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About the course: Marking, etc.

» This is a 9 credit point course: 2+2

» Prerequisites: Basic course in data structures
> You should know asymptotic analysis (0, 0,0, Q, w)
> You should know about linked lists/balanced trees

> You should know at least one programming language

- ADA DOC ASM AWK BASH BF C C# C++ 4.3.2 C++ 4.0.0-8 C99 strict CLPS CLOJ LISP sbcl LISP
clisp D ERL F# FORT GO HASK ICON ICK JAR JAVA JS LUA NEM NICE NODEJS CAML PAS fpc PAS
gpc PDF PERL PERL 6 PHP PIKE PS PRLG PYTH 2.7 PYTH 3.2.3 PYTH 3.2.3 n RUBY SCALA SCM
guile SCM gobi SED ST TCL TECS TEXT WSPC

» Marking scheme:

> 60% exam

> 30% homework sheets (must get 50% on homework)
> 10% project (research/survey/implementation)

- Groups of up to 3 people; more details will follow
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About the course: Marking, etc.

» We will have weekly homework sheets

- Each homework sheet will have
- Theory problems (i.e., proofs)

- Programming problems (at most 20% of homework)
- These are to be submitted on SPO]J
- See homework sheet for details

» We will also have weekly tutorials
- Each tutorial review the previous week’s assignment
> You must actively participate in the tutorial sessions




About the course: Short Outline

» Models of computation
» Implicit Data Structures (Comparison)
> Membership (Dictionary) Problem, Multikey Search

» Succinct Data Structures (Word-RAM)
- Static problems: rank/select, trees, graphs, etc.
> Cell Probe lower bounds for succinct data structures
> Discussion of dynamic memory models

Static predecessor searching (Word-RAM)
Making data structures dynamic

Persistence and applications (Pointer Machine/Word-RAM)
Lower bounds (Comparison, Pointer Machine, Cell-probe, etc.)

Introduction to the External Memory (I/O) Model
o classic data structures: B-trees, Buffer trees.
» Efficient data structures in external memory

> Generalizing word-RAM structures to the |/O model
> Lower bounds on external memory data structures
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Let’s get Philosophical

» Why do we do algorithm analysis?

- What are the goals?

- Compare different algorithms

- Determine which algorithm to use in which case
- What is the end result of the analysis?

- Input: an algorithm and some input parameters
- We want a number: lower better than higher

» How do we do the analysis?
- Computers are very complicated
- Instead we analyse simpler models of computation




What model to use?

» There are many different models

- Comparison-based, Word-RAM, Cell-Probe, 1/0,
Pointer machine, Cache-oblivious, etc.

» It is important to understand the limitations
> This helps with understanding practicality
- Models often focus on one particular aspect
- We will discuss cases where it can be misleading

» Example: Sorting
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Space Efficiency

- Why do we care about space efficiency?

* Practical reasons:

= |n many computations the limiting factor is memory
= The memory hierarchy
= Saving even a small constant factor in space means big money

= Many computing devices often have less memory resources:
= Smartphones
= Microcontrollers
= Sensors
= Facebook enabled toaster




Space Efficiency

- Why do we care about space efficiency?

= Theoretical Reasons:

= Answer fundamental questions about computation:
= “How much extra space do we need to answer queries about data?”
= “Can we compress data and still answer questions about it?”
= “Which types of queries are impossible to efficiently support?”
= “Are pointers necessary?’

= |tis fun ©




Implicit Data Structures

» What is the model?

- Basic ldea: data is stored in an array A[1..n]
- The “structure” consists of the order of the data
- A “pointer” is just an integer in A[1..n]

> Only need to know the value n
- AKA: strict implicit data structure
- Another option: 0(1) extra data allowed

> Only allowed to make comparisons:
a < b,a=>b,a>Dhb

» Comments?




Implicit Data Structures

» You probably already know one...

» Heaps perform the following operations:

- Insert(x): add key x
- Delete-Min(): delete and return the smallest key
- Get-Min(): return the smallest key

> Insert(x) and Delete-Min() take 8(logn) time
> Get-Min() takes 0(1) time




Binary Heap

» Heap Properties:
- Complete binary tree except for the last level
- Each node’s key is at least as small as its children’s




Partial Orders

» The heap structure is a partial order

- A partial order is a binary relation that is:
- Reflexive, Antisymmetric, and Transitive
- Think of a directed acyclic graph with/without shortcuts




Partial Orders

» The heap structure is a partial order

- A pagtial order is a binary relation that is:
exive, Antisymmetric, and Transitive

A 3 directed acyclic graph with/without shortcuts

Maximum
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Partial Orders

» The heap structure is a partial order

- A pagtial order is a binary relation that is:
exive, Antisymmetric, and Transitive

A 3 directed acyclic graph with/without shortcuts

Maximal
Chain




Partial Orders

» The heap structure is a partial order

- A partial order is a binary relation that is:
- Reflexive, Antisymmetric, and Transitive
- Think of a directed acyclic graph with/without shortcuts

The
Maximum
Antichain




Partial Orders (Cont’)

» Let C and 4 be maximum chain and antichain

» Dilworth’s Lemma: Given an arbitrary partial
order on n elements the product |C| X |A| = n
o |Al =7,|C] =4,n =13
- Seems to check out

Remember this
for later!



Back to the Binary Heap

» Heap Embedding:
> Left-child of node i = 2i
> Right-child of node i = 2i+1
- Parent of i = |i/2]
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Binary Heap

» Insertion
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Binary Heap

» Insertion
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Binary Heap

» Insertion
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Binary Heap

» Insertion
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Binary Heap

» Deletion
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Binary Heap

» Deletion

N T EH E TR I O O CH CE R FR R EEN FUR RN N
14 1 4 2 7 5 7 3 8 19 6 12 22 15

11




Binary Heap

» Deletion
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Binary Heap

» Deletion
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Beyond the Heap

» What else can be made implicit?

» Toy Problem: Dynamic Membership

- Design a data structure that can:

- Insert(x)
- Delete(x)
- Member(x)

» Heap doesn’t work well for member
- Has very large antichains



Beyond the Heap

» Dynamic Membership
- Insert(x)
- Delete(x)
- Member(x)
> Heap:
- Insert - O(logn), Delete - ®(n), Member - 0(n)
- Unsorted list:
- Insert - 0(1), Delete - ©(n), Member - 0(n)
> Sorted list:
* Insert - 0(n), Delete —» 0(n), Member - O(logn)
» What other trade-offs exist?




Beaps: Biparental Heaps

» Beap Properties:

> Partitioned into v2n blocks:
« i-th block [i(i+1)/2 +1..i(i + 1)/2]

- k-th element in the j-th block

is no larger than the k-th and
(k +1)-th in (j + 1)-th block
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Beaps: Biparental Heaps

» Searching for 17




Beaps: Biparental Heaps

» Searching for 17




Beaps: Biparental Heaps

» Searching for 4




Beaps: Biparental Heaps

» Inserting 1




Beaps: Biparental Heaps

» Inserting 1




Beaps: Biparental Heaps

» Inserting 1




Beaps: Biparental Heaps

» Inserting 1




Beaps: Biparental Heaps

» Inserting 1




Beaps: Biparental Heaps

» Same idea as binary heap for deletion

» All three operations take ©(y/n) time

» Elements stored in fixed partial order
> Just as in the heap




Beaps: Biparental Heaps

» Theorem (Munro and Suwanda 1980): If an

implicit data structure containing n elements
carries no structural information other than a

fixed partial order on the stored values, then
U-S=n

- U «worst case # of data moves during an update
> S «worst case # of comparisons made during a search




But there is an assumption...

YOU ASSUMED?

\
YOU KNOW WHAT HAPPENS
WHEN YOU ASSUME—

I DONT
/ YET YOU'RE CONFIDENTLY

ASSERTING THAT T DO.
..-OH HM.
\

Source: XKCD (http://xkcd.com/1339/), Copyright Randall Munroe (2014),
CREATIVE COMMONS ATTRIBUTION-NONCOMMERCIAL 2.5 LICENSE.

l




Rotated Lists

» What about non-partial orders?

» A rotated list: {7,11,13,14,1,4,5, 6}
- Not hard to see that it is possible to modify binary
search to find the minimum in the list
- Caveat: (most) of the elements have to be distinct

» We can do better by using rotated lists

- But we must make the distinctness assumption!




Basic Rotated List Scheme

» Data structure:

- Keep ~v2n rotated lists, list i is of length i.
o Invariant: Elements in list i are smaller than listi + 1

» Member:
> Find two consecutive blocks that straddle query element
> Search in the smaller block
- Total cost: O(logn)

» Insertion:
- Find block, insert
- Swap max to min for each larger block
- Total cost: O(y/nlogn)




Extensions to Rotated Lists

» Munro and Suwanda (1980):
- Combine Beap and Rotated List to get
- ®(n'/3 logn) for each operation

» Fredrickson (1983):

- Applied recursion to Rotated Lists to get
+ O(logn) time for Member(x)

. @(nv?/108n10g3/2 1) time for Insert(x) and Delete(x)




Fredrickson’s Rotated Lists

» Fredrickson considered blocking schemes:
> Partition the array into r blocks B(1), ..., B(r)
° There is a function f s.t. [B())| = f(i) |
> The j-th block contains elements 1 + Z{;llf(i) to YI_, f (D)
- The Basic Rotated List Scheme has f(i) =i

» Data structure idea: Bootstrapping

- Sometimes we can plug a data structure into itself

- Let D, have f(i) =i and each block be a rotated list
* Let D, have f(i) = i* and each block be D,*

- This gives us 0(logn) search, and 0(nslogn) updates!
 Let D; have ...

*Numerous missing details regarding the base case




Beyond Rotated Lists

» Theorem (Munro 1986): There is an implicit data
structure for the membership problem that has
worst case BO(log?n) time for Member(x), Insert(x),
and Delete(x)

» What we really want is an balanced search tree
> So, lets see if we can make such a tree implicit




Semi-Implicit AVL Tree

» Theorem (Munro 1986): There is a data structure for
the membership problem that occupies n + k? array
locations, and uses an additional k + O(n/k) pointers,
counters, and flags. Member(x) takes ©(logn) time, and
Insert(x) and Delete(x) take time ©(k + logn) time.

» Invariant #1: AVL node stores k consecutive elements
- A node consists of k locations for elements

- Also a constant number of pointers, flags, and counters
- We take node sized blocks from the end of the data array




Semi-Implicit AVL Tree (2)

» We need some extra mechanism to update

» Invariant: O to k-1 consecutive elements between AVL nodes
» The elements between two nodes are called a maniple




Managing Maniples (Logical)

» We keep pointers to k — 1 doubly linked lists
- Each linked list will also consist of nodes
- List i will consist of all maniples of i elements
- Each AVL node stores a pointer to its maniple

40,41,42 70,71,72 60,61,63 26,27,28

A ey

AVL nodes




Managing Maniples (Physical)

» We keep pointers to k — 1 doubly linked lists
- Each linked list will also consist of nodes

- List i will consist of all maniples of i elements
- Each AVL node stores a pointer to its maniple

Pad
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AVL nodes

» Each list node may contain maniples for up to k AVL nodes

- This set of AVL nodes is called the cohort of the list node

- We keep circular linked lists so we can find all AVL nodes in a cohort
(Yes, there are a lot of pointers!)




Managing Maniples (Updates)

» Memory Management:
- When we need a new node, get it from the array
- New list nodes inserted at the head of the list
- To delete a maniple, swap contents with head
- Must update maniple/cohort pointers in process
- If head underflows, swap with final node in array
- Overall this requires 0(logn + k) time

» Thus, we can assume the following primitives:
- PromoteManiple(p, i, x): move maniple pointed to by p, of size i
into maniple list i + 1, while inserting x into the correct position

- DemoteManiple(p,i,x): move maniple pointed to by p, of size i
into maniple list i — 1, and delete x




Performing Operations

» Insert is conceptually very easy:
o Two cases: both more or less the same

- Insert into an AVL node —» bump max element into maniple
- OR Insert directly into maniple

- So, we what we really need is to handle maniple insertion:
- If the maniple is empty, make a new one in list 1

- If the maniple is already of size k-1, make AVL node
- Otherwise, we use PromoteManiple

» Deletion is analogous © nsert 76 Promote

Bump 77

» Search:

> In the AVL tree: O(logn)
> In a node: 0(logk)
> Total: ©(logn)

40,41,42




Making it Implicit

» Recall that nodes store k consecutive values:
- We can encode k/2 bits in these values!
ERENER RN RN ERREES EE

17 18
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- Takes 0(k) time to decode/encode a pointer!
- We will set k =logn and get 0(log?n) time for all ops.




Making it Implicit (2)

» We set k = c[logn], where c is a big constant
> e.g., ¢ =10 it will be large enough

» Dealing with the cruft:

> There are k-1linked lists of maniples
- Each list can have up to k-1 unused locations
- Thus, we are wasting 0(k?) locations in total!

- We store these in the final locations of the array
- Problem solved with extra pointers

» Are we done?




Making it Implicit (3)

» Annoying issue:
> The value of [logn] will change eventually
> Luckily, there is an easy solution:
- Keep O(loglogn) copies of the membership structure

- Structure i stores 22° elements
- Perform search/updates on all the dictionaries
- Similar to the rotate list idea for updates

- We can maintain the running time of ©(log?n)

» The end?




Wrap Up

» Several improvements since:
> Franceschini et al. (2004):
- All operations 0(log?n /loglogn)

> Franceschini and Grossi (2003,2006):
- All operations 0 (logn)

- Brodal et al. (2012, 2013)
+ Other desirable properties




Next Problem: Multikey Search

» Unlike the last problem, this one will be static

» Input:

- A set of n records, each record has k keys

» Goal:
- Order records for efficient searching using any key




Two Key Case: Attempt #1

» Sort the records according to key #1

» Break it up into blocks of size \n
» Sort each block according to key #2

» Search using key #1 takes 0(y/n) time
» Search using key #2 takes ©(y/nlogn) time

» Can we do better?




Two Key Case: Attempt #2

» We store the elements in a BST layout (like the heap)
> Odd levels: split using key #1
- Even levels: split using key #2

» What is the running time?

> @(vn) for searching under either key This is really a
- If we know j of k keys: @(max(n'—/* |logn)) kd-tree

[ ]




Kd-trees

» We can also do orthogonal range reporting.

- Time complexity: 6(y/n + t) where t is output size

- Proof: Consider the number of ce/ls that are cut by
a horizontal or vertical line...

[45]
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A Relevant Lower Bound

» Theorem (Alt, Mehlhorn, Munro 1984): Assume all
comparisons are required to involve the element
for which we are searching. If n elements can be
arranged in an array such that any of p different
permutations of the ascending order may occur,

then searching requires Q(p*/™) comparisons.




Permutations, Cycles, and Involutions

» Consider the following permutation:
- =(3,2,0,1,4,6,5) as a directed graph:

é@

» A permutation induces a set of cycles
> The length of a cycle is the number of elements

» A permutation which is its own inverse is called an /nvolution

> In an involution, all cycles are of length <2
- Example: # = (1,0,3,2,5,4,7,6) or the bit encoding trick



Feldman’s Involution Idea

» Consider the following ordering scheme:

- Take the first n/4 odd elements and pair them
arbitrarily with the last n/4 odd elements

- This admits (n/4)! permutations

- Lower bound says search time should be Qn!/4)...

- But we can still search in ©(logn) time if we make
comparisons that don’t involve the query element!




Two Key Case: Attempt #3

» We will use the involution trick to show:

» Theorem (Munro 1987): The static two-key
search problem is solvable in ©(log? nloglogn)
time for searching under either key.




Two Key Case: Attempt #3 (2)

» Feldman’s scheme:
> Elements in position 0 mod 2
in sorted order

> Elements in position 1 mod 2
permuted

» Munro’s 2-key scheme:
- Start by sorting by key 1
> Records in 0 mod logn sorted by key 1
- Call these 1-guides
> Conceptually logn — 1 data structures
- D, for records in position i mod logn
> |nvariant: x € D; straddled by 1-guides

1 12 (3 |4 [5 |6 (7 |8 [9 [10/11/12]13]14[15[16
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Two Key Case: Attempt #3 (3)

» For each D;:
> Put first half of the records into second half of array sorted by key 2

1 12 (3 |4 [5 |6 (7 |8 [9 [10/11/12]13]14[15[16
3 4 5 9 12 14 0 19 22 2531 33 37

m7 12 22 P8 17 11 1334 37 100 3 8 1
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Two Key Case: Attempt #3 (3)

» For each D;:
> Put first half of the records into second half of array sorted by key 2

1 12 |3 |4 [5 |6 |7 |8 [9 [10/11/12]13]14]15[16
--4 5 -“12 14M22 25 33 37
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Two Key Case: Attempt #3 (3)

» For each D;:
> Put first half of the records into second half of array sorted by key 2
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Two Key Case: Attempt #3 (3)

» For each D;:
> Put first half of the records into second half of array sorted by key 2

W [2 3 |4 [5[6 |7 |s [0 [10]11]1213]14]15 16
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Two Key Case: Attempt #3 (4)

» Keep doing this recursively for each D;:

> Put the first half into the second sorted by key 2

> Put the first quarter into the second sorted by key 2
Put the first eighth into the second sorted by key 2

(¢]

Stop after loglogn + ¢ recursive calls for somec > 0
Call the j-th sorted chunk from the right /eve/]

unsoned \ | evel 3 evel 2 Level 1

0 (—
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Supporting Search (Part 1)

» We now show how to:
> Search among the 1-guides using key 2
- Search among the unsorted portions of D; (either key)
» Idea that we have seen before:
- Encode pointers in the pairs of records sorted by key 2
- We have ©(n) such records —» can encode 0(n/logn) pointers
- We can use these pointers to encode search trees

BERERERERERENR
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Supporting Search (Part 2)

» Next: how to search using key 2 on the remaining records
> We have 0(logn) data structures
> Each structure has ©(loglogn) levels
- Each level is sorted using key 2
- Overall time: ©(log? nloglogn)

usoned | avel 3 Level 2 Level 1




Searching (Part 3)

» Finally: searching using key 1
> The “much more interesting case”

- Remember (Invariant): each y € D; is straddled by 1-guides

- Thus, we can determine where the query element x should be
- That is, we can find a range r of logn positions (1 per D;)

- We need to do a binary search within r
- O(loglogn) to search r

 For each D; we have to track down the correct record
- How long does this take?
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Tracking down elements

» Consider a single D

[
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Supporting Search (Part 3)

» Finally: searching using key 1
> The “much more interesting case”

- Remember (Invariant): each y € D; is straddled by 1-guides

- Thus, we can determine where the query element x should be
- That is, we can find a range r of logn positions (1 per D;)

- We need to do a binary search within r
- O(loglogn) to search r
 For each D; we have to track down the correct record
- Tracking down: ©(logn) moves, each move: O(logn) cost

» Overall time: 0(log? nloglogn)
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Wrap Up
» These results all generalize to 3 or more keys

» Fiat et al. (1988) essentially settled it:

> With k keys we can search in ©(k logk logn) time
> This solution is somewhat complicated
- Basic ldea: select guides using Hall’s Theorem




