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 This is a 9 credit point course: 2+2 
 

 Prerequisites: Basic course in data structures 
◦ You should know asymptotic analysis (𝑂, 𝑜, Θ, Ω,𝜔) 
◦ You should know about linked lists/balanced trees 
◦ You should know at least one programming language 

 ADA DOC ASM AWK BASH BF C C# C++ 4.3.2 C++ 4.0.0-8 C99 strict CLPS CLOJ LISP sbcl LISP 
clisp D ERL F# FORT GO HASK ICON ICK JAR JAVA JS LUA NEM NICE NODEJS CAML PAS fpc PAS 
gpc PDF PERL PERL 6 PHP PIKE PS PRLG PYTH 2.7 PYTH 3.2.3 PYTH 3.2.3 n RUBY SCALA SCM 

guile SCM qobi SED ST TCL TECS TEXT WSPC 

 
 

 Marking scheme: 
◦ 60% exam  
◦ 30% homework sheets (must get 50% on homework) 
◦ 10% project (research/survey/implementation) 

 Groups of up to 3 people; more details will follow 
 



 We will have weekly homework sheets 
◦ Each homework sheet will have 

 Theory problems (i.e., proofs) 

 Programming problems (at most 20% of homework) 

 These are to be submitted on SPOJ  

 See homework sheet for details 

 

 We will also have weekly tutorials 
◦ Each tutorial review the previous week’s assignment 

◦ You must actively participate in the tutorial sessions 



 Models of computation 
 Implicit Data Structures (Comparison) 

◦ Membership (Dictionary) Problem, Multikey Search  

 Succinct Data Structures (Word-RAM) 
◦ Static problems: rank/select, trees, graphs, etc. 
◦ Cell Probe lower bounds for succinct data structures 
◦ Discussion of dynamic memory models 

 Static predecessor searching (Word-RAM) 
 Making data structures dynamic 
 Persistence and applications (Pointer Machine/Word-RAM) 
 Lower bounds (Comparison, Pointer Machine, Cell-probe, etc.)  
 Introduction to the External Memory (I/O) Model 

◦ classic data structures: B-trees, Buffer trees. 

 Efficient data structures in external memory 
◦ Generalizing word-RAM structures to the I/O model 
◦ Lower bounds on external memory data structures 

Pat 
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 Why do we do algorithm analysis? 
◦ What are the goals? 

 Compare different algorithms 

 Determine which algorithm to use in which case 

◦ What is the end result of the analysis? 

 Input: an algorithm and some input parameters 

 We want a number: lower better than higher 

 

 How do we do the analysis? 
◦ Computers are very complicated 

◦ Instead we analyse simpler models of computation 

 



 There are many different models 
 Comparison-based, Word-RAM, Cell-Probe, I/O, 

Pointer machine, Cache-oblivious, etc. 

 

 It is important to understand the limitations 
◦ This helps with understanding practicality  

◦ Models often focus on one particular aspect 

◦ We will discuss cases where it can be misleading 

 

 Example: Sorting 
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 Why do we care about space efficiency? 
 Practical reasons: 
 In many computations the limiting factor is memory 

 The memory hierarchy 

 Saving even a small constant factor in space means big money 

 Many computing devices often have less memory resources: 

 Smartphones 

 Microcontrollers 

 Sensors 

 Facebook enabled toaster 



 Why do we care about space efficiency? 
 Theoretical Reasons: 
 Answer fundamental questions about computation:  

 “How much extra space do we need to answer queries about data?” 

 “Can we compress data and still answer questions about it?” 

 “Which types of queries are impossible to efficiently support?” 

 “Are pointers necessary?” 

 It is fun  



 What is the model? 
 

◦ Basic Idea: data is stored in an array 𝐴[1. . 𝑛] 
 The “structure” consists of the order of the data 
 A “pointer” is just an integer in 𝐴[1. . 𝑛] 
 

◦ Only need to know the value 𝑛 
 AKA: strict implicit data structure 
 Another option: 𝑂(1) extra data allowed 
 

◦ Only allowed to make comparisons:  

 𝑎 <  𝑏, 𝑎 =  𝑏, 𝑎 >  𝑏 

 
 Comments? 

 



 You probably already know one… 

 

 Heaps perform the following operations: 
 Insert(𝑥): add key 𝑥 

 Delete-Min(): delete and return the smallest key 

 Get-Min(): return the smallest key 

 
◦ Insert(𝑥) and Delete-Min() take Θ log 𝑛  time 

◦ Get-Min() takes Θ(1) time 
 



 Heap Properties: 
◦ Complete binary tree except for the last level 

◦ Each node’s key is at least as small as its children’s 
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 The heap structure is a partial order 
◦ A partial order is a binary relation that is: 

 Reflexive, Antisymmetric, and Transitive 

◦ Think of a directed acyclic graph with/without shortcuts 
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 The heap structure is a partial order 
◦ A partial order is a binary relation that is: 

 Reflexive, Antisymmetric, and Transitive 

◦ Think of a directed acyclic graph with/without shortcuts 
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 The heap structure is a partial order 
◦ A partial order is a binary relation that is: 

 Reflexive, Antisymmetric, and Transitive 

◦ Think of a directed acyclic graph with/without shortcuts 
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 The heap structure is a partial order 
◦ A partial order is a binary relation that is: 

 Reflexive, Antisymmetric, and Transitive 

◦ Think of a directed acyclic graph with/without shortcuts 
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 Let 𝐶 and 𝐴 be maximum chain and antichain 

 Dilworth’s Lemma: Given an arbitrary partial 
order on 𝑛 elements the product 𝐶 × 𝐴 ≥ 𝑛  
◦ 𝐴 = 7, 𝐶 = 4, 𝑛 = 13 

 Seems to check out 
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 Heap Embedding: 
◦ Left-child of node 𝑖 =  2𝑖 
◦ Right-child of node 𝑖 =  2𝑖 + 1 
◦ Parent of 𝑖 =  𝑖/2  
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A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] 
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 Insertion 
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 Insertion 

4 

7 

8 19 

5 

6 11 

3 

7 

12 22 

1 

2 

A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] 

14 2 4 3 7 5 7 1 8 19 6 11 12 

15 

22 15 



 Insertion 
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 Deletion 
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 Deletion 
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 Deletion 
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 Deletion 
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A[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] 

13 2 4 3 7 5 7 15 8 19 6 11 12 22 



 What else can be made implicit? 

 

 Toy Problem: Dynamic Membership 

◦ Design a data structure that can: 

 Insert(𝑥) 

 Delete(𝑥) 

 Member(𝑥) 

 

 Heap doesn’t work well for member 
◦ Has very large antichains 



 Dynamic Membership 

 Insert(𝑥) 

 Delete(𝑥) 

 Member(𝑥) 

◦ Heap: 

 Insert → Θ(log 𝑛), Delete → Θ(𝑛), Member → Θ(𝑛) 

◦ Unsorted list: 

 Insert → Θ(1), Delete → Θ(𝑛), Member → Θ(𝑛) 

◦ Sorted list:  

 Insert → Θ(𝑛), Delete → Θ(𝑛), Member → Θ(log 𝑛) 

 What other trade-offs exist? 
 

 



 Beap Properties: 
 

◦ Partitioned into 2𝑛 blocks:  
 𝑖-th block  [𝑖(𝑖 + 1)/2 + 1..𝑖(𝑖 + 1)/2] 

 
◦ 𝑘-th element in the j-th block 

is no larger than the 𝑘-th and 
(𝑘 + 1)-th in (𝑗 + 1)-th block 
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 Inserting 1 
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 Inserting 1 
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 Inserting 1 
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 Inserting 1 
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 Same idea as binary heap for deletion 

 

 All three operations take Θ( 𝑛) time 

 

 Elements stored in fixed partial order 
◦ Just as in the heap 



 Theorem (Munro and Suwanda 1980): If an 
implicit data structure containing 𝑛 elements 
carries no structural information other than a 
fixed partial order on the stored values, then 
𝑈 ⋅ 𝑆 ≥  𝑛 

 
◦ 𝑈 ← worst case # of data moves during an update 

◦ 𝑆 ← worst case # of comparisons made during a search 

 



Source: XKCD (http://xkcd.com/1339/), Copyright Randall Munroe (2014), 
CREATIVE COMMONS ATTRIBUTION-NONCOMMERCIAL 2.5 LICENSE. 



 What about non-partial orders? 

 

 A rotated list: {7, 11, 13, 14, 1, 4, 5, 6} 
◦ Not hard to see that it is possible to modify binary 

search to find the minimum in the list 

 Caveat: (most) of the elements have to be distinct 

 

 We can do better by using rotated lists 
◦ But we must make the distinctness assumption! 

 



 Data structure: 
◦ Keep ~ 2𝑛 rotated lists, list 𝑖 is of length 𝑖. 
◦ Invariant: Elements in list 𝑖 are smaller than list 𝑖 +  1 

 

 Member:  
◦ Find two consecutive blocks that straddle query element 
◦ Search in the smaller block 
◦ Total cost: Θ(log 𝑛) 
 

 Insertion:  
◦ Find block, insert   
◦ Swap max to min for each larger block 
◦ Total cost: Θ( 𝑛 log 𝑛) 
 



 Munro and Suwanda (1980): 
◦ Combine Beap and Rotated List to get 

 Θ(𝑛1/3 log 𝑛) for each operation 

 

 Fredrickson (1983): 
◦ Applied recursion to Rotated Lists to get 

 Θ(log 𝑛) time for Member(𝑥) 

 Θ(𝑛 2/ log 𝑛 log3/2 𝑛) time for Insert(𝑥) and Delete(𝑥) 



 Fredrickson considered blocking schemes: 
◦ Partition the array into 𝑟 blocks 𝐵 1 ,… , 𝐵 𝑟  
◦ There is a function 𝑓 s.t. 𝐵 𝑖 = 𝑓(𝑖) 

◦ The j-th block contains elements 1 +  𝑓(𝑖)
𝑗−1
𝑖=1  to  𝑓(𝑖)

𝑗
𝑖=1  

 The Basic Rotated List Scheme has 𝑓 𝑖 = 𝑖 

 
 Data structure idea: Bootstrapping 
◦ Sometimes we can plug a data structure into itself 

 Let 𝐷1 have 𝑓 𝑖 = 𝑖 and each block be a rotated list 
 Let 𝐷2 have 𝑓 𝑖 = 𝑖2 and each block be 𝐷1* 

 This gives us Θ(log 𝑛) search, and Θ(𝑛
1

3 log 𝑛) updates! 

 Let 𝐷3 have … 

 
*Numerous missing details regarding the base case 



 Theorem (Munro 1986): There is an implicit data 
structure for the membership problem that has 
worst case Θ(log2 𝑛) time for Member(𝑥), Insert(𝑥), 
and Delete(𝑥) 

 

 What we really want is an balanced search tree 
◦ So, lets see if we can make such a tree implicit 

 

 

 

 



 Theorem (Munro 1986):  There is a data structure for 
the membership problem that occupies 𝑛 + 𝑘2  array 
locations, and uses an additional 𝑘 +  Θ(𝑛/𝑘) pointers, 
counters, and flags. Member(𝑥) takes Θ(log 𝑛) time, and 
Insert(𝑥) and Delete(𝑥) take time Θ(𝑘 + log 𝑛) time. 
 

 Invariant #1: AVL node stores 𝑘 consecutive elements 
◦ A 𝑛𝑜𝑑𝑒 consists of k locations for elements 

 Also a constant number of pointers, flags, and counters 
◦ We take node sized blocks from the end of the data array 

 

90,91,
94,96 

70,72,
74,77 

50,52,
54,56 

60,65,
67,68 

30,31,
32,35 

90 

70 
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 We need some extra mechanism to update 

90,91,
94,96 

70,72,
74,77 

50,52,
54,56 

60,65,
66,67 

30,31,
32,35 

90 

70 

50 

60 30 

 Invariant: 0 to k-1 consecutive elements between AVL nodes 

 The elements between two nodes are called a maniple 

40,41,42 

57,58 

68 80 



 We keep pointers to 𝑘 − 1 doubly linked lists 
◦ Each linked list will also consist of nodes 
◦ List 𝑖 will consist of all maniples of 𝑖 elements 
◦ Each AVL node stores a pointer to its maniple 

 
 

AVL nodes 

List Nodes 

40,41,42 70,71,72 60,61,63 26,27,28 

30,31,
32,35 

60,61,
62,65 

50,51,
54,57 

20,21,
23,25 

3 



 We keep pointers to 𝑘 − 1 doubly linked lists 
◦ Each linked list will also consist of nodes 
◦ List 𝑖 will consist of all maniples of 𝑖 elements 
◦ Each AVL node stores a pointer to its maniple 

 Each list node may contain maniples for up to k AVL nodes 
◦ This set of AVL nodes is called the cohort of the list node 

 We keep circular linked lists so we can find all AVL nodes in a cohort 

(Yes, there are a lot of pointers!) 

AVL nodes 

List Nodes 

40,41,42,70 

30,31,
32,35 

60,61,
62,65 

50,51,
54,57 

20,21,
23,25 

71,72,60,61 63,26,27,28 

0 3 2 1 

3 



 Memory Management: 
◦ When we need a new node, get it from the array 

 New list nodes inserted at the head of the list 

◦ To delete a maniple, swap contents with head 
 Must update maniple/cohort pointers in process 

 If head underflows, swap with final node in array 

 Overall this requires Θ log 𝑛 +𝑘  time 
  

 Thus, we can assume the following primitives: 
◦ PromoteManiple(𝑝, 𝑖, 𝑥): move maniple pointed to by 𝑝, of size 𝑖 

into maniple list 𝑖 + 1, while inserting 𝑥 into the correct position 

◦ DemoteManiple(𝑝, 𝑖, 𝑥): move maniple pointed to by 𝑝, of size 𝑖 
into maniple list 𝑖 − 1, and delete 𝑥 



 Insert is conceptually very easy: 
◦ Two cases: both more or less the same 

 Insert into an AVL node → bump max element into maniple 
 OR Insert directly into maniple 

◦ So, we what we really need is to handle maniple insertion: 
 If the maniple is empty, make a new one in list 1 
 If the maniple is already of size k-1, make AVL node 
 Otherwise, we use PromoteManiple 

 

 Deletion is analogous  
 

 Search: 
◦ In the AVL tree: Θ(log 𝑛)  
◦ In a node: Θ(log 𝑘) 
◦ Total: Θ(log 𝑛) 

90,91, 
94,96 

70,72, 
74,76 

50,52, 
54,56 

60,65, 
66,67 

30,31, 
32,35 

40,41,42 

57,58 

68 77,80 
Insert 76 
Bump 77 

Promote 



 Recall that nodes store 𝑘 consecutive values: 
◦ We can encode 𝑘/2 bits in these values! 

 

 

 

 

 

 

 

◦ Takes Θ(𝑘) time to decode/encode a pointer! 

 We will set 𝑘 = log 𝑛 and get Θ(log2 𝑛) time for all ops. 

 

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] 

3 2 4 5 12 7 13 17 20 18  29 22 

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] 

2 3 4 5 7 12 13 17 18 20  22 29 

1 0 1 0 1 1 



 We set 𝑘 = 𝑐⌈log 𝑛⌉, where c is a big constant 
◦ e.g., 𝑐 = 10 it will be large enough 

 

 Dealing with the cruft: 
◦ There are k-1linked lists of maniples 

 Each list can have up to k-1 unused locations 

 Thus, we are wasting Θ 𝑘2  locations in total! 

 We store these in the final locations of the array 

 Problem solved with extra pointers 

 

 Are we done? 



 Annoying issue: 
◦ The value of ⌈log 𝑛⌉ will change eventually 

◦ Luckily, there is an easy solution: 

 Keep Θ(log log 𝑛) copies of the membership structure 

 Structure 𝑖 stores 22
𝑖
 elements 

 Perform search/updates on all the dictionaries  

 Similar to the rotate list idea for updates 

 We can maintain the running time of Θ(log2 𝑛) 

 

 The end? 



 Several improvements since: 
◦ Franceschini et al. (2004):  

 All operations Θ(log2 𝑛 / log log 𝑛) 

 

◦ Franceschini and Grossi (2003,2006): 

 All operations Θ ( log 𝑛) 

 

◦ Brodal et al. (2012, 2013) 

 Other desirable properties 

 



 Unlike the last problem, this one will be static 

 

 Input:  
◦ A set of n records, each record has k keys 

 Goal: 
◦ Order records for efficient searching using any key 

 

 



 Sort the records according to key #1 

 Break it up into blocks of size 𝑛 

 Sort each block according to key #2 

 

 Search using key #1 takes Θ( 𝑛) time 

 Search using key #2 takes Θ( 𝑛 log 𝑛) time 

 

 Can we do better? 



 We store the elements in a BST layout (like the heap) 
◦ Odd levels: split using key #1 

◦ Even levels: split using key #2 

 What is the running time? 
◦ Θ( 𝑛) for searching under either key 

◦ If we know 𝑗 of 𝑘 keys: Θ(max ( 𝑛1−𝑗/𝑘  , log 𝑛)) 

 

1:F 

5:B 

4:A 6:D 

3:G 

2:J 7:G 

12:K 

10:E 

9:H 11:I 

15:N 

8:C 

13:M 16:O 

This is really a 
kd-tree 



 We can also do orthogonal range reporting:  
◦ Time complexity: 𝜃 𝑛 + 𝑡  where 𝑡 is output size 

◦ Proof: Consider the number of cells that are cut by 
a horizontal or vertical line… 



 Theorem (Alt, Mehlhorn, Munro 1984): Assume all 
comparisons are required to involve the element 
for which we are searching. If 𝑛 elements can be 
arranged in an array such that any of 𝑝 different 
permutations of the ascending order may occur, 

then searching requires Ω(𝑝1/𝑛) comparisons. 



 Consider the following permutation: 
◦ 𝜋 = (3,2,0,1,4,6,5) as a directed graph: 

 

0 1 2 3 4 5 6 

 A permutation induces a set of cycles 
◦ The length of a cycle is the number of elements 

 

 A permutation which is its own inverse is called an involution 
◦ In an involution, all cycles are of length ≤ 2 
◦ Example: 𝜋 = (1,0,3,2,5,4,7,6) or the bit encoding trick 

 
 



 Consider the following ordering scheme: 
◦ Take the first 𝑛/4 odd elements and pair them 

arbitrarily with the last 𝑛/4 odd elements 

 This admits (𝑛/4)! permutations 

 

◦ Lower bound says search time should be Ω(𝑛1/4)… 

 But we can still search in Θ(log 𝑛) time if we make 
comparisons that don’t involve the query element! 

 

 



 We will use the involution trick to show: 

 

 Theorem (Munro 1987): The static two-key 
search problem is solvable in Θ(log2 𝑛 log log 𝑛) 
time for searching under either key. 



 Feldman’s scheme: 
◦ Elements in position 0 𝑚𝑜𝑑 2 

in sorted order 

◦ Elements in position 1 𝑚𝑜𝑑 2 
permuted 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 3 4 5 7 9 12 14 17 19 22 25 29 31 33 37 

9 7 12 22 46 17 11 13 33 34 37 10 2 3 8 1 

 Munro’s 2-key scheme: 
◦ Start by sorting by key 1 

◦ Records in 0 𝑚𝑜𝑑 log 𝑛 sorted by key 1 

 Call these 1-guides 

◦ Conceptually log 𝑛 − 1 data structures  

 𝐷𝑖 for records in position 𝑖 𝑚𝑜𝑑 log 𝑛 

◦ Invariant: 𝑥 ∈  𝐷𝑖 straddled by 1-guides 

 



 For each 𝐷𝑖:  
◦ Put first half of the records into second half of array sorted by key 2 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 3 4 5 7 9 12 14 17 19 22 25 29 31 33 37 

9 7 12 22 46 17 11 13 33 34 37 10 2 3 8 1 



 For each 𝐷𝑖:  
◦ Put first half of the records into second half of array sorted by key 2 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 3 4 5 7 9 12 14 17 19 22 25 29 31 33 37 

9 7 12 22 46 17 11 13 33 34 37 10 2 3 8 1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 19 4 5 7 31 12 14 17 3 22 25 29 9 33 37 

9 34 12 22 46 3 11 13 33 7 37 10 2 17 8 1 



 For each 𝐷𝑖:  
◦ Put first half of the records into second half of array sorted by key 2 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 3 4 5 7 9 12 14 17 19 22 25 29 31 33 37 

9 7 12 22 46 17 11 13 33 34 37 10 2 3 8 1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 19 33 5 7 31 22 14 17 3 12 25 29 9 4 37 

9 34 8 22 46 3 37 13 33 7 11 10 2 17 12 1 



 For each 𝐷𝑖:  
◦ Put first half of the records into second half of array sorted by key 2 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 3 4 5 7 9 12 14 17 19 22 25 29 31 33 37 

9 7 12 22 46 17 11 13 33 34 37 10 2 3 8 1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 19 33 37 7 31 22 25 17 3 12 14 29 9 4 5 

9 34 8 1 46 3 37 10 33 7 11 13 2 17 12 22 



 Keep doing this recursively for each 𝐷𝑖: 
◦ Put the first half into the second sorted by key 2 
◦ Put the first quarter into the second sorted by key 2 
◦ Put the first eighth into the second sorted by key 2 
◦ … 
◦ Stop after log log 𝑛 + 𝑐 recursive calls for some 𝑐 >  0 
◦ Call the j-th sorted chunk from the right level j 

Level 1 Level 2 Level 3 Unsorted 

Θ
𝑛

log2 𝑛
  records 



 We now show how to: 
◦ Search among the 1-guides using key 2 
◦ Search among the unsorted portions of 𝐷𝑖 (either key) 

 Idea that we have seen before: 
◦ Encode pointers in the pairs of records sorted by key 2 
◦ We have Θ(𝑛) such records → can encode Θ(𝑛/ log 𝑛) pointers 
◦ We can use these pointers to encode search trees 

Level 1 Level 2 Level 3 Unsorted 



 Next: how to search using key 2 on the remaining records 
◦ We have Θ(log 𝑛) data structures 

◦ Each structure has Θ(log log 𝑛) levels 

◦ Each level is sorted using key 2 

◦ Overall time: Θ(log2 𝑛 log log 𝑛) 

Level 1 Level 2 Level 3 Unsorted 



 Finally: searching using key 1 
◦ The “much more interesting case” 

◦ Remember (Invariant): each y ∈  𝐷𝑖 is straddled by 1-guides 

 Thus, we can determine where the query element 𝑥 should be 

 That is, we can find a range 𝑟 of log 𝑛 positions (1 per 𝐷𝑖) 

◦ We need to do a binary search within r 

 Θ(log log 𝑛) to search 𝑟  

 For each 𝐷𝑖 we have to track down the correct record 

 How long does this take? 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 ? ? ? 7 ? ? ? 17 ? ? ? 29 ? ? ? 



 Consider a single 𝐷𝑖 
a b c d e f g h i j k l m n o p q r s t u v w x 

x s t m p u r q n w v o d i l e h g b c f k j a 

o w v r n q m u p s t x d i l e h g b c f k j a 

r q n o v w m u p s t x d i l e h g b c f k j a 

r q n o v w m u p s t x d i l e h g b c f k j a 



 Finally: searching using key 1 
◦ The “much more interesting case” 

◦ Remember (Invariant): each y ∈  𝐷𝑖 is straddled by 1-guides 

 Thus, we can determine where the query element 𝑥 should be 

 That is, we can find a range 𝑟 of log 𝑛 positions (1 per 𝐷𝑖) 

◦ We need to do a binary search within r 

 Θ(log log 𝑛) to search 𝑟  

 For each 𝐷𝑖 we have to track down the correct record 

 Tracking down: Θ(log 𝑛) moves, each move: Θ(log 𝑛) cost 

 Overall time: Θ(log2 𝑛 log log 𝑛) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 ? ? ? 7 ? ? ? 17 ? ? ? 29 ? ? ? 



 These results all generalize to 3 or more keys 

 

 Fiat et al. (1988) essentially settled it: 
◦ With 𝑘 keys we can search in Θ(𝑘 log 𝑘 log 𝑛) time 

◦ This solution is somewhat complicated 

 Basic Idea: select guides using Hall’s Theorem 


