𝑘)
◦ Total: Θ(log 𝑛)

90,91,
94,96

70,72,
74,76

50,52,
54,56

60,65,
66,67

30,31,
32,35

40,41,42

57,58

68 77,80
Insert 76
Bump 77

Promote

 Recall that nodes store 𝑘 consecutive values:
◦ We can encode 𝑘/2 bits in these values!

◦ Takes Θ(𝑘) time to decode/encode a pointer!

 We will set 𝑘 = log 𝑛 and get Θ(log2 𝑛) time for all ops.

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

3 2 4 5 12 7 13 17 20 18 29 22

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

2 3 4 5 7 12 13 17 18 20 22 29

1 0 1 0 1 1

 We set 𝑘 = 𝑐⌈log 𝑛⌉, where c is a big constant
◦ e.g., 𝑐 = 10 it will be large enough

 Dealing with the cruft:
◦ There are k-1linked lists of maniples

 Each list can have up to k-1 unused locations

 Thus, we are wasting Θ 𝑘2 locations in total!

 We store these in the final locations of the array

 Problem solved with extra pointers

 Are we done?

 Annoying issue:
◦ The value of ⌈log 𝑛⌉ will change eventually

◦ Luckily, there is an easy solution:

 Keep Θ(log log 𝑛) copies of the membership structure

 Structure 𝑖 stores 22
𝑖
 elements

 Perform search/updates on all the dictionaries

 Similar to the rotate list idea for updates

 We can maintain the running time of Θ(log2 𝑛)

 The end?

 Several improvements since:
◦ Franceschini et al. (2004):

 All operations Θ(log2 𝑛 / log log 𝑛)

◦ Franceschini and Grossi (2003,2006):

 All operations Θ (log 𝑛)

◦ Brodal et al. (2012, 2013)

 Other desirable properties

 Unlike the last problem, this one will be static

 Input:
◦ A set of n records, each record has k keys

 Goal:
◦ Order records for efficient searching using any key

 Sort the records according to key #1

 Break it up into blocks of size 𝑛

 Sort each block according to key #2

 Search using key #1 takes Θ(𝑛) time

 Search using key #2 takes Θ(𝑛 log 𝑛) time

 Can we do better?

 We store the elements in a BST layout (like the heap)
◦ Odd levels: split using key #1

◦ Even levels: split using key #2

 What is the running time?
◦ Θ(𝑛) for searching under either key

◦ If we know 𝑗 of 𝑘 keys: Θ(max (𝑛1−𝑗/𝑘 , log 𝑛))

1:F

5:B

4:A 6:D

3:G

2:J 7:G

12:K

10:E

9:H 11:I

15:N

8:C

13:M 16:O

This is really a
kd-tree

 We can also do orthogonal range reporting:
◦ Time complexity: 𝜃 𝑛 + 𝑡 where 𝑡 is output size

◦ Proof: Consider the number of cells that are cut by
a horizontal or vertical line…

 Theorem (Alt, Mehlhorn, Munro 1984): Assume all
comparisons are required to involve the element
for which we are searching. If 𝑛 elements can be
arranged in an array such that any of 𝑝 different
permutations of the ascending order may occur,

then searching requires Ω(𝑝1/𝑛) comparisons.

 Consider the following permutation:
◦ 𝜋 = (3,2,0,1,4,6,5) as a directed graph:

0 1 2 3 4 5 6

 A permutation induces a set of cycles
◦ The length of a cycle is the number of elements

 A permutation which is its own inverse is called an involution
◦ In an involution, all cycles are of length ≤ 2
◦ Example: 𝜋 = (1,0,3,2,5,4,7,6) or the bit encoding trick

 Consider the following ordering scheme:
◦ Take the first 𝑛/4 odd elements and pair them

arbitrarily with the last 𝑛/4 odd elements

 This admits (𝑛/4)! permutations

◦ Lower bound says search time should be Ω(𝑛1/4)…

 But we can still search in Θ(log 𝑛) time if we make
comparisons that don’t involve the query element!

 We will use the involution trick to show:

 Theorem (Munro 1987): The static two-key
search problem is solvable in Θ(log2 𝑛 log log 𝑛)
time for searching under either key.

 Feldman’s scheme:
◦ Elements in position 0 𝑚𝑜𝑑 2

in sorted order

◦ Elements in position 1 𝑚𝑜𝑑 2
permuted

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 3 4 5 7 9 12 14 17 19 22 25 29 31 33 37

9 7 12 22 46 17 11 13 33 34 37 10 2 3 8 1

 Munro’s 2-key scheme:
◦ Start by sorting by key 1

◦ Records in 0 𝑚𝑜𝑑 log 𝑛 sorted by key 1

 Call these 1-guides

◦ Conceptually log 𝑛 − 1 data structures

 𝐷𝑖 for records in position 𝑖 𝑚𝑜𝑑 log 𝑛

◦ Invariant: 𝑥 ∈ 𝐷𝑖 straddled by 1-guides

 For each 𝐷𝑖:
◦ Put first half of the records into second half of array sorted by key 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 3 4 5 7 9 12 14 17 19 22 25 29 31 33 37

9 7 12 22 46 17 11 13 33 34 37 10 2 3 8 1

 For each 𝐷𝑖:
◦ Put first half of the records into second half of array sorted by key 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 3 4 5 7 9 12 14 17 19 22 25 29 31 33 37

9 7 12 22 46 17 11 13 33 34 37 10 2 3 8 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 19 4 5 7 31 12 14 17 3 22 25 29 9 33 37

9 34 12 22 46 3 11 13 33 7 37 10 2 17 8 1

 For each 𝐷𝑖:
◦ Put first half of the records into second half of array sorted by key 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 3 4 5 7 9 12 14 17 19 22 25 29 31 33 37

9 7 12 22 46 17 11 13 33 34 37 10 2 3 8 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 19 33 5 7 31 22 14 17 3 12 25 29 9 4 37

9 34 8 22 46 3 37 13 33 7 11 10 2 17 12 1

 For each 𝐷𝑖:
◦ Put first half of the records into second half of array sorted by key 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 3 4 5 7 9 12 14 17 19 22 25 29 31 33 37

9 7 12 22 46 17 11 13 33 34 37 10 2 3 8 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 19 33 37 7 31 22 25 17 3 12 14 29 9 4 5

9 34 8 1 46 3 37 10 33 7 11 13 2 17 12 22

 Keep doing this recursively for each 𝐷𝑖:
◦ Put the first half into the second sorted by key 2
◦ Put the first quarter into the second sorted by key 2
◦ Put the first eighth into the second sorted by key 2
◦ …
◦ Stop after log log 𝑛 + 𝑐 recursive calls for some 𝑐 > 0
◦ Call the j-th sorted chunk from the right level j

Level 1 Level 2 Level 3 Unsorted

Θ
𝑛

log2 𝑛
 records

 We now show how to:
◦ Search among the 1-guides using key 2
◦ Search among the unsorted portions of 𝐷𝑖 (either key)

 Idea that we have seen before:
◦ Encode pointers in the pairs of records sorted by key 2
◦ We have Θ(𝑛) such records → can encode Θ(𝑛/ log 𝑛) pointers
◦ We can use these pointers to encode search trees

Level 1 Level 2 Level 3 Unsorted

 Next: how to search using key 2 on the remaining records
◦ We have Θ(log 𝑛) data structures

◦ Each structure has Θ(log log 𝑛) levels

◦ Each level is sorted using key 2

◦ Overall time: Θ(log2 𝑛 log log 𝑛)

Level 1 Level 2 Level 3 Unsorted

 Finally: searching using key 1
◦ The “much more interesting case”

◦ Remember (Invariant): each y ∈ 𝐷𝑖 is straddled by 1-guides

 Thus, we can determine where the query element 𝑥 should be

 That is, we can find a range 𝑟 of log 𝑛 positions (1 per 𝐷𝑖)

◦ We need to do a binary search within r

 Θ(log log 𝑛) to search 𝑟

 For each 𝐷𝑖 we have to track down the correct record

 How long does this take?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 ? ? ? 7 ? ? ? 17 ? ? ? 29 ? ? ?

 Consider a single 𝐷𝑖
a b c d e f g h i j k l m n o p q r s t u v w x

x s t m p u r q n w v o d i l e h g b c f k j a

o w v r n q m u p s t x d i l e h g b c f k j a

r q n o v w m u p s t x d i l e h g b c f k j a

r q n o v w m u p s t x d i l e h g b c f k j a

 Finally: searching using key 1
◦ The “much more interesting case”

◦ Remember (Invariant): each y ∈ 𝐷𝑖 is straddled by 1-guides

 Thus, we can determine where the query element 𝑥 should be

 That is, we can find a range 𝑟 of log 𝑛 positions (1 per 𝐷𝑖)

◦ We need to do a binary search within r

 Θ(log log 𝑛) to search 𝑟

 For each 𝐷𝑖 we have to track down the correct record

 Tracking down: Θ(log 𝑛) moves, each move: Θ(log 𝑛) cost

 Overall time: Θ(log2 𝑛 log log 𝑛)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 ? ? ? 7 ? ? ? 17 ? ? ? 29 ? ? ?

 These results all generalize to 3 or more keys

 Fiat et al. (1988) essentially settled it:
◦ With 𝑘 keys we can search in Θ(𝑘 log 𝑘 log 𝑛) time

◦ This solution is somewhat complicated

 Basic Idea: select guides using Hall’s Theorem

