
Efficient Data Structures

Summer 2014

Pat Nicholson

Issues with Implicit Model
 Some drawbacks of the implicit data structure model:

 The space requirements are overly strict

 Only comparisons are allowed

 How do real computers work?

 Modern computer architectures deal with words:

 Typically, each word consists of between 32 and 64 bits

 No matter what is being represented it really is just bits

 Our the model should be able to address individual bits

Next Model: The Word-RAM
 Word-RAM memory is of an array of 𝑤 bit words

 The space cost is the number of words stored

 The space cost in bits is:

𝑤 × number of words stored
 The time cost is the number of word operations:

reads/writes/arithmetic operations*

It is natural to assume that 𝑤 = Ω(log 𝑛) since
we can’t follow pointers efficiently otherwise.

Drawbacks of the Word-RAM
 Does not consider the memory hierarchy

 Caching effects are very important in practice

 Scanning vs. random access

 When combined with big-Oh it can be misleading

 Θ
log 𝑛

log log 𝑛
 is asymptotically smaller than Θ(log 𝑛)…

 However,
10 log 𝑛

log log 𝑛
> log 𝑛 for all reasonable values of 𝑛

Static Membership
 Recall that in the implicit data structure model

described, the static membership problem has a lower
bound of Θ(log 𝑛) time (due to comparison restriction)

 Let’s look at the problem in the word-RAM:

 Reasonable assumption: element occupies Θ(1) words

 What does this mean in terms of its values?

 We can assume there is some upper bound 𝑢 on the max:

 Θ 1 words → Elements in range [0,2Θ 𝑤 − 1]

 𝑢 ≤ 2Θ 𝑤

Totally Naïve Solution: A Bit Vector

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1

Universe [0,49]

 Given our set 𝑆

 Store a bit vector of
size 𝑢 bits:

 Bit 𝑥 ∈ 0, 𝑢 − 1
associated with
element 𝑥

 If 𝑥 ∈ 𝑆 set 𝑥 to 1,
otherwise set it to 0

Is 30 ∈ 𝑆?

Totally Naïve Solution: A Bit Vector

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1

Is 30 ∈ 𝑆?
Answer: No

Universe [0,49]

 Given our set 𝑆

 Store a bit vector of
size 𝑢 bits:

 Bit 𝑥 ∈ 0, 𝑢 − 1
associated with
element 𝑥

 If 𝑥 ∈ 𝑆 set 𝑥 to 1,
otherwise set it to 0

Bit Vector: Analysis
 Member takes Θ(1) time

 Need only look at a single bit (can even do updates)

 Downside: the space usage
 This occupies Θ(𝑢) bits…

 … and 𝑢 doesn’t necessarily have any relationship with 𝑛

 Usually we want space (in words) to be some function of 𝑛

 Sorted table: 𝑛 words or, alternatively, 𝑛 ⌈log 𝑢⌉ bits

 Can we do Θ(1) time Member queries in Θ(𝑛) words?

A Useful Hashing Fact
 Hash function ℎ:𝑈1 → 𝑈2 is universal if:

For any distinct 𝑥, 𝑦 ∈ 𝑈1 we have Pr ℎ 𝑥 = ℎ 𝑦 ≤
1

𝑈2

(Carter and Wegman, 1979)

 Suppose we hash into a quadratic sized table:

 Let ℎ: 𝑈 ↦ 𝑛2 be a universal hash function
 What is the probability of having any collisions?

Pr[Some pair of elements collide] < #𝑃𝑎𝑖𝑟𝑠/𝑈2 =
𝑛(𝑛 − 1)/2𝑛2 < 1/2

 Just keep generating such hash functions until it works

 This is (similar to) the birthday paradox (23 people in a room)

 Basis of:

FKS Hashing: The Big Idea
 Hash all the keys into a table of size 𝑛 with u.h.f.

 Let 𝑛𝑖 be the number of elements in location 𝑖

 Let 𝑐𝑥,𝑦 = 1 if 𝑥 collides with 𝑦 and 0 otherwise

 Claim: Pr [𝑛𝑖
2
𝑖 > 4𝑛] < 1/2

Proof:

𝐸 𝑛𝑖
2

𝑖

 = 𝐸 𝑐𝑥,𝑦
𝑦𝑥

 =

𝑛 + 2𝑛(𝑛 − 1)/2𝑛 < 2𝑛

 Apply my inequality: Pr 𝑋 ≥ 𝑎 ≤ 𝐸[𝑋]/𝑎
Markov

FKS Hashing: Summary
 What does this mean?

 Hash into a table of size n, then hash each bucket again

 Easy to build the data structure: expected linear time

 Shows the power of bitwise operations

 This idea of having multiple levels is quite common

 AKA: Keep doing the trick until it works

 It is heavily used in Succinct Data Structures

How much space do we really need?
 In the word-RAM model it is not necessarily clear…

 It turns out there is a simple enumerative way:

1. Figure out what kind of object we want to represent

2. Figure out how many objects there are of that type

3. Take the log (base 2) of this number

 This is known as the information theoretic lower bound

Information Theory Lower Bound
 Example: Represent full binary trees with 𝑛 + 1 leaves

There are about

4n

𝑛
3
2 𝜋
1
2

 of those

Catalan

• This means we need only 2𝑛 − Θ(log 𝑛) bits to represent a tree

• But if each node has 2 pointers, we are using 2𝑛 log 𝑛 bits…
• Depending on the type of tree this could be 64 times bigger in practice

Succinct Data Structures
 Main Idea in Combinatorial Enumeration:

 Count the number of objects of type 𝜒

 Main Idea in Succinct Data Structures
 Represent object of type χ using log |𝜒| + 𝑜(log 𝜒) bits

 Support efficient queries on the object

 Our Full Binary Tree Example:
 How to we represent our tree using 2𝑛 + 𝑜(𝑛) bits…

 … and support efficient navigation:
 E.g., move to parent, move to children, return subtree size, etc.

Technical Considerations: Arrays
 We can use shifting to deal with word boundaries

 Store 𝑛 numbers, each 𝑏-bits, using
𝑏𝑛

𝑤
 bits

 Thus, we don’t waste space

 Θ(1) slowdown for accessing the elements

 How big are pointers?

 We can resize our pointers to use less space

 General idea: pointers don’t need to occupy an entire word

 Even better: given context, often can use “short” pointers

Fundamental Tool: Rank and Select
 Suppose we are given a bit vector of length 𝑢:

 How can we support the following operations:

 Rank(𝑖): return the number of ones up to position 𝑖

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1

Fundamental Tool: Rank and Select
 Suppose we are given a bit vector of length 𝑢:

 How can we support the following operations:

 Rank(𝑖): return the number of ones up to position 𝑖

 Example: Rank(20) = ?

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1

Fundamental Tool: Rank and Select
 Suppose we are given a bit vector of length 𝑢:

 How can we support the following operations:

 Rank(𝑖): return the number of ones up to position 𝑖

 Example: Rank(20) = 5

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1

Fundamental Tool: Rank and Select
 Suppose we are given a bit vector of length 𝑢:

 How can we support the following operations:

 Rank(𝑖): return the number of ones up to position 𝑖

 Example: Rank(20) = 5

 Select(𝑗): return the position of the 𝑗-th one

 Example: Select(7) = ?

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1

Fundamental Tool: Rank and Select
 Suppose we are given a bit vector of length 𝑢:

 How can we support the following operations:

 Rank(𝑖): return the number of ones up to position 𝑖

 Example: Rank(20) = 5

 Select(𝑗): return the position of the 𝑗-th one

 Example: Select(7) = 23

 Need some convention: if no 𝑗-th one, return −1 or u+1

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1

How do we do it?
 How fast can we answer rank and select queries if we…

 Don’t care about space?

 What if we want Θ(𝑢) bits of space?

 Can we do better?

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1

One Slide for Rank
 Jacobson (1989) gave an 𝑢 + 𝑜 𝑢 bit solution for rank:

 Idea: More levels!
1. Break array into blocks of size log2 𝑢 bits

 Store number of 1s to start of each block

 Occupies Θ
𝑢

log 𝑢
 bits

2. Break blocks into subblocks of size
1

2
log 𝑢 bits

 Store number of 1s from start of block to start of each subblock

 Occupies Θ
𝑢 log log 𝑢

log 𝑢
 bits!

3. Store a table with all the precomputed answers for each subblock

 There are 2log 𝑢/2 such blocks…

 Occupies Θ(𝑢 log log 𝑢) bits (if we use some bit tricks)

One Slide for Rank
 Jacobson (1989) gave an 𝑢 + 𝑜 𝑢 bit solution for rank:

 Idea: More levels!
1. Break array into blocks of size log2 𝑢 bits

 Store number of 1s to start of each block

 Occupies Θ
𝑢

log 𝑢
 bits

2. Break blocks into subblocks of size
1

2
log 𝑢 bits

 Store number of 1s from start of block to start of each subblock

 Occupies Θ
𝑢 log log 𝑢

log 𝑢
 bits!

3. Store a table with all the precomputed answers for each subblock

 There are 2log 𝑢/2 such blocks…

 Occupies Θ(𝑢 log log 𝑢) bits (if we use some bit tricks)

𝑢 + Θ
𝑢 log log 𝑢

log 𝑢
 bits,

and we decide the
constant!

Better Ideas for Rank/Select
 Let’s parameterize the problem in terms of the one bits

 A bit vector of length 𝑢 containing 𝑛 one bits

 If 𝑛 ≪ 𝑢 we should probably be able to do better

 log 𝑢
𝑛
≤ 𝑛 log

𝑒𝑢

𝑛
+ 𝑂(1) = 𝑛 log

𝑢

𝑛
+ Θ(𝑛)

 log 𝑢
𝑛
+ Θ

𝑢

polylog 𝑢
 possible for Θ 1 rank and select…

 Patrascu (2008); see also related lower bound Patrascu and Viola(2010)

 Very related to predecessor search: i.e., find the index of the previous one

RaRaRa (Raman, Raman, and Rao 2007)
 A fully indexable dictionary (FID) is a data structure for

representing a bit vector of length 𝑢, that can do:

 Rank(𝑖, {0,1}): count the number of zeros or ones in the prefix

 Select(𝑗, {0,1}): return the index of the j-th zero or one

 RaRaRa’s result: a FID occuping log 𝑢
𝑛
+ Θ

𝑢 log log 𝑢

log 𝑢
 bits

 Does all four operations in Θ(1) time

 This (or Patrascu’s result) is a very useful black box

 We are going to describe it in detail!

 𝑛𝑖 denotes the number of 1s in block 𝑖, for 1 ≤ 𝑖 ≤
𝑢

𝑏

 If each block can be stored using log 𝑏
𝑛𝑖

 bits:

 log
𝑏

𝑛𝑖
𝑖

≤

𝑢

𝑏
+ log

𝑏

𝑛𝑖
𝑖

≤

𝑢

𝑏
+ log
𝑢

𝑛

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1

Cut into blocks of size 𝑏 bits

RaRaRa (Raman, Raman, and Rao 2007)

Storing & Ranking Blocks
 How many types of blocks are there with 𝑛′ ones?

 Enumerate them in lexicographic order:

 Assign each possible one a log 𝑏
𝑛′

-bit number

 We will call this a lexicographic (lex.) number

 For each 𝑛′ ∈ [1, 𝑏] build a table that maps each lex.
number to its corresponding block of length 𝑏:

 Each table stores injective function: ℎ𝑛𝑖: 2
log 𝑏𝑛𝑖 → 2𝑏

 Store concatenation of the lex. numbers for each block

 Now what is the problem?

Storing & Ranking Blocks (2)
 The main issue: lex. numbers are not one size

 We need to know where lex. number 𝑖 starts

 We also need to know the value 𝑛𝑖 to access ℎ𝑛𝑖

 How to overcome this?

 Store two arrays: 𝑆 and 𝐶 of length
𝑢

𝑏

 𝑆 𝑖 stores the number log 𝑏
𝑛𝑖

 using Θ(log 𝑏) bits

 𝐶[𝑖] stores the number 𝑛𝑖, also using Θ(log 𝑏) bits

 We want to be able to return partial sums on these arrays

 Using 𝑆 as an example: the sum 𝑆[𝑖]𝑖 for any 𝑖 ∈ 1,
𝑢

𝑏

An Illustration with 𝑏 = 4

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0

2 0 1 0 2 2 0 0 3 1 0 1

000 00 000 001 11 01 00 lex

𝐶

3 0 2 0 3 3 0 0 2 2 0 2 𝑆

An Illustration with 𝑏 = 4

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0

2 0 1 0 2 2 0 0 3 1 0 1

000 00 000 001 11 01 00 lex

𝐶

3 0 2 0 3 3 0 0 2 2 0 2 𝑆

An Illustration with 𝑏 = 4

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0

2 0 1 0 2 2 0 0 3 1 0 1

000 00 000 001 11 01 00 lex

𝐶

3 0 2 0 3 3 0 0 2 2 0 2 𝑆

An Illustration with 𝑏 = 4

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0

2 0 1 0 2 2 0 0 3 1 0 1

000 00 000 001 11 01 00 lex

𝐶

3 0 2 0 3 3 0 0 2 2 0 2 𝑆

An Illustration with 𝑏 = 4

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0

2 0 1 0 2 2 0 0 3 1 0 1

000 00 000 001 11 01 00 lex

𝐶

3 0 2 0 3 3 0 0 2 2 0 2 𝑆

An Illustration with 𝑏 = 4

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0

2 0 1 0 2 2 0 0 3 1 0 1

000 00 000 001 11 01 00 lex

𝐶

3 0 2 0 3 3 0 0 2 2 0 2 𝑆

An Illustration with 𝑏 = 4

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0

2 0 1 0 2 2 0 0 3 1 0 1

000 00 000 001 11 01 00 lex

𝐶

3 0 2 0 3 3 0 0 2 2 0 2 𝑆

Digression: Partial Sums
 Supporting partial sums on 𝑚 elements 𝑆[1. . 𝑚]:

 Suppose each element < log𝑐𝑚 for some 𝑐 > 0

 𝑆[𝑖]𝑖 < 𝑖 log𝑐𝑚 can be written using Θ(log𝑚) bits

 Write down the sums up to every log𝑚-th element

 This uses Θ
𝑚

log 𝑚
× log𝑚 = Θ(𝑚) bits

 Write down the sums from each offset to each element

 This uses Θ 𝑚 log log𝑚 bits

Storing & Ranking Blocks (3)
 Recap:

 The concatenated lex. numbers:

 Occupy log 𝑢
𝑛
+ Θ

𝑢

log 𝑢
 bits

 The arrays 𝑆 and 𝐶 enhanced to support partial sums:

 This occupies Θ
𝑢 log log 𝑢

log 𝑢
 bits (setting 𝑚 =

𝑢

𝑏
)

 All those lookup tables (Also: keep table for counting ones):

 Θ 𝑢 polylog 𝑛 can be made 𝑢𝜀 for any 𝜀 > 0

 Using these we can easily do access and rank (on 0 and 1)

 “But you said we could do select! What about select?”

Select is more complicated
 According to a someone who has implemented this:

 “In practice you just use binary search.”

 How to do it:

 Let 𝑝 be the number of blocks, so around
2𝑢

log 𝑢

 Store the answer explicitly for every log2 𝑝 query:

 i.e., now we can answer select(𝑖 log2 𝑝) for 1 ≤ 𝑖 ≤ 𝑛/log2 𝑝

 Unlike rank, the groups for select will be non-uniform

 The elements between each sample are a group

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0

Two Kinds of Select Groups
 The “sparse case”

 The size of the group is ≥ log4 𝑝
 This is the easy case, as we simply write down the answers

 There can only be
𝑢

log4 𝑝
 such groups: spend Θ log3 𝑝 bits per

 The “dense case”
 In this case, we construct a search tree over the group’s blocks

 Tree will have fan out log 𝑝

 How tall will the tree be?

 Each node has array storing # of ones in each child’s subtree

 Each # is size Θ log log 𝑝 bits (how many ones in whole tree?)…

 …so an entire array can be packed in a single word!

Don’t try this at home

1 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1 0 1 0 1 0 0 0

Before this was the entire bit vector, now it’s just one dense block

3,2,2,1 2,2,2,2 4,1,2,1

8,8,8
How to branch?

Wrap up
 Total space for the dense groups:

 Dense group spanning 𝑘 blocks has Θ
𝑘

𝑝 log 𝑢
 nodes

 Each node stores an array of size Θ 𝑝 log log 𝑝 bits

 Total: Θ
𝑢 log log 𝑢

log 𝑢
 bits

 We can do the same thing for select on zeros!

“But what about trees?”
 What does rank and select have to do with trees?

 Remember the heap

 Left-child of node 𝑖 = 2𝑖

 Right-child of node 𝑖 = 2𝑖 + 1

 Parent of 𝑖 = 𝑖/2

“But what about trees?”
 What does rank and select have to do with trees?

 Remember the heap

 Left-child of node 𝑖 = 2𝑖

 Right-child of node 𝑖 = 2𝑖 + 1

 Parent of 𝑖 = 𝑖/2

“But what about trees?”
 What does rank and select have to do with trees?

 Remember the heap

 Left-child of node 𝑖 = 2𝑖

 Right-child of node 𝑖 = 2𝑖 + 1

 Parent of 𝑖 = 𝑖/2

Write as a bit vector: 1111101110100011001001100000011

Neat, but it doesn’t
use 2𝑛 bits… or use

the stuff we just
spent a lot of time

learning about

Uses
𝟐𝒏 + 𝒐(𝒏)

bits!!!

Level Order Binary Marked (Jacobson)

 Make it a complete binary tree (put the leaves in)

Write as a bit vector:

𝟏𝟏𝟏𝟏𝟏𝟎𝟏𝟏𝟏𝟎𝟏𝟎𝟏𝟏𝟎𝟎𝟏𝟏𝟏𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎

 Left-child of 𝒊 = 𝟐 𝐫𝐚𝐧𝐤(𝒊)
 Right-child of 𝒊 = 𝟐𝒓𝒂𝒏𝒌(𝒊) + 𝟏

 Parent of 𝒊 = 𝒔𝒆𝒍𝒆𝒄𝒕
𝒊

𝟐

“What about non-binary trees?”
 Ordered trees: uniquely identified by degree sequence

 Idea: encode these and write them down

 Several different ways to do this

 Level Ordered Unary Degree Sequence (LOUDS)

 Also by Jacobson

Numbers in unary:

𝟎 → 𝟎
𝟏 → 𝟏𝟎
𝟐 → 𝟏𝟏𝟎
𝟑 → 𝟏𝟏𝟏𝟎

“What about non-binary trees?”
 Ordered trees: uniquely identified by degree sequence

 Idea: encode these and write them down

 Several different ways to do this

 Level Ordered Unary Degree Sequence (LOUDS)

 Also by Jacobson

Numbers in unary:

𝟎 → 𝟎
𝟏 → 𝟏𝟎
𝟐 → 𝟏𝟏𝟎
𝟑 → 𝟏𝟏𝟏𝟎

Add “super root” to make sure each node
associated with a zero bit:
𝟏𝟎𝟏𝟏𝟏𝟏𝟎𝟏𝟏𝟏𝟎𝟎𝟎𝟏𝟏𝟏𝟏𝟎𝟏𝟏𝟎𝟎𝟏𝟎𝟏𝟎𝟎𝟎𝟏𝟎𝟏𝟎𝟏𝟏𝟏𝟎𝟏𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎

“What about non-binary trees?”
 Ordered trees: uniquely identified by degree sequence

 Idea: encode these and write them down (Jacobson)

 Several different ways to do this

 Level Ordered Unary Degree Sequence (LOUDS)

Add “super root” to make sure each node
associated with a zero bit:
𝟏𝟎𝟏𝟏𝟏𝟏𝟎𝟏𝟏𝟏𝟎𝟎𝟎𝟏𝟏𝟏𝟏𝟎𝟏𝟏𝟎𝟎𝟏𝟎𝟏𝟎𝟎𝟎𝟏𝟎𝟏𝟎𝟏𝟏𝟏𝟎𝟏𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎

 Children of 𝒊 ~ 𝒔𝒆𝒍𝒆𝒄𝒕 𝒓𝒂𝒏𝒌 𝒋, 𝟏 , 𝟎 ∗
 Parent of 𝒊 = 𝒔𝒆𝒍𝒆𝒄𝒕 𝒓𝒂𝒏𝒌 𝒊, 𝟎 , 𝟏
 Next Sibling…
 Degree…

*to find child 𝑘 do this setting 𝑗 to be the index of the 𝑘-th one in unary expansion of 𝑖

Other Results
 We talked about two methods: LOBM and LOUDS

 Other methods:

 Balanced Parentheses (BP)
 (Jacobson 1989, Munro & Raman 1997, Munro et al. 2001, Sadakane 2003, Lu & Yeh 2008)

 We will talk next time about its use for representing graphs

 Can also support level ancestor, lowest common ancestor (LCA), and many more operations.

 Depth-First Unary Degree Sequence (DFUDS)
 (Benoit et al. 2005, Jansson et al. 2007)

 Can compute subtree size in 𝑂(1) time + LOUDS operations

 Tree Covering (TC)
 (Geary et al. 2004, He et al. 2007, Farzan and Munro 2008)

 Fully Function (FF)
 (Sadakane and Navarro 2010,2012)

“Universal” Representation
 A result by Farzan, Munro, and Rao (2009):

 We can represent a tree using 2𝑛 + 𝑜(𝑛) bits such that
we can access any block of log 𝑛 consecutive bits in the
DFUDS, BP, or TC representation, etc., in Θ(1) time.

 Bottom Line: can do it all in 2𝑛 + 𝑜(𝑛) bits!

 Next Lecture: BP and graphs

Balanced Parentheses
 Last class we looked at rank/select

 Consider the following problem:

((((()())(()()))((()())(()())))(((()())(()()))((()())(()()))))

Balanced Parentheses
 Last class we looked at rank/select

 Consider the following problem:

((((()())(()()))((()())(()())))(((()())(()()))((()())(()()))))

 Find the matching parenthesis

Balanced Parentheses
 Last class we looked at rank/select

 Consider the following problem:

((((()())(()()))((()())(()())))(((()())(()()))((()())(()()))))

 Find the matching parenthesis

 Looks similar (kind of… sort of) to the rank/select problem

 Supports the following operations (Jacobson 1989, Munro and Raman 1997):
 Find_Match(i): see picture

 Excess(i): return difference between # of open/closed at i

Balanced Parentheses
 Last class we looked at rank/select

 Consider the following problem:

((((()())(()()))((()())(()())))(((()())(()()))((()())(()()))))

 Find the matching parenthesis

 Looks similar (kind of… sort of) to the rank/select problem

 Supports the following operations (Jacobson 1989, Munro and Raman 1997):
 Find_Match(i): see picture

 Excess(i): return difference between # of open/closed at i

 Enclose(i): given pair (opening at i), return smallest “containing” pair

Balanced Parentheses
 Last class we looked at rank/select

 Consider the following problem:

((((()())(()()))((()())(()())))(((()())(()()))((()())(()()))))

 Find the matching parenthesis

 Looks similar (kind of… sort of) to the rank/select problem

 Supports the following operations (Jacobson 1989, Munro and Raman 1997):
 Find_Match(i): see picture

 Excess(i): return difference between # of open/closed at i

 Enclose(i): given pair (opening at i), return smallest “containing” pair

 Double_Enclose(i,j): given pairs (opening at i and j), return smallest “containing” pair

 Many additional operations added later (Lu & Yeh 2008)

Jacobson’s Solution for Find_Match

 This won’t really be succinct: Θ(𝑛) bits

 As you might expect: break it into blocks of size b

 Main Idea:
 If match is in the same block find it by scanning

 Alternative case we need some additional observations

((((()())(()()))((()())(()())))(((()())(()()))((()())(()()))))

Cut into blocks of size 𝑏

Some Definitions

((()(()()())((()())) (()((()))())()()(()((((()()))())))()()))

 A far parenthesis has its match in a different block

 The number of far parenthesis can be linear

 Can’t just store the answers for these

Some Definitions

((()(()()())((()())) (()((()))())()()(()((((()()))())))()()))

4 2 4 4 6 0

 A far parenthesis has its match in a different block

 The number of far parenthesis can be linear

 Can’t just store the answers for these

 We can, however, store the excess

Some Definitions
 A far parenthesis has its match in a different block

 The number of far parenthesis can be linear

 Can’t just store the answers for these

 ((()(()()())((()())) (()((()))())()()(()((((()()))())))()()))

4 2 4 4 6 0

 We can, however, store the excess

 Consider a single block:

 Mark all of the far parenthesis

 Mark whenever the block of the match changes

Some Definitions
 A far parenthesis has its match in a different block

 The number of far parenthesis can be linear

 Can’t just store the answers for these

1000100000 -- -- -- -- --

((()(()()())((()())) (()((()))())()()(()((((()()))())))()()))

4 2 4 4 6 0

 We can, however, store the excess

 Consider a single block:

 Mark all of the far parenthesis

 Mark whenever the block of the match changes

Some Definitions
 A far parenthesis has its match in a different block

 The number of far parenthesis can be linear

 Can’t just store the answers for these

1000100000 0000000000 -- -- -- --

((()(()()())((()())) (()((()))())()()(()((((()()))())))()()))

4 2 4 4 6 0

 We can, however, store the excess

 Consider a single block:

 Mark all of the far parenthesis

 Mark whenever the block of the match changes

Some Definitions
 A far parenthesis has its match in a different block

 The number of far parenthesis can be linear

 Can’t just store the answers for these

1000100000 0000000000 1000000000 -- -- --

((()(()()())((()())) (()((()))())()()(()((((()()))())))()()))

4 2 4 4 6 0

 We can, however, store the excess

 Consider a single block:

 Mark all of the far parenthesis

 Mark whenever the block of the match changes

Some Definitions
 A far parenthesis has its match in a different block

 The number of far parenthesis can be linear

 Can’t just store the answers for these

1000100000 0000000000 1000000000 0000001000 -- --

((()(()()())((()())) (()((()))())()()(()((((()()))())))()()))

4 2 4 4 6 0

 We can, however, store the excess

 Consider a single block:

 Mark all of the far parenthesis

 Mark whenever the block of the match changes

Some Definitions
 A far parenthesis has its match in a different block

 The number of far parenthesis can be linear

 Can’t just store the answers for these

1000100000 0000000000 1000000000 0000001000 1000000000 --

((()(()()())((()())) (()((()))())()()(()((((()()))())))()()))

4 2 4 4 6 0

 We can, however, store the excess

 Consider a single block:

 Mark all of the far parenthesis

 Mark whenever the block of the match changes

Some Definitions
 A far parenthesis has its match in a different block

 The number of far parenthesis can be linear

 Can’t just store the answers for these

1000100000 0000000000 1000000000 0000001000 1000000000 --

((()(()()())((()())) (()((()))())()()(()((((()()))())))()()))

4 2 4 4 6 0

 We can, however, store the excess

 Consider a single block:

 Mark all of the far parenthesis

 Mark whenever the block of the match changes

Some Definitions (2)
 We call the parentheses marked by 1 bits pioneers

1000100000 0000000000 1000000000 0000001000 1000000000 --

((()(()()())((()())) (()((()))())()()(()((((()()))())))()()))

4 2 4 4 6 0

 How many pioneers can there be?

Digression: Pioneers
 Let’s think of the blocks as vertices in a graph

((()(()()())((()())) (()((()))())()()(()((((()()))())))()()))

 Balanced parentheses → we can draw without crossings

 That means this graph is planar (even better: outerplanar)

 If we have 𝑚 =
𝑛

𝑏
 vertices, there can be at most 2𝑚 − 3 edges

 This means: number of pioneers is sublinear if 𝑏 = 𝜔(1) (yay)

Using this Fact
 We can write down the block numbers of the pioneers

1000100000 0000000000 1000000000 0000001000 1000000000 --

((()(()()())((()())) (()((()))())()()(()((((()()))())))()()))

4 2 4 4 6 0

 Store this pioneer information using Θ(𝑛 log 𝑛 /𝑏) bits

 Given an arbitrary opening parenthesis:

 We can find the preceding pioneer using rank/select

6 2 4 6 6

6 2 4 6 6

Performing Find_Match

1000100000 0000000000 1000000000 0000001000 1000000000 --

((()(()()())((()())) (()((()))())()()(()((((()()))())))()()))

4 2 4 4 6 0

6 2 4 6 6

 Suppose we want to find the match of the red (

 Search within block to see if it is matched…

 in this case “no”

 Find the preceding pioneer

Performing Find_Match

1000100000 0000000000 1000000000 0000001000 1000000000 --

((()(()()())((()())) (()((()))())()()(()((((()()))())))()()))

4 2 4 4 6 0

6 2 4 6 6

 Suppose we want to find the match of the red (

 Search within block to see if it is matched…

 in this case “no”

 Find the preceding pioneer

 Determine excess up to 𝑖

 In this case: 4

 Find the first time excess reduces to 3 in pioneer block

Performing Find_Match

1000100000 0000000000 1000000000 0000001000 1000000000 --

((()(()()())((()())) (()((()))())()()(()((((()()))())))()()))

4 2 4 4 6 0

6 2 4 6 6

 Suppose we want to find the match of the red (

 Search within block to see if it is matched…

 in this case “no”

 Find the preceding pioneer

 Determine excess up to 𝑖

 In this case: 4

 Find the first time excess reduces to 3 in pioneer block
 Why??

Stack View

1000100000 0000000000 1000000000 0000001000 1000000000 --

((()(()()())((()())) (()((()))())()()(()((((()()))())))()()))

Analysis of Find_Match
 We have described how to find a closing parenthesis

 The query time was Θ 𝑏 , since we must scan blocks

 Excess takes Θ(𝑏) time using scan + block info

 The space is:
 2𝑛 bits for the pioneer bit vector (+𝑜(𝑛) for rank/select)

 Θ
𝑛 log 𝑛

𝑏
 bits for storing the pioneer blocks

 Θ
𝑛 log 𝑛

𝑏
 bits for the excess information

 Set 𝑏 = log 𝑛 and it all works out to be Θ(𝑛) bits

 Do the same thing for finding an opening parenthesis

Supporting Enclose
 Consider the “stack view” again

((()(()()())((()())) (()((()))())()()(()((((()()))())))()()))

 Suppose minimum of a block has excess 𝑥:
 Store first block to the right having excess 𝑥 − 1

 Extra Θ
𝑛

𝑏
log 𝑛 bits

 Use this + pioneer information to answer queries

Binary Trees Revisited

Represent a node like so: open-paren left-child right-child close-paren

(1(2(3(4(5))(6(7)))(8(9(10)(11)))(12(13(14(15)(16)))))

1

3

2

8

4 6 9

5 7 10 11

12

13

14

15 16

Binary Trees Revisited

Represent a node like so: open-paren left-child right-child close-paren

((((())(()))((()()))(((()()))))
OK: now look at node 6

1

3

2

8

4 6 9

5 7 10 11

12

13

14

15 16

Binary Trees Revisited
1

3

2

8

4 6 9

5 7 10 11

12

13

14

15 16

Represent a node like so: open-paren left-child right-child close-paren

((((())(()))((()()))(((()()))))
OK: now look at node 6
Tell me whether 7 is a left or a right child…

OOPS!!!

Transformation
1

3

2

8

4 6 9

5 7 10 11

12

13

14

15 16

1

3

2 8

4

6

9

5

7 10

11

12 13 14

15

16

0

Transformation

1

3

2 8

4

6

9

5

7 10

11

12 13 14

15

16

0

Build BP over
the ordered tree

instead

(𝟎(𝟏(𝟐(𝟑(𝟒(𝟓)))(𝟔)(𝟕))(𝟖)(𝟗(𝟏𝟎))(𝟏𝟏)(𝟏𝟐)(𝟏𝟑)(𝟏𝟒(𝟏𝟓))(𝟏𝟔))

Right child?
Left child?
Parent?
Subtree size?

Outerplanar/One-Page Graphs

 Remember bound on number of pioneers…

 We can represent outer planar (i.e., one page graphs)
 Even works for multi-graphs

 Use rank/select to move from “spine number” to ()

 Θ(𝑛) bits in total:
 Can be reduced to 2𝑛 + 2𝑚 + 𝑜 𝑛 (Munro and Raman 1997)

 … using not one… not two… but three levels of blocking!

1 2 3 4 5 6 7 8

()((())(()(())) ())((()(())) ())

Outerplanar/One-Page Graphs

1 2 3 4 5 6 7 8

()((())(()(())) ())((()(())) ())

 Navigation:

 List neighbours of node 𝑖:
 Find the “adjacent parenthesis” corresponding to 𝑖 (e.g., 𝑖 = 5)

Outerplanar/One-Page Graphs

()((())(()(())) ())((()(())) ())

 Navigation:

 List neighbours of node 𝑖:
 Find the “adjacent parenthesis” corresponding to 𝑖 (e.g., 𝑖 = 5)

 For each matching paren. report the label: e.g., 1,7,8

1 2 3 4 5 6 7 8

Outerplanar/One-Page Graphs

()((())(()(())) ())((()(())) ())

 Navigation:

 List neighbours of node 𝑖:
 Find the “adjacent parenthesis” corresponding to 𝑖 (e.g., 𝑖 = 5)

 For each matching paren. report the label: e.g., 1,7,8

 Test Adjacency of (𝑖, 𝑗) (e.g., 𝑖 = 1, 𝑗 = 4):
 Find first matching pair after 𝑖

1 2 3 4 5 6 7 8

Outerplanar/One-Page Graphs

()((())(()(())) ())((()(())) ())

 Navigation:

 List neighbours of node 𝑖:
 Find the “adjacent parenthesis” corresponding to 𝑖 (e.g., 𝑖 = 5)

 For each matching paren. report the label: e.g., 1,7,8

 Test Adjacency of (𝑖, 𝑗) (e.g., 𝑖 = 1, 𝑗 = 4):
 Find first matching pair after 𝑖

 Find last matching pair after 𝑗

 If neither query yields a “yes” the answer is “no”

Neat!

1 2 3 4 5 6 7 8

It works for Planar Graphs too!
 Thanks to a theorem of Yannakakis (1986):

There is a linear time algorithm that can embed any
planar graph into no more than four page graphs.

(The “spine numbers” are the same for all pages)

 This means that we can apply the BP representation:

 We get planar graphs that occupy 8𝑛 + 2𝑚 + 𝑜(𝑛) bits

 Adjacency listing in 𝑂(𝑡 + 1) time for degree 𝑡 vertices

 Adjacency testing in 𝑂 1 time

 Any 𝑘-page graph occupies 2𝑘𝑛 + 2𝑚 + 𝑜 𝑛𝑘 bits

 Adjacency listing in 𝑂(𝑘 + 𝑡)

 Adjacency testing in 𝑂 𝑘 time

Arbitrary Graphs
 What about non-planar graphs?

 We have been taught:

 Adjacency list representation:

 Θ(𝑛 + 𝑚 log 𝑛) bits

 Θ(𝑡 + 1) time to report all 𝑡 neighbours

 Θ(log 𝑛) time for adjacency testing (PSSSST: can be improved to Θ(log log 𝑛))

 Adjacency matrix representation:

 𝑛2 bits for directed; 𝑛
2

 bits for undirected graph

 Θ(𝑛) time for adjacency listing

 Θ(1) time for adjacency testing*

Succinct(?) Arbitrary Graphs
 How many bits to represent a 𝑛 vertex digraph?

 𝐵 = log 𝑛
2

𝑚
 if it has 𝑚 edges

 Idea #1: “Use the FID”
 Represent each row of the adjacency matrix using a FID

 Let 𝑚𝑖 be the number of 1s in row 𝑖

 This takes log 𝑛
𝑚𝑖𝑖 + Θ(𝑛2 log log 𝑛 / log 𝑛) bits

 Or 𝐵 + Θ(𝑛2 log log 𝑛 / log 𝑛) bits
 Second term is little-oh-ish when

𝑚 = 𝜔
𝑛2

log 𝑛
 and 𝑚 = 𝑜 𝑛2 1 −

1

log 𝑛

 For now assume the graph is in this range (i.e., dense)
 Can list “out-neighbours” in Θ(1) time per element
 Can test adjacency in Θ(1) time

What about “in-neighbours”
 How can we report the rows and columns efficiently?

 Idea #2: “Θ
𝑛2 log log 𝑛

log 𝑛
 is technically 𝑜 𝑛2 ”

M A T R I X

log 𝑛 /2

Store each little
matrix using the
same method as

the FID

log 𝑛 /2

What about “in-neighbours” (2)
 For each row and each column

 Construct aux. FID structures with 𝑏 =
log 𝑛

2

 Access any little row/col. block by fetching the square block

 We have a succinct representation of directed graphs
 For a particular range of 𝑚…

 Partial result: not so convincing

Other Ranges of 𝑚
 If we want to support adjacency testing, reporting in-

neighbours and out-neighbours (Farzan and Munro, 2013):

• What is going on in the “middle”?
• Upper bounds: essentially based on a space efficient version of FKS hashing
• Lower bounds: I will prove this next class

Succinct “FKS-Hashing”
 Another RaRaRa (2007) result that is very useful:

 Theorem: Given a bit vector of 𝑢 bits, with 𝑛 one bits,

there is a data structure that occupies log 𝑢
𝑛
+ 𝑜 𝑛 +

O(log log 𝑢) bits and can support the following:

 Rank(𝑖): iff position 𝑖 is a 1 bit (and therefore also Access(𝑖))

 Select(𝑖): for all 𝑖 ∈ [1, 𝑛]

 A nice project: it is essentially FKS hashing + many
incremental improvements spread over several papers

 I would like to see a summary of the various techniques

Lower Bounds (for Data Structures)

 What is the computational model?

 Cell Probe Model:

 Data structure 𝐷 consists of 𝑆 cells, each containing 𝑤 bits

 𝐷 supports some set of queries

 We want to examine trade-offs between

 The size of a static data structure

 The number of cells, 𝑡, that must be probed during a query

 Intermediate computation is free

 Why do we care?

 Cell-Probe Lower Bounds hold in the word-RAM model

??? ??? ??? ??? ???

??? ??? ??? ??? ???

??? ??? ??? ??? ???

??? ??? ??? ??? ???

??? ??? ??? ??? ???

DATA STRUCTURE
𝑠 cells

USER

??? ??? ??? ??? ???

??? ??? ??? ??? ???

??? ??? ??? ??? ???

??? ??? ??? ??? ???

??? ??? ??? ??? ???

DATA STRUCTURE
𝑠 cells

USER

What is the
answer to
QUERY X?

??? ??? ??? ??? ???

??? ??? ??? ??? ???

??? ??? ??? ???

??? ??? ??? ??? ???

??? ??? ??? ??? ???

DATA STRUCTURE
𝑠 cells

USER

What is the
answer to
QUERY X?

??? ??? ??? ??? ???

??? ??? ??? ??? ???

1010 ??? ??? ??? ???

??? ??? ??? ??? ???

??? ??? ??? ??? ???

DATA STRUCTURE
𝑠 cells

USER

What is the
answer to
QUERY X?

𝑤 bits

??? ??? ??? ??? ???

??? ??? ??? ???

1010 ??? ??? ??? ???

??? ??? ??? ??? ???

??? ??? ??? ??? ???

DATA STRUCTURE
𝑠 cells

USER

What is the
answer to
QUERY X?

??? ??? ??? ??? ???

??? ??? 1100 ??? ???

1010 ??? ??? ??? ???

??? ??? ??? ??? ???

??? ??? ??? ??? ???

DATA STRUCTURE
𝑠 cells

USER

What is the
answer to
QUERY X?

𝑤 bits

??? ??? ??? ??? ???

??? ??? 1100 ??? ???

1010 ??? ??? ??? ???

??? ??? ??? ??? ???

??? ??? ??? ??? ???

DATA STRUCTURE
𝑠 cells

USER

What is the
answer to
QUERY X? I read the bits

“1010” and
“1100”… so the

answer is Y.

??? ??? ??? ??? ???

??? ??? 1100 ??? ???

1010 ??? ??? ??? ???

??? ??? ??? ??? ???

??? ??? ??? ??? ???

DATA STRUCTURE
𝑠 cells

USER

What is the
answer to
QUERY X?

QUERY
ANSWERED

IN 𝟐 PROBES

I read the bits
“1010” and

“1100”… so the
answer is Y.

Problem #1: Permutations
 Represent a permutation 𝜋 of size 𝑛 such that we can

compute 𝜋(𝑖) and 𝜋−1(𝑖) for any 𝑖 ∈ [1, 𝑛]

 Example: 𝜋 = (4,3,1,2,5,7,6)

1 2 3 4 5 6 7

𝜋 1 = 4 𝜋−1 4 = 1

Problem #1: Permutations
 There are 𝑛! permutations

 So, we need about 𝑛 log 𝑛 bits to represent one

 We can just store an array to represent 𝜋
 This takes 𝑛 log 𝑛 + Θ(𝑛) bits; 𝜋(𝑖) in Θ 1 time

 What about computing the inverse? 𝜋−1 𝑖
 Simple solution: store two arrays

 This takes 2𝑛 log 𝑛 + Θ(𝑛) bits; 𝜋(𝑖) and 𝜋−1 𝑖 in Θ 1 time

 Can we do better?
 Yes: using hashing we can, for any constant 𝜀 > 0, get

(1 + 𝜀)𝑛 log 𝑛 bits; 𝜋(𝑖) and 𝜋−1 𝑖 in Θ 1 time

Problem #1: Permutations
 There are 𝑛! permutations

 So, we need about 𝑛 log 𝑛 bits to represent one

 We can just store an array to represent 𝜋
 This takes 𝑛 log 𝑛 + Θ(𝑛) bits; 𝜋(𝑖) in Θ 1 time

 What about computing the inverse? 𝜋−1 𝑖
 Simple solution: store two arrays

 This takes 2𝑛 log 𝑛 + Θ(𝑛) bits; 𝜋(𝑖) and 𝜋−1 𝑖 in Θ 1 time

 Can we do better?
 Yes: using hashing we can, for any constant 𝜀 > 0, get

(1 + 𝜀)𝑛 log 𝑛 bits; 𝜋(𝑖) and 𝜋−1 𝑖 in Θ 1 time

NOT
SUCCINCT

Problem #2:Represent Digraphs
 Represent a digraph 𝐺 = (𝑉, 𝐸) such that we can:

 Report the 𝑖-th in-neighbour of a node

 Report the 𝑗-th out-neighbour of a node

0 1 1 0 1 1 0 1

1 0 0 0 1 0 0 0

1 0 0 1 0 0 0 0

0 0 1 0 0 1 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 0

Report out-
neighbours of
vertex: r-select(𝑟, 𝑖)

Report in neighbours of
vertex: c-select(𝑐, 𝑗)

Problem #2:Represent Digraphs
 We can store an 𝑚 edge digraph on 𝑛 vertices using log 𝑛

2

𝑚
+

𝑜 log 𝑛
2

𝑚
 bits and support one operation in Θ 1 time via “hashing”

 We can support both operations if the graph is very dense or sparse:

 𝑚 = 𝑜(𝑛𝛿) for any constant 𝛿 > 0

 𝑚 = Ω(𝑛2/ log1−𝛿 𝑛) for some 𝛿 > 0

 For all other ranges the best we can seem to is:

1 + 𝜀 log 𝑛
2

𝑚
 bits if we want 𝛩(1) time for both operations

(again, using “hashing”)

Problem #2:Represent Digraphs
 We can store an 𝑚 edge digraph on 𝑛 vertices using log 𝑛

2

𝑚
+

𝑜 log 𝑛
2

𝑚
 bits and support one operation in Θ 1 time via “hashing”

 We can support both operations if the graph is very dense or sparse:

 𝑚 = 𝑜(𝑛𝛿) for any constant 𝛿 > 0

 𝑚 = Ω(𝑛2/ log1−𝛿 𝑛) for some 𝛿 > 0

 For all other ranges the best we can seem to is:

1 + 𝜀 log 𝑛
2

𝑚
 bits if we want 𝛩(1) time for both operations

(again, using “hashing”)

NOT
SUCCINCT

Do we need the additive 𝜀?
 Golynski (2009): we can’t do better for these problems

 Primary reason: the types of queries

 The types of queries have the reciprocal property

Forward Queries 𝐹𝐵
Example: 𝜋(𝑖)

Inverse Queries 𝐼𝐵
Example: 𝜋−1(𝑖)

1 2 3 4 5 6 7

𝜋 1

𝜋 2
𝜋 3 𝜋 4

𝜋 5

𝜋 6
𝜋 7 𝜋 8 𝜋−1 1

𝜋−1 2
𝜋−1 3 𝜋−1 4

𝜋−1 5

𝜋−1 6
𝜋−1 7 𝜋−1 8

Object 𝐵

Reciprocal Property
 Let 𝐹𝐵 be the set of forward queries for object 𝐵

 Let 𝐼𝐵 be the set of inverse queries for object 𝐵

 There is a bijection 𝜂:𝐹𝐵 → 𝐼𝐵 between these sets

Object 𝐵

Forward Queries 𝐹𝐵
Example: 𝜋(𝑖)

Inverse Queries 𝐼𝐵
Example: 𝜋−1(𝑖)

1 2 3 4 5 6 7

𝜋 1

𝜋 2
𝜋 3 𝜋 4

𝜋 5

𝜋 6
𝜋 7 𝜋 8 𝜋−1 1

𝜋−1 2
𝜋−1 3 𝜋−1 4

𝜋−1 5

𝜋−1 6
𝜋−1 7 𝜋−1 8

Reciprocal Property (2)
 Suppose we have a description of the sets 𝐹𝐵 and 𝐼𝐵

 … and we know the answers to 𝐹𝐵
∗ ⊆ 𝐹𝐵 and 𝐼𝐵

∗ ⊆ 𝐼𝐵

 … and for the remaining queries we know the bijection

Object 𝐵

Forward Queries 𝐹𝐵
Example: 𝜋(𝑖)

Inverse Queries 𝐼𝐵
Example: 𝜋−1(𝑖)

1 2 3 4 5 6 7

𝜋 1

𝜋 2
𝜋 3 𝜋 4

𝜋 5

𝜋 6
𝜋 7 𝜋 8 𝜋−1 1

𝜋−1 2
𝜋−1 3 𝜋−1 4

𝜋−1 5

𝜋−1 6
𝜋−1 7 𝜋−1 8

Reciprocal Property (2)
 Suppose we have a description of the sets 𝐹𝐵 and 𝐼𝐵

 … and we know the answers to 𝐹𝐵
∗ ⊆ 𝐹𝐵 and 𝐼𝐵

∗ ⊆ 𝐼𝐵

 … and for the remaining queries we know the bijection

 That is: for all queries 𝐹𝐵
′ = 𝐹𝐵 ∖ 𝐹𝐵

∗ ∖ 𝜂−1 𝐼𝐵
∗ we know

the corresponding inverse query in 𝐼𝐵
′ = 𝐼𝐵 ∖ 𝐼𝐵

∗ ∖ 𝜂 𝐹𝐵
∗

If, with the above information we
can reconstruct the object 𝐵, then
𝐵 has the reciprocal property

Outline of Lower Bound
 The lower bound is based on round elimination

 Suppose we have a data structure 𝐷 for representing 𝐵

 𝐵 has the reciprocal property

 Probes 𝑡 cells in 𝐷 to answer any forward/inverse query

 We design a compression algorithm which:

 In a single round: deletes and protects some cells in 𝐷

 Writes out some information to recover the lost information

 Does this until a constant fraction of the cells are deleted

 Under certain conditions:

amount written ≪ amount deleted

Outline of Implications
 𝐷 can be used to uniquely identify 𝐵

 Assume object 𝐵 requires Υ cells to be represented

 Let 𝑅 be the # of additional bits for compression

 If 𝐷 occupies 𝑆 cells then 1 − 𝜀 𝑆 +
𝑅

𝑤
+ 𝑂(1) ≥ Υ

 Therefore, 𝐷 cannot be succinct if
𝑅

𝑤
= 𝑜(Υ)

Black Box
Data Structure 𝐷

Outline of Implications
 𝐷 can be used to uniquely identify 𝐵

 Assume object 𝐵 requires Υ cells to be represented

 Let 𝑅 be the # of additional bits for compression

 If 𝐷 occupies 𝑆 cells then 1 − 𝜀 𝑆 +
𝑅

𝑤
+ 𝑂(1) ≥ Υ

 Therefore, 𝐷 cannot be succinct if
𝑅

𝑤
= 𝑜(Υ)

Compressed
Representation of 𝐵

The Lower Bound: Set Up
 Let’s simplify things a bit…

 Focus on problem #2: representing a digraph

 Store an 𝑆 cell structure 𝐷 representing digraph 𝐺

 Assume forward/inverse queries probe 𝑡 = Θ(1) cells

 Let 𝐶𝑘 denote number of remaining cells before round 𝑘:

 A cell is remaining if not deleted or protected

 Key Invariant: 𝑪𝒌 ≥ 𝑺/𝟐

 Let 𝑚 be the total number edges in 𝐺: 𝑚 = 𝐹𝐵 = |𝐼𝐵|

Proof with Pictures

Remaining Queries

Data Structure 𝐷 occupies 𝑆 cells
𝐶𝑘 cells remaining

Deleted Cells
Protected Cells
Remaining Cells

Proof with Pictures

Remaining Queries

r-select(2,1)

c-select(8,10)

Data Structure 𝐷 occupies 𝑆 cells
𝐶𝑘 cells remaining

Deleted Cells
Protected Cells
Remaining Cells

Proof with Pictures

Remaining Queries

r-select(2,1)

c-select(8,10)

Each query
inspects at most 𝑡

cells

Data Structure 𝐷 occupies 𝑆 cells
𝐶𝑘 cells remaining

Deleted Cells
Protected Cells
Remaining Cells

Proof with Pictures
Data Structure 𝐷 occupies 𝑆 cells
𝐶𝑘 cells remaining

Remaining Queries

Deleted Cells
Protected Cells
Remaining Cells

r-select(2,1)

Less than
𝐶𝑘

2
 remaining

cells probed by more than
4𝑡𝑚

𝑆
 separate forward

queries

Less than
𝐶𝑘

2
 remaining

cells probed by more than
4𝑡𝑚

𝑆
 separate inverse queries

Proof with Pictures

Remaining Queries

r-select(2,1)

So, we can find a
cell that is used by

at most
4𝑡𝑚

𝑆
 forward

and inverse queries

Less than
𝐶𝑘

2
 remaining

cells probed by more than
4𝑡𝑚

𝑆
 separate forward

queries

Less than
𝐶𝑘

2
 remaining

cells probed by more than
4𝑡𝑚

𝑆
 separate inverse queries

Data Structure 𝐷 occupies 𝑆 cells
𝐶𝑘 cells remaining

Deleted Cells
Protected Cells
Remaining Cells

Proof with Pictures

Remaining Queries

r-select(2,1)

r-select(3,3)

r-select(8,1)

r-select(9,4)

c-select(1,2)

c-select(2,2)

c-select(10,2)

c-select(14,1)

Cell 𝑑𝑘

Data Structure 𝐷 occupies 𝑆 cells
𝐶𝑘 cells remaining

Deleted Cells
Protected Cells
Remaining Cells

Proof with Pictures

Remaining Queries

r-select(2,1)

r-select(3,3)

r-select(8,1)

r-select(9,4)

c-select(1,2)

c-select(2,2)

c-select(10,2)

c-select(14,1)

Write a
permutation of

size at most

4𝑡𝑚

𝑆

Data Structure 𝐷 occupies 𝑆 cells
𝐶𝑘 cells remaining

Deleted Cells
Protected Cells
Remaining Cells

Proof with Pictures

Remaining Queries

r-select(2,1)

r-select(3,3)

r-select(8,1)

r-select(9,4)

c-select(1,2)

c-select(2,2)

c-select(10,2)

c-select(14,1)

Data Structure 𝐷 occupies 𝑆 cells
𝐶𝑘 cells remaining

Deleted Cells
Protected Cells
Remaining Cells

Protect all additional cells
associated 𝐹 𝑑𝑘 and 𝐼 𝑑𝑘 :
𝑡 𝐹 𝑑𝑘 + 𝐼 𝑑𝑘 ≤

8𝑡2𝑚

𝑆
 cells

Proof with Pictures

Remaining Queries

r-select(2,1)

r-select(3,3)

r-select(8,1)

r-select(9,4)

c-select(1,2)

c-select(2,2)

c-select(10,2)

c-select(14,1)

Data Structure 𝐷 occupies 𝑆 cells
𝐶𝑘 cells remaining

Deleted Cells
Protected Cells
Remaining Cells

Also, for queries whose inverses
are not 𝐹 𝑑𝑘 ∪ 𝐼 𝑑𝑘 : find and
protect cells associated with the

inverses: at most
𝑡 𝐹 𝑑𝑘 + 𝐼 𝑑𝑘 ≤

8𝑡2𝑚

𝑆
 cells

Proof with Pictures

Remaining Queries

Now 𝑑𝑘 is deleted. Proceed
to round 𝑘 + 1, setting:
𝐶𝑘+1 = 𝐶𝑘 ∖ (𝑃 𝑑𝑘 ∪ 𝑑𝑘)
We have deleted one cell,

and protected at most
16𝑡2𝑚/𝑆

Data Structure 𝐷 occupies 𝑆 cells
𝐶𝑘 cells remaining

Deleted Cells
Protected Cells
Remaining Cells

Remaining Details Without Pictures

 How many cells remain after round 𝑘:

 𝐶𝑘+1 = 𝑆 − 𝑃 𝑑𝑖𝑘 − 𝑘 ≥ 𝑆 −
16𝑘(𝑡2𝑚+𝑆)

𝑆

 So, if the total number of rounds is 𝑧 then
𝑧 = 𝑆2/(32(𝑡2𝑚+ 𝑆))

is sufficient to maintain invariant 𝐶𝑘 ≥ 𝑆/2

What to Store?
 Store the locations of the deleted cells

 This takes log 𝑆
𝑧

 bits

 Store the contents of all non-deleted cells compacted

 This takes 𝑆 − 𝑧 cells of 𝑤 bits

 Store all the permutations for deleted cells (lex. order)

 This takes 𝑧 log
4𝑡𝑚

𝑆
! ≤ 𝑧

4𝑡𝑚

𝑆
log
4𝑡𝑚

𝑆
 bits

 Store an encoding of all the queries for rows/columns:

 This takes 2log 𝑚+𝑛
𝑛

 bits

Implications for the Compression
 If we can recover 𝐺 then it must be the case that

𝑆 − 𝑧 +
𝑅

𝑤
≥ Υ − O(1)

 Assume 𝑆 ≥ Υ where Υ = log 𝑛
2

𝑚
/𝑤, and 𝑤 = Θ(log 𝑛):

𝑅 = log
𝑆

𝑧
+ 𝑧
4𝑡𝑚

𝑆
log
4𝑡𝑚

𝑆
+ 2 log

𝑚 + 𝑛

𝑛

 This simplifies to:

𝑅 = 𝑂
𝑆2 log

𝑚 + 𝑆
𝑆

𝑚 + 𝑆
+
𝑆𝑚

𝑚 + 𝑆
log
𝑚

𝑆
+ 𝑛 log

𝑚 + 𝑛

𝑛

So, if 𝑚 = 𝑛1+𝛿 for some constant 𝛿 ∈ (0,1)

then
𝑅

𝑤
= 𝑜 Υ

but 𝑧 = Ω(Υ)!

How to Recover 𝐺 (Non-Technical)
 All that remains is to describe how to recover 𝐺

 We can simulate queries on the non-deleted part of 𝐷
 There are three types of queries:

1. Queries that succeed without requesting deleted cells

2. Queries that fail but their reciprocal succeeds

3. Queries that fail and their reciprocal fails on same deleted cell

 We can detect which type of query we are dealing with
 First one is not a problem

 For the second and third type:

 We identify the subset of queries for a deleted cell

 Enumerate these in the lex. order used to store the permutations

 Determine whether query participates in the permutation or not

Conclusion
 Some operations don’t permit a succinct data structure

 We have seen two:

 Forward/Inverse in a permutation

 Listing in and out-neighbours in a digraph

 Golynski discusses one other:

 Search and access in a text

 Interesting open problems:

 For digraphs can bounds be made output sensitive?

 Bounds only apply when # queries ~ ITLB

 Can we come up with a more general theorem?

Non-Binary Rank and Select
 Consider the following array of 𝑛 numbers:

 Such an array can represent:

 Documents: string of 𝑛 symbols from alphabet [0, 𝜎 − 1]

 Point Sets: 𝑛 points on a 𝑛 × 𝜎 grid

 Two “Natural” Operations:

 Rank(𝑖, 𝛼): return the # of occurrences of 𝛼 up to pos. 𝑖

 Select(𝑖, 𝛼): return the index of the 𝑖-th 𝛼

0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6

How To Do It
 Make a tree: Divide alphabet in half at each node

 0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6

0 3 2 1 1 1 2 3 1 0 0 2 3 3 7 5 4 6 5 5 4 5 5 6 4 4 4 7 6 5 7 6

0 1 1 1 1 0 0 5 4 5 5 4 5 5 4 4 4 5 3 2 2 3 2 3 3 7 6 6 7 6 7 6

[0,7]

[0,3] [4,7]

[0,1] [2,3] [4,5] [6,7]

How To Do It
 Make a tree: Just store a bit vector at each node

 0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0

[0,7]

[0,3] [4,7]

[0,1] [2,3] [4,5] [6,7]

This is called a wavelet tree

How To Do It
 Make a tree: Just store a bit vector at each node

 0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0

[0,7]

[0,3] [4,7]

[0,1] [2,3] [4,5] [6,7]

000 → 0

How To Do It
 Make a tree: Just store a bit vector at each node

 0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0

[0,7]

[0,3] [4,7]

[0,1] [2,3] [4,5] [6,7]

000 → 0
111 → 7

How To Do It
 Make a tree: Just store a bit vector at each node

 0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0

[0,7]

[0,3] [4,7]

[0,1] [2,3] [4,5] [6,7]

000 → 0
111 → 7
101 → 5

 etc.

Space Analysis
 Make a tree: Only need 𝑛 log 𝜎 + 𝑜(𝑛 log 𝜎) bits

Store each level as a contiguous bit vector in fully indexable dictionary:
log 𝜎 levels; each has 𝑛 bits (plus 𝑜(𝑛) redundancy)

Don’t need to actually store a “tree”

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0

[0,7]

[0,3] [4,7]

[0,1] [2,3] [4,5] [6,7]

Basic Operations: Access

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0

[0,7]

[0,3] [4,7]

[0,1] [2,3] [4,5] [6,7]

0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6

To perform Access(𝑖) in Θ(log𝜎) time (in the example Access(14)):
 1) Access bit 𝑖 in current node (start at root); call bit value 𝑏
 2) If not in a leaf:
 Compute 𝑗 = Rank(𝑖, 𝑏) on bit vector in current node
 Follow branch 𝑏, and recursively Access(𝑗) there…
Concatenate all bits 𝑏 along this path, and return this as the answer: 100 → 4

0 1

0 1 0 1

Basic Operations: Rank

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0

[0,7]

[0,3] [4,7]

[0,1] [2,3] [4,5] [6,7]

0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6

To perform Rank(𝑖, 𝛼) in Θ(log𝜎) time (in the example: Rank(14,2)):
 1) Compute 𝑗 = Rank(𝑖, 𝑏), where 𝑏 is the next most significant bit of 𝛼
 2) If not in a leaf: branch to node 𝑏 and recurse setting 𝑖 = 𝑗

0 1

0 1 0 1

Basic Operations: Select

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0

[0,7]

[0,3] [4,7]

[0,1] [2,3] [4,5] [6,7]

0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6

To perform Select(𝑖, 𝛼) in Θ(log𝜎) time starting at correct leaf (example: Select(3,6)):
 1) Compute 𝑗 = Select(𝑖, 𝑏), where 𝑏 is the next least significant bit of 𝛼
 2) If not in the root: move to parent and recurse setting 𝑖 = 𝑗

0 1

0 1 0 1

Brief History of the “Wavelet Tree”
 Chazelle (1988): Compact Range Tree

 His concern was making the space Θ(𝑛) words

 Succinct data structures weren’t invented yet…

 He wanted to solve orthogonal range searching problems
 We will also focus on these kinds of problems

 Grossi, Gupta and Vitter (2003): Wavelet Tree
 More or less described the same thing we just covered

 They were concerned with text indexing problems

These are the same data structure!
(modulo the compressed bit vectors)

Better Space Analysis
 We use fully indexable dictionaries for each level

 They can use less than 𝑛 bits… can we do better than 𝑛 log 𝜎?

 Zeroth Order Empirical Entropy of an array 𝐴:
 Let 𝑛𝛼 be the frequency of symbol 𝛼 ∈ [0, log 𝜎 − 1]

 Define 𝐻0 𝐴 =
1

𝑛
 𝑛𝛼𝛼 log

𝑛

𝑛𝛼

 If all symbols equally likely, then this is just 𝑛 log 𝜎

 Consider a bit vector 𝐵, i.e., the case where 𝜎 = 2
 Using Stirling’s Approximation one can prove:

𝑛
𝑛1
≤ 2𝑛𝐻0 𝐵 … so log 𝑛

𝑛1
≤ 𝑛𝐻0 𝐵

 What does this mean for the wavelet tree?

This is just
the entropy

of A!

Better Space Analysis (2)
 I will write the subscripts in binary here… 𝑛2 → 𝑛10
 Consider array 𝐴 where 𝜎 = [0,3] (i.e., wavelet tree with two levels)…

 How much space to store the root bit vector:
 Let 𝑚0 = 𝑛00 + 𝑛01 and 𝑚1 = 𝑛10 + 𝑛11

 The bit vector is no more than 𝑚0 log
𝑛

𝑚0
+𝑚1 log

𝑛

𝑚1
 bits

 Children:
 Bit vectors occupy no more than

𝑛00 log
𝑚0
𝑛00
+ 𝑛01 log

𝑚0
𝑛01
+ 𝑛10 log

𝑚1
𝑛10
+ 𝑛11 log

𝑚1
𝑛11

 Total Space:
 𝑚0 log

𝑛

𝑚0
+ 𝑛00 log

𝑚0

𝑛00
+ 𝑛01 log

𝑚0

𝑛01
= 𝑛00 log

𝑛

𝑛00
+ 𝑛01 log

𝑛

𝑛01

 𝑚1 log
𝑛

𝑚1
+ 𝑛10 log

𝑚𝟏

𝑛10
+ 𝑛11 log

𝑚1

𝑛11
= 𝑛10 log

𝑛

𝑛10
+ 𝑛11 log

𝑛

𝑛11

Better Space Analysis (2)
 I will write the subscripts in binary here… 𝑛2 → 𝑛10
 Consider array 𝐴 where 𝜎 = [0,3] (i.e., wavelet tree with two levels)…

 How much space to store the root bit vector:
 Let 𝑚0 = 𝑛00 + 𝑛01 and 𝑚1 = 𝑛10 + 𝑛11

 The bit vector is no more than 𝑚0 log
𝑛

𝑚0
+𝑚1 log

𝑛

𝑚1
 bits

 Children:
 Bit vectors occupy no more than

𝑛00 log
𝑚0
𝑛00
+ 𝑛01 log

𝑚0
𝑛01
+ 𝑛10 log

𝑚1
𝑛10
+ 𝑛11 log

𝑚1
𝑛11

 Total Space:
 𝑚0 log

𝑛

𝑚0
+ 𝑛00 log

𝑚0

𝑛00
+ 𝑛01 log

𝑚0

𝑛01
= 𝑛00 log

𝑛

𝑛00
+ 𝑛01 log

𝑛

𝑛01

 𝑚1 log
𝑛

𝑚1
+ 𝑛10 log

𝑚𝟏

𝑛10
+ 𝑛11 log

𝑚1

𝑛11
= 𝑛10 log

𝑛

𝑛10
+ 𝑛11 log

𝑛

𝑛11

This is just
the entropy

of A!

The wavelet tree occupies

𝑛𝐻0 𝐴 + 𝑜
𝑛 log 𝜎 log log 𝑛

log 𝑛
 bits

Orthogonal Range Counting

0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0

[0,7]

[0,3]

[0,1] [2,3] [4,5]

0 1

0 1 0 1

“Two-Sided” Query: 0,20 × [0,5] 19 points

Orthogonal Range Counting

0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0

[0,7]

[0,3]

[0,1] [2,3] [4,5]

0 1

0 1 0 1

“Three-Sided” Query: 𝟕, 20 × [0,5] 14 points

Orthogonal Range Counting

0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0

[0,7]

[0,3]

[0,1] [2,3] [4,5]

0 1

0 1 0 1

“Four-Sided” Query: 7,20 × [𝟐, 5] 8 points

Analysis: Orthogonal Counting
 Two-Sided:

 Follow one root-to-leaf path

 Constant time in each node (rank/select)

 Overall Time: Θ(log 𝜎)

 Three-Sided:
 Root-to-leaf traversal + cost of two two-sided queries

 Overall Time Θ(log 𝜎)

 Four-Sided:
 Root-to-leaf traversal + cost of two three-sided queries

 Overall Time Θ(log 𝜎)

Orthogonal Range Counting

0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0

[0,7]

[0,3]

[0,1] [2,3] [4,5]

0 1

0 1 0 1

“Four Sided” Query: 0,20 × [0,5]

Reporting

Once we can count the “red guys” we need only
select each one and track it to its leaf. This yields its
𝑦 value. For the 𝑥 value we can track up to the root.

Analysis: Orthogonal Reporting
 Use the counting algorithm to find the “red guys”

 Find nodes s.t. all subtree elements are in the rectangle

 Track each one to its leaf to determine the 𝑦 value

 Once we find the 𝑦 value, track to the root for 𝑥 value

 Overall time:

 If 𝑡 points are reported, this takes: Θ(𝑡 + 1 log 𝜎)

Nice additional property: We can report the
points sorted by 𝑦 order. Reporting the first

point above a “line” is sometimes called a range
successor or range next-value query.

Range Selection (Gagie et al. 2009)

0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0

[0,7]

[0,3]

[0,1] [2,3] [4,5]

0 1

0 1 0 1

“Two-Sided” Query: 0,20 × [0,5]
Find 𝑘-th smallest element: 𝑒. 𝑔. , 𝑘 = 9

0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0

[0,7]

[0,3]

[0,1] [2,3] [4,5]

0 1

0 1 0 1

“Two-Sided” Query: 0,20 × [0,5]
Find 𝑘-th smallest element: 𝑒. 𝑔. , 𝑘 = 9

Range Selection (Gagie et al. 2009)

0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0

[0,7]

[0,3]

[0,1] [2,3] [4,5]

0 1

0 1 0 1

“Two-Sided” Query: 0,20 × [0,5]
Find 𝑘-th smallest element: 𝑒. 𝑔. , 𝑘 = 9

Range Selection (Gagie et al. 2009)

0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0

[0,7]

[0,3]

[0,1] [2,3] [4,5]

0 1

0 1 0 1

“Two-Sided” Query: 0,20 × [0,5]
Find 𝑘-th smallest element: 𝑒. 𝑔. , 𝑘 = 9

Range Selection (Gagie et al. 2009)

0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0

[0,7]

[0,3]

[0,1] [2,3] [4,5]

0 1

0 1 0 1

“Two-Sided” Query: 0,20 × [0,5]
Find 𝑘-th smallest element: 𝑒. 𝑔. , 𝑘 = 9

Range Selection (Gagie et al. 2009)

Report Distinct Symbols (Also Gagie et al.)

 Also known as coloured range reporting

 Once we can do selection this is a piece of cake:

 Select for 𝑘 = 1 and report that 𝑦 value: 𝑦1

 Count the number 𝑛1 of elements in 𝑥1, 𝑥2 × [0, 𝑦1]

 Select 𝑘 = 𝑛1 + 1 and report the 𝑦 value 𝑦2

 Count the number 𝑛2 of elements in 𝑥1, 𝑥2 × [0, 𝑦2]

 Returns all distinct symbols in Θ 𝑡 + 1 log 𝜎 time

Some Improvements
 The wavelet tree is not the end of the story:

Ref. Access Rank Select

(Golynski et al. 2008)

Θ
log 𝜎

log log 𝑛
 Θ
log 𝜎

log log 𝑛
 Θ
log 𝜎

log log 𝑛

(Golynski et al. 2006),
(Barbay et al. 2012)

Θ(log log 𝜎) Θ(log log 𝜎) Θ(1)

(Golynski et al. 2006),
(Barbay et al. 2012)

Θ(1) Θ(log log 𝜎) Θ(log log 𝜎)

(Belazzougui-Navarro,
2012)

Θ(1)
Θ log
log 𝜎

log𝑤

𝜔(1)

Lecture #8: Announcements & Topics
 Exam:

 July 25th 10:30-13:30 room 24 (exam)

 August 25th 12:15-15:00 room 21 (re-exam)

 Assignment #4 Posted

 Submit Q2 in a text file separate lines

 (Succinct) Dynamic Data Structures

Dynamic Bit Vector
 Let’s consider the following dynamic problem:

 Support these operations on a bit vector of 𝑢 bits:

 Access(𝑖): return the bit at index 𝑖

 Rank(𝑖): return number of 1 bits up to index 𝑖

 Select(𝑖): return the index of the 𝑖-th one

 Flip(𝑖): Flip the bit at index 𝒊

 How can we efficiently support all of these operations?

 Let’s consider Jacobson’s original solution…

Jacobson’s Solution (Revisited)

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1

Cut into blocks of size log2 𝑢 bits

Cut blocks into subblocks of size
log 𝑢

2
 bits

The “Natural” Idea
 Computer Scientists like Trees:

 Leaf blocks of log2 𝑢 consecutive bits
 Build a tree w/ constant fan out over the leaves

 Each node stores, for each child:
 The number of leaves in the subtree
 The number of ones in all subtrees to the left

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1

1:0,1:3 1:0,1:2 1:0,1:2

2:0,2:5,2:10

The “Natural” Idea
 Supporting Rank(𝑖) is not so hard:

 Select branch containing leaf
𝑖

log2 𝑢

 Recurse to child, keeping total of num. of ones to the left

 At the leaf, use table to compute num. of ones up to pos. 𝑖

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1

1:0,1:3 1:0,1:2 1:0,1:2

2:0,2:5,2:10

The “Natural” Idea
 Supporting Select(𝑖) is also not so hard:

 Select branch where 𝑖-th one resides and recurse

 At the leaf, read
log 𝑢

2
 bits at a time to find 𝑖-th one

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1

1:0,1:3 1:0,1:2 1:0,1:2

2:0,2:5,2:10

The “Natural” Idea
 What about Flip(𝑖)?

 Move from root to leaf, adjusting counts in each node

 Fan out is constant, so we spend Θ(1) time in each node

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1

1:0,1:3 1:0,1:2 1:0,1:2

2:0,2:5,2:10

The “Natural” Idea
 What about Flip(𝑖)?

 Move from root to leaf, adjusting counts in each node

 Fan out is constant, so we spend Θ(1) time in each node

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1

1:0,1:3 1:0,1:3 1:0,1:2

2:0,2:5,2:11

Good, but not so interesting
 This takes 𝑢 + 𝑜(𝑢) bits… not 𝐻0 𝐵 + 𝑜(𝑢)

 We will come back to this issue later…

 We don’t really want Flip(𝑖)

 We want to be able to Insert(𝑖, {0,1}) or Delete(𝑖)

 “Yeah, yeah, this is not a problem… just resize the leaves!”

 When a leaf gets too big, split it in two, and rebalance the tree

 If a leaf gets too small, merge it with some siblings

 Adds Θ(log 𝑢) overhead since we copy log 𝑛 bits at time

Not so fast! You can’t just “resize the leaves”. We
haven’t even talked about what the model is for

allocating and deallocating memory!

Okay then. What is the Model?
 Standard Memory Manager Model (Raman and Rao, 2003):

 Allocate(𝑘):

 Returns a pointer to a block of 2𝑘 consecutive memory

locations (𝑤2𝑘 bits), all initialized to 0, in Θ 2𝑘 time. This

increases the space usage of the algorithm by 𝑤2𝑘 bits.

 You do not get to have blocks of arbitrary numbers of bits!

 Free(𝑝):

 Marks the specified block as deleted, and reduces the space
usage of the algorithm by the 𝑤 × “the size of the block”

 Model DOES NOT take fragmentation into account

 Will come back to this later…

Digression: Dynamic Arrays
 We don’t yet know how to do the following succinctly:

 Given an array of maximum length 𝑛 support:
 Locate(𝑖): return a pointer to location 𝑖
 Grow(): Increase the size of the array by 1
 Shrink(): Decrease the size of the array by 1

 Idea #1: Standard Doubling Trick: (Double array size when full…)

 Θ 1 time for Locate(𝑖)
 Θ(1) time for Grow/Shrink (in the amortized sense)
 However, space is quite large:

 If we halve when reduced to 1/𝑐 full then space is 𝑐 +
𝑐

2
𝑛

 For example: if we halve array when 1/3 full then space is 4.5𝑛!

Idea #2: Like-A-Rotated-List
 Recall the rotated list scheme:

 Keep ~ 2𝑛 lists, where list 𝑖 has length 𝑖

 We should try to grow like this instead of doubling…

 Overall waste would be Θ 𝑛 which is much better

 However, we can’t allocate non-powers-of-two

 Furthermore, Locate(𝑖) is a pain:

 𝑖-th element in list 𝑘 =
1+8𝑖−1

2
 in position 𝑖 − 𝑘(𝑘 − 1)/2

 List number is not constant time to compute due to sqrt!

 It is possible to get around this but we will do something else…

Idea #3: (Brodnik et al. 1999)
 Have conceptual blocks of size 2𝑖

 Split block 𝑖 into 2
𝑖

2 subblocks of size 2
𝑖

2

 We need an index storing pointers to subblocks

Idea #3: (Brodnik et al. 1999)
 How to grow?

If the last subblock 𝑠 − 1 is full:
If the last block 𝑏 − 1 is full:

Increment 𝑏

If 𝑏 is odd

This double the number of subblocks in a block

Otherwise

This double the number of elements in a subblock

If there are no empty subblocks*

If the index is full, double its size

Allocate the new subblock

Increment 𝑠, 𝑛, and number of elements in block 𝑠 − 1

*When a Shrink() occurs, don’t immediately deallocate…

Idea #3: (Brodnik et al. 1999)
 How much extra space?

 Number of subblocks is Θ 𝑛

 Therefore index has Θ(𝑛) pointers

 Last empty subblock has size Θ 𝑛

 Therefore overall waste is Θ(𝑛)

Idea #3: (Brodnik et al. 1999)
 How to Locate(𝑖):

 Let 𝑖2 be the bits of 𝑖 + 1 with leading zeros removed*

 Let 𝑘 = 𝑖2 − 1

 𝑏 be the high
𝑘

2
 bits of 𝑖2 after the 1

 𝑐 be the low
𝑘

2
 bits

 Let 𝑝 = 2𝑘 − 1 (num. subblocks in blocks prior to block 𝑘)

 Return element 𝑐 in subblock 𝑝 + 𝑏

*Can find first one in constant time with basic oper.

 or, we can just build a lookup table… Θ(𝑛) space

Lower Bound
 Ω(𝑛) extra storage is necessary in the worst case for

resizable arrays

1. Consider 𝑛 insertions followed by 𝑛 deletions

2. Let 𝑓(𝑛) be the size of the largest memory block

3. Let 𝑔 𝑛 be the number of memory blocks

4. Thus, 𝑓 𝑛 𝑔 𝑛 ≥ 𝑛

5. Claim 1: 𝑔(𝑛) space for the memory block headers

6. Claim 2: 𝑓(𝑛) waste after largest mem. block allocated

7. Thus, max{𝑔 𝑛 , 𝑓 𝑛 } space wasted at some point

Dynamic Bit Vector (Revisited)
 Suppose we wish to support the following operations:

 Access(𝑖): Return the bit at index 𝑖

 Rank(𝑖): Return number of 1 bits up to index 𝑖

 Select(𝑖): Return the index of the 𝑖-th one

 Insert(𝑖, {0,1}): Insert the specified bit at index 𝑖

 Delete(𝑖): Delete the bit at index 𝑖

 To simplify, we will assume
 The bit vector has size 𝑢 = Θ(𝑢∗) where 𝑢∗ is an upper bound

 The word size 𝑤 = Θ log 𝑢 = Θ(log 𝑢∗)
 So, we assume 𝑢 changes, but not by too much…

Black Box: Weight Balanced B-Tree
 (Arge and Vitter, 2003): T is a weight-balanced B-tree with

branching parameter 𝑎 and leaf parameter 𝑘, 𝑎 > 4 and
𝑘 > 0, if the following conditions hold:
 All leaves of 𝑇 are on the same level and have weight between k and 2k −1.

 Except for the root, an internal node on level 𝑙 has weight larger than 𝑎𝑙𝑘/2

 An internal node on level 𝑙 has weight less than 2𝑎𝑙𝑘

 The root has more than one child.

 Some Useful Properties:
 Height is 𝑂 log𝑎 𝑛/𝑘 if tree has weight 𝑛

 Number of splits/fusing operations is 𝑂 log𝑎 𝑇 /𝑘

 All internal nodes have between 𝑎/4 and 4𝑎 children

 Root has between 2 and 4𝑎 children

Approach #1: Resizable Arrays

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1

1:0,1:3 1:0,1:2 1:0,1:2

2:0,2:5,2:10

Resizable array of size between
log2 𝑢∗ and 2 log2 𝑢∗ − 1 BITS

Extra bits per array: Θ(log1.5 𝑢∗)

WBB-Tree, branching
parameter 8 (for example),
and leaf parameter log2 𝑢∗

There are at most Θ
𝑢

log2 𝑢∗
 internal nodes.

Also, the extra space used by the resizable

arrays is at most Θ
𝑢

log 𝑢∗

Approach #1: Resizable Arrays

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1

1:0,1:3 1:0,1:2 1:0,1:2

2:0,2:5,2:10

Overall Space: 𝑢 + 𝑜(𝑢)
Updates of leaves: Θ(log 𝑢∗) worst case time

Updating tree: Θ(log 𝑢) worst case time
We can to deal with 𝑢 changing and not knowing 𝑢∗

Using more complicated bit tricks can improve all operations to

Θ
log 𝑢

log log 𝑢
 in the worst case, which is optimal.

Resizable array of size between
log2 𝑢∗ and 2 log2 𝑢∗ − 1 BITS

Extra bits per array: Θ(log1.5 𝑢∗)

WBB-Tree, branching
parameter 8 (for example),
and leaf parameter log2 𝑢∗

Approach #2: List Based Mem. Manager

 Remember the implicit dictionary (discussed way back when)

 In the implicit dictionary we kept lists for maniples:

 List 𝑖 contained all maniples of 𝑖 consecutive elements

 Let’s apply this approach to the leaves of our WBB-tree

 As before, each list consists of nodes

 A node stores an array of 2log2 𝑢∗ bits

 A linked list of pointers back to the tree

 List 𝑖 will store all leaves of 𝑖 bits

 Always allocate new nodes at the head of a list

 Fill gaps by swapping with first logical block in head

Approach #2: List Based Mem. Manager

List
2log2 𝑢∗ − 1

List
log2 𝑢∗

List
 log2 𝑢∗ + 1

Approach #2: List Based Mem. Manager
 How much space is wasted?

 At most one node per list: Θ(log4 𝑢∗) bits…
 For example: if 𝑢∗ = 232 bits then waste is 220 bits

 WBB-tree still takes Θ
𝑢

log 𝑢∗
 bits

 Better than the other approach for a few reasons:
 Less space wasted

 Compression becomes rather trivial
 Just encode/decode each block on the fly to get 𝐻0 𝐵 + 𝑜(𝑢

∗) bits

 Have lists of size [1,2 log2 𝑢∗]

 All nodes are the same size
 We can consider fragmentation in terms of 𝑢∗: the max value of 𝑢

 We allocate:
 Nodes in our list based memory manager

 One node per leaf in the WBB-tree

 Linked list nodes for the back pointers
 Also one per leaf

 WBB-tree nodes (we have bounds on how big these are)
 Again, there are at most Θ(# of leaves) of these

 Suppose we maintain three separate heaps
 When we allocate one of these types of nodes we use it

 Instead of freeing it, we put it in the heap of its type

 These heap will have size Θ
𝑢∗

log 𝑢∗
… a high watermark bound

Approach #2: List Based Mem. Manager

Conclusion
 We can apply what we learned about implicit data

structures to the word-RAM model… techniques carry
over even though the model is very different

 We have sketched how to dynamize the succinct data
structures presented so far (numerous details omitted)

 Main issues are memory management, dealing with a
changing value of 𝑢.

 Once we have a dynamic bit vector, we easily get
dynamic trees, dynamic wavelet trees, etc.

