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Issues with Implicit Model 
 Some drawbacks of the implicit data structure model: 

 The space requirements are overly strict 

 Only comparisons are allowed 

 

 How do real computers work? 

 Modern computer architectures deal with words: 

 Typically, each word consists of between 32 and 64 bits 

 No matter what is being represented it really is just bits 

 Our the model should be able to address individual bits 



Next Model: The Word-RAM 
 Word-RAM memory is of an array of 𝑤 bit words  

 The space cost is the number of words stored 

 The space cost in bits is: 

𝑤 × number of words stored 
 The time cost is the number of word operations: 

reads/writes/arithmetic operations* 

 

 

 

 

 

It is natural to assume that 𝑤 = Ω(log 𝑛) since 
we can’t follow pointers efficiently otherwise.  



Drawbacks of the Word-RAM 
 Does not consider the memory hierarchy 

 Caching effects are very important in practice 

 Scanning vs. random access 

 

 When combined with big-Oh it can be misleading  

 Θ
log 𝑛

log log 𝑛
 is asymptotically smaller than Θ(log 𝑛)… 

 However, 
10 log 𝑛

log log 𝑛 
> log 𝑛 for all reasonable values of 𝑛 



Static Membership 
 Recall that in the implicit data structure model 

described, the static membership problem has a lower 
bound of Θ(log 𝑛) time (due to comparison restriction) 

 

 Let’s look at the problem in the word-RAM: 

 Reasonable assumption: element occupies Θ(1) words 

 What does this mean in terms of its values? 

 We can assume there is some upper bound 𝑢 on the max: 

 Θ 1  words → Elements in range [0,2Θ 𝑤 − 1] 

 𝑢 ≤ 2Θ 𝑤  



Totally Naïve Solution: A Bit Vector 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 

Universe [0,49] 

 Given our set 𝑆 

 Store a bit vector of 
size 𝑢 bits: 

 Bit 𝑥 ∈ 0, 𝑢 − 1  
associated with 
element 𝑥 

 If 𝑥 ∈ 𝑆 set 𝑥 to 1, 
otherwise set it to 0 

 

Is 30 ∈ 𝑆?  
 



Totally Naïve Solution: A Bit Vector 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 

Is 30 ∈ 𝑆?  
Answer: No 

Universe [0,49] 

 Given our set 𝑆 

 Store a bit vector of 
size 𝑢 bits: 

 Bit 𝑥 ∈ 0, 𝑢 − 1  
associated with 
element 𝑥 

 If 𝑥 ∈ 𝑆 set 𝑥 to 1, 
otherwise set it to 0 

 



Bit Vector: Analysis 
 Member takes Θ(1) time 

 Need only look at a single bit (can even do updates) 

 Downside: the space usage 
 This occupies Θ(𝑢) bits… 

 … and 𝑢 doesn’t necessarily have any relationship with 𝑛 

 Usually we want space (in words) to be some function of 𝑛 

 Sorted table: 𝑛 words or, alternatively, 𝑛 ⌈log 𝑢⌉ bits 

 

 

 Can we do Θ(1) time Member queries in Θ(𝑛) words? 
 



A Useful Hashing Fact 
 Hash function ℎ:𝑈1 → 𝑈2 is universal if: 

For any distinct 𝑥, 𝑦 ∈ 𝑈1 we have Pr ℎ 𝑥 =  ℎ 𝑦 ≤
1

𝑈2
 

(Carter and Wegman, 1979) 

 
 Suppose we hash into a quadratic sized table: 

 Let ℎ:  𝑈 ↦ 𝑛2 be a universal hash function 
 What is the probability of having any collisions? 

Pr[Some pair of elements collide] < #𝑃𝑎𝑖𝑟𝑠/𝑈2  =  
𝑛(𝑛 − 1)/2𝑛2  <  1/2 

 Just keep generating such hash functions until it works 

 
 This is (similar to) the birthday paradox (23 people in a room) 

 Basis of:  



FKS Hashing: The Big Idea 
 Hash all the keys into a table of size 𝑛 with u.h.f. 

 Let 𝑛𝑖 be the number of elements in location 𝑖 

 Let 𝑐𝑥,𝑦 = 1 if 𝑥 collides with 𝑦 and 0 otherwise 

 Claim: Pr [ 𝑛𝑖
2
𝑖 >  4𝑛]  < 1/2  

Proof: 

𝐸  𝑛𝑖
2

𝑖

 =  𝐸   𝑐𝑥,𝑦
𝑦𝑥

 =  

𝑛 + 2𝑛(𝑛 − 1)/2𝑛 <  2𝑛 

 Apply my inequality: Pr 𝑋 ≥  𝑎 ≤  𝐸[𝑋]/𝑎 
Markov 



FKS Hashing: Summary 
 What does this mean? 

 Hash into a table of size n, then hash each bucket again 

 Easy to build the data structure: expected linear time 

 Shows the power of bitwise operations 

 

 This idea of having multiple levels is quite common 

 AKA: Keep doing the trick until it works 

 It is heavily used in Succinct Data Structures 



How much space do we really need? 
 In the word-RAM model it is not necessarily clear… 

 

 It turns out there is a simple enumerative way: 

1. Figure out what kind of object we want to represent 

2. Figure out how many objects there are of that type 

3. Take the log (base 2) of this number 

 

 This is known as the information theoretic lower bound 

 



Information Theory Lower Bound 
 Example: Represent full binary trees with 𝑛 + 1 leaves  

There are about  

4n

𝑛
3
2 𝜋
1
2

  of those 

Catalan 

• This means we need only 2𝑛 − Θ(log 𝑛) bits to represent a tree 

• But if each node has 2 pointers, we are using 2𝑛 log 𝑛 bits… 
• Depending on the type of tree this could be 64 times bigger in practice 



Succinct Data Structures 
 Main Idea in Combinatorial Enumeration: 

 Count the number of objects of type 𝜒 

 

 Main Idea in Succinct Data Structures 
 Represent object of type χ using log |𝜒| + 𝑜(log 𝜒 ) bits 

 Support efficient queries on the object 

 

 Our Full Binary Tree Example: 
 How to we represent our tree using 2𝑛 + 𝑜(𝑛) bits… 

 … and support efficient navigation:  
 E.g., move to parent, move to children, return subtree size, etc. 



Technical Considerations: Arrays 
 We can use shifting to deal with word boundaries 

 Store 𝑛 numbers, each 𝑏-bits, using 
𝑏𝑛

𝑤
 bits 

 Thus, we don’t waste space 

 Θ(1) slowdown for accessing the elements 

 

 How big are pointers? 

 We can resize our pointers to use less space 

 General idea: pointers don’t need to occupy an entire word 

 Even better: given context, often can use “short” pointers 



Fundamental Tool: Rank and Select 
 Suppose we are given a bit vector of length 𝑢: 

 

 

 How can we support the following operations: 

 Rank(𝑖): return the number of ones up to position 𝑖 

 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 



Fundamental Tool: Rank and Select 
 Suppose we are given a bit vector of length 𝑢: 

 

 

 How can we support the following operations: 

 Rank(𝑖): return the number of ones up to position 𝑖 

 Example: Rank(20)  = ? 

 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 



Fundamental Tool: Rank and Select 
 Suppose we are given a bit vector of length 𝑢: 

 

 

 How can we support the following operations: 

 Rank(𝑖): return the number of ones up to position 𝑖 

 Example: Rank(20)  =  5 

 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 



Fundamental Tool: Rank and Select 
 Suppose we are given a bit vector of length 𝑢: 

 

 

 How can we support the following operations: 

 Rank(𝑖): return the number of ones up to position 𝑖 

 Example: Rank(20)  =  5 

 Select(𝑗): return the position of the 𝑗-th one 

 Example: Select(7)  = ? 

 

 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 



Fundamental Tool: Rank and Select 
 Suppose we are given a bit vector of length 𝑢: 

 

 

 How can we support the following operations: 

 Rank(𝑖): return the number of ones up to position 𝑖 

 Example: Rank(20)  =  5 

 Select(𝑗): return the position of the 𝑗-th one 

 Example: Select(7)  =  23 

 Need some convention: if no 𝑗-th one, return −1 or u+1 

 

 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 



How do we do it? 
 How fast can we answer rank and select queries if we… 

 Don’t care about space? 

 What if we want Θ(𝑢) bits of space?  

 Can we do better? 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 



One Slide for Rank 
 Jacobson (1989) gave an 𝑢 + 𝑜 𝑢  bit solution for rank: 

 Idea: More levels! 
1. Break array into blocks of size log2 𝑢 bits 

 Store number of 1s to start of each block 

 Occupies Θ
𝑢

log 𝑢
 bits 

2. Break blocks into subblocks of size 
1

2
log 𝑢 bits 

 Store number of 1s from start of block to start of each subblock 

 Occupies Θ
𝑢 log log 𝑢

log 𝑢
 bits! 

3. Store a table with all the precomputed answers for each subblock  

 There are 2log 𝑢/2 such blocks… 

 Occupies Θ( 𝑢 log log 𝑢) bits (if we use some bit tricks) 



One Slide for Rank 
 Jacobson (1989) gave an 𝑢 + 𝑜 𝑢  bit solution for rank: 

 Idea: More levels! 
1. Break array into blocks of size log2 𝑢 bits 

 Store number of 1s to start of each block 

 Occupies Θ
𝑢

log 𝑢
 bits 

2. Break blocks into subblocks of size 
1

2
log 𝑢 bits 

 Store number of 1s from start of block to start of each subblock 

 Occupies Θ
𝑢 log log 𝑢

log 𝑢
 bits! 

3. Store a table with all the precomputed answers for each subblock  

 There are 2log 𝑢/2 such blocks… 

 Occupies Θ( 𝑢 log log 𝑢) bits (if we use some bit tricks) 

𝑢 +  Θ
𝑢 log log 𝑢

log 𝑢
 bits, 

and we decide the 
constant! 



Better Ideas for Rank/Select 
 Let’s parameterize the problem in terms of the one bits 

 A bit vector of length 𝑢 containing 𝑛 one bits 

 If 𝑛 ≪ 𝑢 we should probably be able to do better 

 log 𝑢
𝑛
≤  𝑛 log

𝑒𝑢

𝑛
+ 𝑂(1) =   𝑛 log

𝑢

𝑛
+ Θ(𝑛) 

 log 𝑢
𝑛
+ Θ

𝑢

polylog 𝑢
 possible for Θ 1  rank and select… 

 Patrascu (2008); see also related lower bound Patrascu and Viola(2010) 

 Very related to predecessor search: i.e., find the index of the previous one 



RaRaRa (Raman, Raman, and Rao 2007) 
 A fully indexable dictionary (FID) is a data structure for 

representing a bit vector of length 𝑢, that can do: 

 Rank(𝑖, {0,1}): count the number of zeros or ones in the prefix 

 Select(𝑗, {0,1}): return the index of the j-th zero or one 

 RaRaRa’s result: a FID occuping log 𝑢
𝑛
+ Θ

𝑢 log log 𝑢

log 𝑢
 bits 

 Does all four operations in Θ(1) time 

 This (or Patrascu’s result) is a very useful black box 

 We are going to describe it in detail! 



 𝑛𝑖 denotes the number of 1s in block 𝑖, for 1 ≤ 𝑖 ≤
𝑢

𝑏
 

 If each block can be stored using log 𝑏
𝑛𝑖

 bits: 

 log
𝑏

𝑛𝑖
𝑖

≤ 

𝑢

𝑏
+ log 

𝑏

𝑛𝑖
𝑖

≤  

𝑢

𝑏
+ log
𝑢

𝑛
 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 

Cut into blocks of size 𝑏 bits 

RaRaRa (Raman, Raman, and Rao 2007) 



Storing & Ranking Blocks 
 How many types of blocks are there with 𝑛′ ones? 

 Enumerate them in lexicographic order: 

 Assign each possible one a log 𝑏
𝑛′

-bit number 

 We will call this a lexicographic (lex.) number 

 For each 𝑛′ ∈ [1, 𝑏] build a table that maps each lex. 
number to its corresponding block of length 𝑏: 

 Each table stores injective function: ℎ𝑛𝑖: 2
log 𝑏𝑛𝑖 → 2𝑏 

 Store concatenation of the lex. numbers for each block 

 Now what is the problem? 



Storing & Ranking Blocks (2) 
 The main issue: lex. numbers are not one size 

 We need to know where lex. number 𝑖 starts 

 We also need to know the value 𝑛𝑖 to access ℎ𝑛𝑖 

 How to overcome this? 

 Store two arrays: 𝑆 and 𝐶 of length 
𝑢

𝑏
 

 𝑆 𝑖  stores the number log 𝑏
𝑛𝑖

 using Θ(log 𝑏) bits 

 𝐶[𝑖] stores the number 𝑛𝑖, also using Θ(log 𝑏) bits 

 We want to be able to return partial sums on these arrays 

 Using 𝑆 as an example: the sum  𝑆[𝑖]𝑖  for any 𝑖 ∈ 1,
𝑢

𝑏
 



An Illustration with 𝑏 = 4 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 

2 0 1 0 2 2 0 0 3 1 0 1 

000 00 000 001 11 01 00 lex 

𝐶 

3 0 2 0 3 3 0 0 2 2 0 2 𝑆 



An Illustration with 𝑏 = 4 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 

2 0 1 0 2 2 0 0 3 1 0 1 

000 00 000 001 11 01 00 lex 

𝐶 

3 0 2 0 3 3 0 0 2 2 0 2 𝑆 



An Illustration with 𝑏 = 4 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 

2 0 1 0 2 2 0 0 3 1 0 1 

000 00 000 001 11 01 00 lex 

𝐶 

3 0 2 0 3 3 0 0 2 2 0 2 𝑆 



An Illustration with 𝑏 = 4 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 

2 0 1 0 2 2 0 0 3 1 0 1 

000 00 000 001 11 01 00 lex 

𝐶 

3 0 2 0 3 3 0 0 2 2 0 2 𝑆 



An Illustration with 𝑏 = 4 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 

2 0 1 0 2 2 0 0 3 1 0 1 

000 00 000 001 11 01 00 lex 

𝐶 

3 0 2 0 3 3 0 0 2 2 0 2 𝑆 



An Illustration with 𝑏 = 4 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 

2 0 1 0 2 2 0 0 3 1 0 1 

000 00 000 001 11 01 00 lex 

𝐶 

3 0 2 0 3 3 0 0 2 2 0 2 𝑆 



An Illustration with 𝑏 = 4 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 

2 0 1 0 2 2 0 0 3 1 0 1 

000 00 000 001 11 01 00 lex 

𝐶 

3 0 2 0 3 3 0 0 2 2 0 2 𝑆 



Digression: Partial Sums 
 Supporting partial sums on 𝑚 elements 𝑆[1. . 𝑚]: 

 Suppose each element < log𝑐𝑚 for some 𝑐 > 0 

  𝑆[𝑖]𝑖 < 𝑖 log𝑐𝑚 can be written using Θ(log𝑚) bits 

 Write down the sums up to every log𝑚-th element 

 This uses Θ
𝑚

log 𝑚
× log𝑚 = Θ(𝑚) bits 

 Write down the sums from each offset to each element 

 This uses Θ 𝑚 log log𝑚  bits 



Storing & Ranking Blocks (3) 
 Recap: 

 The concatenated lex. numbers: 

 Occupy log 𝑢
𝑛
+ Θ

𝑢

log 𝑢
 bits 

 The arrays 𝑆 and 𝐶 enhanced to support partial sums: 

 This occupies Θ
𝑢 log log 𝑢

log 𝑢
 bits (setting 𝑚 =

𝑢

𝑏
) 

 All those lookup tables (Also: keep table for counting ones): 

 Θ 𝑢 polylog 𝑛  can be made 𝑢𝜀 for any 𝜀 > 0 

 Using these we can easily do access and rank (on 0 and 1) 

 “But you said we could do select! What about select?” 



Select is more complicated 
 According to a someone who has implemented this: 

 “In practice you just use binary search.” 

 How to do it: 

 Let 𝑝 be the number of blocks, so around 
2𝑢

log 𝑢
 

 Store the answer explicitly for every log2 𝑝 query: 

 i.e., now we can answer select(𝑖 log2 𝑝) for 1 ≤ 𝑖 ≤ 𝑛/log2 𝑝 

 Unlike rank, the groups for select will be non-uniform 

 The elements between each sample are a group 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 



Two Kinds of Select Groups 
 The “sparse case” 

  The size of the group is ≥ log4 𝑝 
 This is the easy case, as we simply write down the answers 

 There can only be 
𝑢

log4 𝑝
 such groups: spend Θ log3 𝑝  bits per 

 The “dense case” 
 In this case, we construct a search tree over the group’s blocks 

 Tree will have fan out log 𝑝 

 How tall will the tree be? 

 Each node has array storing # of ones in each child’s subtree 

 Each # is size Θ log log 𝑝  bits (how many ones in whole tree?)…  

 …so an entire array can be packed in a single word! 



Don’t try this at home 

1 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1 0 1 0 1 0 0 0 

Before this was the entire bit vector, now it’s just one dense block 

3,2,2,1 2,2,2,2 4,1,2,1 

8,8,8 
How to branch? 



Wrap up 
 Total space for the dense groups: 

 Dense group spanning 𝑘 blocks has Θ
𝑘

𝑝 log 𝑢
 nodes 

 Each node stores an array of size Θ 𝑝 log log 𝑝  bits 

 Total: Θ
𝑢 log log 𝑢

log 𝑢
 bits 

 We can do the same thing for select on zeros! 

 

 



“But what about trees?” 
 What does rank and select have to do with trees? 

 Remember the heap 

 Left-child of node 𝑖 =  2𝑖 

 Right-child of node 𝑖 =  2𝑖 + 1 

 Parent of 𝑖 =  𝑖/2  



“But what about trees?” 
 What does rank and select have to do with trees? 

 Remember the heap  

 Left-child of node 𝑖 =  2𝑖 

 Right-child of node 𝑖 =  2𝑖 + 1 

 Parent of 𝑖 =  𝑖/2  



“But what about trees?” 
 What does rank and select have to do with trees? 

 Remember the heap 

 Left-child of node 𝑖 =  2𝑖 

 Right-child of node 𝑖 =  2𝑖 + 1 

 Parent of 𝑖 =  𝑖/2  

Write as a bit vector: 1111101110100011001001100000011 

Neat, but it doesn’t 
use 2𝑛 bits… or use 

the stuff we just 
spent a lot of time 

learning about 



Uses 
𝟐𝒏 + 𝒐(𝒏) 

bits!!! 

Level Order Binary Marked (Jacobson) 

 Make it a complete binary tree (put the leaves in) 

Write as a bit vector: 

𝟏𝟏𝟏𝟏𝟏𝟎𝟏𝟏𝟏𝟎𝟏𝟎𝟏𝟏𝟎𝟎𝟏𝟏𝟏𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 

 Left-child of 𝒊 = 𝟐 𝐫𝐚𝐧𝐤(𝒊) 
 Right-child of 𝒊 = 𝟐𝒓𝒂𝒏𝒌(𝒊) + 𝟏 

 Parent of 𝒊 = 𝒔𝒆𝒍𝒆𝒄𝒕
𝒊

𝟐
 



“What about non-binary trees?” 
 Ordered trees: uniquely identified by degree sequence 

 Idea: encode these and write them down 

 Several different ways to do this 

 Level Ordered Unary Degree Sequence (LOUDS) 

 Also by Jacobson 

 

 
Numbers in unary:  

𝟎 → 𝟎 
𝟏 → 𝟏𝟎 
𝟐 → 𝟏𝟏𝟎 
𝟑 → 𝟏𝟏𝟏𝟎 



“What about non-binary trees?” 
 Ordered trees: uniquely identified by degree sequence 

 Idea: encode these and write them down 

 Several different ways to do this 

 Level Ordered Unary Degree Sequence (LOUDS) 

 Also by Jacobson 

 

 
Numbers in unary:  

𝟎 → 𝟎 
𝟏 → 𝟏𝟎 
𝟐 → 𝟏𝟏𝟎 
𝟑 → 𝟏𝟏𝟏𝟎 

Add “super root” to make sure each node 
associated with a zero bit: 
𝟏𝟎𝟏𝟏𝟏𝟏𝟎𝟏𝟏𝟏𝟎𝟎𝟎𝟏𝟏𝟏𝟏𝟎𝟏𝟏𝟎𝟎𝟏𝟎𝟏𝟎𝟎𝟎𝟏𝟎𝟏𝟎𝟏𝟏𝟏𝟎𝟏𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 



“What about non-binary trees?” 
 Ordered trees: uniquely identified by degree sequence 

 Idea: encode these and write them down (Jacobson) 

 Several different ways to do this 

 Level Ordered Unary Degree Sequence (LOUDS) 

 

Add “super root” to make sure each node 
associated with a zero bit: 
𝟏𝟎𝟏𝟏𝟏𝟏𝟎𝟏𝟏𝟏𝟎𝟎𝟎𝟏𝟏𝟏𝟏𝟎𝟏𝟏𝟎𝟎𝟏𝟎𝟏𝟎𝟎𝟎𝟏𝟎𝟏𝟎𝟏𝟏𝟏𝟎𝟏𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 

 Children of 𝒊 ~ 𝒔𝒆𝒍𝒆𝒄𝒕 𝒓𝒂𝒏𝒌 𝒋, 𝟏 , 𝟎 ∗ 
 Parent of 𝒊 = 𝒔𝒆𝒍𝒆𝒄𝒕 𝒓𝒂𝒏𝒌 𝒊, 𝟎 , 𝟏  
 Next Sibling… 
 Degree… 

*to find child 𝑘 do this setting 𝑗 to be the index of the 𝑘-th one in unary expansion of 𝑖 



Other Results 
 We talked about two methods: LOBM and LOUDS 

 Other methods: 

 Balanced Parentheses (BP) 
 (Jacobson 1989, Munro & Raman 1997, Munro et al. 2001, Sadakane 2003, Lu & Yeh 2008) 

 We will talk next time about its use for representing graphs 

 Can also support level ancestor, lowest common ancestor (LCA), and many more operations. 

 Depth-First Unary Degree Sequence (DFUDS) 
 (Benoit et al. 2005, Jansson et al. 2007) 

 Can compute subtree size in 𝑂(1) time + LOUDS operations 

 Tree Covering (TC) 
 (Geary et al. 2004, He et al. 2007, Farzan and Munro 2008) 

 Fully Function (FF) 
 (Sadakane and Navarro 2010,2012) 



“Universal” Representation 
 A result by Farzan, Munro, and Rao (2009): 

 We can represent a tree using 2𝑛 + 𝑜(𝑛) bits such that 
we can access any block of log 𝑛 consecutive bits in the 
DFUDS, BP, or TC representation, etc., in Θ(1) time. 

 

 Bottom Line: can do it all in 2𝑛 + 𝑜(𝑛) bits! 

 

 Next Lecture: BP and graphs 



Balanced Parentheses 
 Last class we looked at rank/select 

 Consider the following problem: 
 

 
((((()())(()()))((()())(()())))(((()())(()()))((()())(()())))) 

 



Balanced Parentheses 
 Last class we looked at rank/select 

 Consider the following problem: 
 

 
((((()())(()()))((()())(()())))(((()())(()()))((()())(()())))) 

 Find the matching parenthesis 

 

 



Balanced Parentheses 
 Last class we looked at rank/select 

 Consider the following problem: 
 

 
((((()())(()()))((()())(()())))(((()())(()()))((()())(()())))) 

 Find the matching parenthesis 

 Looks similar (kind of… sort of) to the rank/select problem 

 Supports the following operations (Jacobson 1989, Munro and Raman 1997): 
 Find_Match(i): see picture 

 Excess(i): return difference between # of open/closed at i 

 

 



Balanced Parentheses 
 Last class we looked at rank/select 

 Consider the following problem: 
 

 
((((()())(()()))((()())(()())))(((()())(()()))((()())(()())))) 

 Find the matching parenthesis 

 Looks similar (kind of… sort of) to the rank/select problem 

 Supports the following operations (Jacobson 1989, Munro and Raman 1997): 
 Find_Match(i): see picture 

 Excess(i): return difference between # of open/closed at i 

 Enclose(i): given pair (opening at i), return smallest “containing” pair 

 

 



Balanced Parentheses 
 Last class we looked at rank/select 

 Consider the following problem: 
 

 
((((()())(()()))((()())(()())))(((()())(()()))((()())(()())))) 

 Find the matching parenthesis 

 Looks similar (kind of… sort of) to the rank/select problem 

 Supports the following operations (Jacobson 1989, Munro and Raman 1997): 
 Find_Match(i): see picture 

 Excess(i): return difference between # of open/closed at i 

 Enclose(i): given pair (opening at i), return smallest “containing” pair 

 Double_Enclose(i,j): given pairs (opening at i and j), return smallest “containing” pair 

 Many additional operations added later (Lu & Yeh 2008) 

 

 



Jacobson’s Solution for Find_Match 

 This won’t really be succinct: Θ(𝑛) bits 

 

 As you might expect: break it into blocks of size b 

 

 Main Idea:  
 If match is in the same block find it by scanning 

 Alternative case we need some additional observations 

((((()())(()()))((()())(()())))(((()())(()()))((()())(()())))) 

Cut into blocks of size 𝑏 



Some Definitions 

((()(()()( ))((()())) (()((()))( ))()()(()( (((()()))( ))))()())) 

 A far parenthesis has its match in a different block 

 The number of far parenthesis can be linear 

 Can’t just store the answers for these 

 

 



Some Definitions 

((()(()()( ))((()())) (()((()))( ))()()(()( (((()()))( ))))()())) 

4 2 4 4 6 0 

 A far parenthesis has its match in a different block 

 The number of far parenthesis can be linear 

 Can’t just store the answers for these 

 

 

 We can, however, store the excess 



Some Definitions 
 A far parenthesis has its match in a different block 

 The number of far parenthesis can be linear 

 Can’t just store the answers for these 

 

 ((()(()()( ))((()())) (()((()))( ))()()(()( (((()()))( ))))()())) 

4 2 4 4 6 0 

 We can, however, store the excess 

 Consider a single block: 

 Mark all of the far parenthesis 

 Mark whenever the block of the match changes 



Some Definitions 
 A far parenthesis has its match in a different block 

 The number of far parenthesis can be linear 

 Can’t just store the answers for these 

1000100000 -- -- -- -- -- 

((()(()()( ))((()())) (()((()))( ))()()(()( (((()()))( ))))()())) 

4 2 4 4 6 0 

 We can, however, store the excess 

 Consider a single block: 

 Mark all of the far parenthesis 

 Mark whenever the block of the match changes 



Some Definitions 
 A far parenthesis has its match in a different block 

 The number of far parenthesis can be linear 

 Can’t just store the answers for these 

1000100000 0000000000 -- -- -- -- 

((()(()()( ))((()())) (()((()))( ))()()(()( (((()()))( ))))()())) 

4 2 4 4 6 0 

 We can, however, store the excess 

 Consider a single block: 

 Mark all of the far parenthesis 

 Mark whenever the block of the match changes 



Some Definitions 
 A far parenthesis has its match in a different block 

 The number of far parenthesis can be linear 

 Can’t just store the answers for these 

1000100000 0000000000 1000000000 -- -- -- 

((()(()()( ))((()())) (()((()))( ))()()(()( (((()()))( ))))()())) 

4 2 4 4 6 0 

 We can, however, store the excess 

 Consider a single block: 

 Mark all of the far parenthesis 

 Mark whenever the block of the match changes 



Some Definitions 
 A far parenthesis has its match in a different block 

 The number of far parenthesis can be linear 

 Can’t just store the answers for these 

1000100000 0000000000 1000000000 0000001000 -- -- 

((()(()()( ))((()())) (()((()))( ))()()(()( (((()()))( ))))()())) 

4 2 4 4 6 0 

 We can, however, store the excess 

 Consider a single block: 

 Mark all of the far parenthesis 

 Mark whenever the block of the match changes 



Some Definitions 
 A far parenthesis has its match in a different block 

 The number of far parenthesis can be linear 

 Can’t just store the answers for these 

1000100000 0000000000 1000000000 0000001000 1000000000 -- 

((()(()()( ))((()())) (()((()))( ))()()(()( (((()()))( ))))()())) 

4 2 4 4 6 0 

 We can, however, store the excess 

 Consider a single block: 

 Mark all of the far parenthesis 

 Mark whenever the block of the match changes 



Some Definitions 
 A far parenthesis has its match in a different block 

 The number of far parenthesis can be linear 

 Can’t just store the answers for these 

1000100000 0000000000 1000000000 0000001000 1000000000 -- 

((()(()()( ))((()())) (()((()))( ))()()(()( (((()()))( ))))()())) 

4 2 4 4 6 0 

 We can, however, store the excess 

 Consider a single block: 

 Mark all of the far parenthesis 

 Mark whenever the block of the match changes 



Some Definitions (2) 
 We call the parentheses marked by 1 bits pioneers 

1000100000 0000000000 1000000000 0000001000 1000000000 -- 

((()(()()( ))((()())) (()((()))( ))()()(()( (((()()))( ))))()())) 

4 2 4 4 6 0 

 
 How many pioneers can there be? 



Digression: Pioneers 
 Let’s think of the blocks as vertices in a graph 

((()(()()( ))((()())) (()((()))( ))()()(()( (((()()))( ))))()())) 

 Balanced parentheses → we can draw without crossings 

 That means this graph is planar (even better: outerplanar) 

 If we have 𝑚 =
𝑛

𝑏
 vertices, there can be at most 2𝑚 − 3 edges 

 This means: number of pioneers is sublinear if 𝑏 = 𝜔(1) (yay) 



Using this Fact 
 We can write down the block numbers of the pioneers 

1000100000 0000000000 1000000000 0000001000 1000000000 -- 

((()(()()( ))((()())) (()((()))( ))()()(()( (((()()))( ))))()())) 

4 2 4 4 6 0 

 

 Store this pioneer information using Θ(𝑛 log 𝑛 /𝑏) bits 

 Given an arbitrary opening parenthesis: 

 We can find the preceding pioneer using rank/select 

6 2 4 6 6 

6 2 4 6 6 



Performing Find_Match 

1000100000 0000000000 1000000000 0000001000 1000000000 -- 

((()(()()( ))((()())) (()((()))( ))()()(()( (((()()))( ))))()())) 

4 2 4 4 6 0 

6 2 4 6 6 

 Suppose we want to find the match of the red ( 

 Search within block to see if it is matched…  

 in this case “no” 

 Find the preceding pioneer 

 



Performing Find_Match 

1000100000 0000000000 1000000000 0000001000 1000000000 -- 

((()(()()( ))((()())) (()((()))( ))()()(()( (((()()))( ))))()())) 

4 2 4 4 6 0 

6 2 4 6 6 

 Suppose we want to find the match of the red ( 

 Search within block to see if it is matched…  

 in this case “no” 

 Find the preceding pioneer 

 Determine excess up to 𝑖 

 In this case: 4 

 Find the first time excess reduces to 3 in pioneer block 

 



Performing Find_Match 

1000100000 0000000000 1000000000 0000001000 1000000000 -- 

((()(()()( ))((()())) (()((()))( ))()()(()( (((()()))( ))))()())) 

4 2 4 4 6 0 

6 2 4 6 6 

 Suppose we want to find the match of the red ( 

 Search within block to see if it is matched…  

 in this case “no” 

 Find the preceding pioneer 

 Determine excess up to 𝑖 

 In this case: 4 

 Find the first time excess reduces to 3 in pioneer block 
 Why?? 

 



Stack View 

1000100000 0000000000 1000000000 0000001000 1000000000 -- 

((()(()()( ))((()())) (()((()))( ))()()(()( (((()()))( ))))()())) 



Analysis of Find_Match 
 We have described how to find a closing parenthesis 

 The query time was Θ 𝑏 , since we must scan blocks 

 Excess takes Θ(𝑏) time using scan + block info 

 The space is: 
 2𝑛 bits for the pioneer bit vector (+𝑜(𝑛) for rank/select) 

 Θ
𝑛 log 𝑛

𝑏
 bits for storing the pioneer blocks 

 Θ
𝑛 log 𝑛

𝑏
 bits for the excess information 

 Set 𝑏 = log 𝑛 and it all works out to be Θ(𝑛) bits 

 Do the same thing for finding an opening parenthesis 



Supporting Enclose 
 Consider the “stack view” again 

((()(()()( ))((()())) (()((()))( ))()()(()( (((()()))( ))))()())) 

 Suppose minimum of a block has excess 𝑥: 
 Store first block to the right having excess 𝑥 − 1 

 Extra Θ
𝑛

𝑏
log 𝑛  bits 

 Use this + pioneer information to answer queries 



Binary Trees Revisited 

Represent a node like so: open-paren left-child right-child close-paren 

(1(2(3(4(5))(6(7)))(8(9(10)(11)))(12(13(14(15)(16))))) 

1 

3 

2 

8 

4 6 9 

5 7 10 11 

12 

13 

14 

15 16 



Binary Trees Revisited 

Represent a node like so: open-paren left-child right-child close-paren 

((((())(()))((()()))(((()())))) 
OK: now look at node 6 

1 

3 

2 

8 

4 6 9 

5 7 10 11 

12 

13 

14 

15 16 



Binary Trees Revisited 
1 

3 

2 

8 

4 6 9 

5 7 10 11 

12 

13 

14 

15 16 

Represent a node like so: open-paren left-child right-child close-paren 

((((())(()))((()()))(((()())))) 
OK: now look at node 6 
Tell me whether 7 is a left or a right child… 

OOPS!!! 



Transformation 
1 

3 

2 

8 

4 6 9 

5 7 10 11 

12 

13 

14 

15 16 

1 

3 

2 8 

4 

6 

9 

5 

7 10 

11 

12 13 14 

15 

16 

0 



Transformation 

1 

3 

2 8 

4 

6 

9 

5 

7 10 

11 

12 13 14 

15 

16 

0 

Build BP over 
the ordered tree 

instead 

(𝟎(𝟏(𝟐(𝟑(𝟒(𝟓)))(𝟔)(𝟕))(𝟖)(𝟗(𝟏𝟎))(𝟏𝟏)(𝟏𝟐)(𝟏𝟑)(𝟏𝟒(𝟏𝟓))(𝟏𝟔)) 

Right child?  
Left child?  
Parent? 
Subtree size? 



Outerplanar/One-Page Graphs 

 Remember bound on number of pioneers… 

 We can represent outer planar (i.e., one page graphs) 
 Even works for multi-graphs 

 Use rank/select to move from “spine number” to () 

 Θ(𝑛) bits in total: 
 Can be reduced to 2𝑛 + 2𝑚 + 𝑜 𝑛  (Munro and Raman 1997) 

 … using not one… not two… but three levels of blocking! 

1 2 3 4 5 6 7 8 

()(( ())( ()( ())) ())(( ()( ())) ()) 



Outerplanar/One-Page Graphs 

1 2 3 4 5 6 7 8 

()(( ())( ()( ())) ())(( ()( ())) ()) 

 Navigation: 

 List neighbours of node 𝑖: 
 Find the “adjacent parenthesis” corresponding to 𝑖 (e.g., 𝑖 = 5) 



Outerplanar/One-Page Graphs 

()(( ())( ()( ())) ())(( ()( ())) ()) 

 Navigation: 

 List neighbours of node 𝑖: 
 Find the “adjacent parenthesis” corresponding to 𝑖 (e.g., 𝑖 = 5) 

 For each matching paren. report the label: e.g., 1,7,8 

 

  

 

 

 

1 2 3 4 5 6 7 8 



Outerplanar/One-Page Graphs 

()(( ())( ()( ())) ())(( ()( ())) ()) 

 Navigation: 

 List neighbours of node 𝑖: 
 Find the “adjacent parenthesis” corresponding to 𝑖 (e.g., 𝑖 = 5) 

 For each matching paren. report the label: e.g., 1,7,8 

 Test Adjacency of (𝑖, 𝑗) (e.g., 𝑖 =  1, 𝑗 = 4): 
 Find first matching pair after 𝑖 

 

1 2 3 4 5 6 7 8 



Outerplanar/One-Page Graphs 

()(( ())( ()( ())) ())(( ()( ())) ()) 

 Navigation: 

 List neighbours of node 𝑖: 
 Find the “adjacent parenthesis” corresponding to 𝑖 (e.g., 𝑖 = 5) 

 For each matching paren. report the label: e.g., 1,7,8 

 Test Adjacency of (𝑖, 𝑗) (e.g., 𝑖 =  1, 𝑗 = 4): 
 Find first matching pair after 𝑖 

 Find last matching pair after 𝑗  

 If neither query yields a “yes” the answer is “no” 

 

 

Neat! 

1 2 3 4 5 6 7 8 



It works for Planar Graphs too! 
 Thanks to a theorem of Yannakakis (1986): 

There is a linear time algorithm that can embed any 
planar graph into no more than four page graphs. 

(The “spine numbers” are the same for all pages) 

 This means that we can apply the BP representation: 

 We get planar graphs that occupy 8𝑛 + 2𝑚 + 𝑜(𝑛) bits 

 Adjacency listing in 𝑂(𝑡 + 1) time for degree 𝑡 vertices 

 Adjacency testing in 𝑂 1  time 

 Any 𝑘-page graph occupies 2𝑘𝑛 + 2𝑚 + 𝑜 𝑛𝑘  bits 

 Adjacency listing in 𝑂(𝑘 + 𝑡) 

 Adjacency testing in 𝑂 𝑘  time 

 



Arbitrary Graphs 
 What about non-planar graphs? 

 We have been taught: 

 Adjacency list representation: 

 Θ( 𝑛 + 𝑚 log 𝑛) bits 

 Θ(𝑡 + 1) time to report all 𝑡 neighbours 

 Θ(log 𝑛) time for adjacency testing (PSSSST: can be improved to Θ(log log 𝑛)) 

 Adjacency matrix representation: 

 𝑛2 bits for directed; 𝑛
2

 bits for undirected graph 

 Θ(𝑛) time for adjacency listing 

 Θ(1) time for adjacency testing* 



Succinct(?) Arbitrary Graphs 
 How many bits to represent a 𝑛 vertex digraph? 

 𝐵 = log 𝑛
2

𝑚
 if it has 𝑚 edges 

 Idea #1: “Use the FID” 
 Represent each row of the adjacency matrix using a FID 

 Let 𝑚𝑖 be the number of 1s in row 𝑖 

 This takes  log 𝑛
𝑚𝑖𝑖 + Θ(𝑛2 log log 𝑛 / log 𝑛) bits 

 Or 𝐵 + Θ(𝑛2 log log 𝑛 / log 𝑛) bits 
 Second term is little-oh-ish when  

𝑚 = 𝜔
𝑛2

log 𝑛
 and 𝑚 = 𝑜 𝑛2 1 −

1

log 𝑛
 

 For now assume the graph is in this range (i.e., dense) 
 Can list “out-neighbours” in Θ(1) time per element 
 Can test adjacency in Θ(1) time 



What about “in-neighbours” 
 How can we report the rows and columns efficiently? 

 Idea #2: “Θ
𝑛2 log log 𝑛

log 𝑛
 is technically 𝑜 𝑛2 ” 

 

M A T R I X 

log 𝑛 /2 

Store each little 
matrix using the 
same method as 

the FID 

log 𝑛 /2 



What about “in-neighbours” (2) 
 For each row and each column 

 Construct aux. FID structures with 𝑏 =
log 𝑛

2
 

 Access any little row/col. block by fetching the square block 

 

 We have a succinct representation of directed graphs 
 For a particular range of 𝑚… 

 Partial result: not so convincing 

 



Other Ranges of 𝑚  
 If we want to support adjacency testing, reporting in-

neighbours and out-neighbours (Farzan and Munro, 2013): 

 

• What is going on in the “middle”? 
• Upper bounds: essentially based on a space efficient version of FKS hashing 
• Lower bounds: I will prove this next class 



Succinct “FKS-Hashing” 
 Another RaRaRa (2007) result that is very useful: 

 Theorem: Given a bit vector of 𝑢 bits, with 𝑛 one bits, 

there is a data structure that occupies log 𝑢
𝑛
+ 𝑜 𝑛 +

O(log log 𝑢) bits and can support the following: 

 Rank(𝑖): iff position 𝑖 is a 1 bit (and therefore also Access(𝑖)) 

 Select(𝑖): for all 𝑖 ∈ [1, 𝑛] 

 A nice project: it is essentially FKS hashing + many 
incremental improvements spread over several papers 

 I would like to see a summary of the various techniques 



Lower Bounds (for Data Structures) 

 What is the computational model? 

 Cell Probe Model: 

 Data structure 𝐷 consists of 𝑆 cells, each containing 𝑤 bits 

 𝐷 supports some set of queries 

 We want to examine trade-offs between 

 The size of a static data structure 

 The number of cells, 𝑡, that must be probed during a query 

 Intermediate computation is free 

 

 Why do we care? 

 Cell-Probe Lower Bounds hold in the word-RAM model 
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𝑤 bits 
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QUERY X? 



??? ??? ??? ??? ??? 

??? ??? 1100 ??? ??? 

1010 ??? ??? ??? ??? 

??? ??? ??? ???  ??? 

??? ??? ??? ??? ??? 

DATA STRUCTURE 
𝑠 cells 

USER 

What is the  
answer to 
QUERY X? 

𝑤 bits 



??? ??? ??? ??? ??? 

??? ??? 1100 ??? ??? 

1010 ??? ??? ??? ??? 

??? ??? ??? ???  ??? 

??? ??? ??? ??? ??? 

DATA STRUCTURE 
𝑠 cells 

USER 

What is the  
answer to 
QUERY X? I read the bits 

“1010” and 
“1100”… so the 

answer is Y. 



??? ??? ??? ??? ??? 

??? ??? 1100 ??? ??? 

1010 ??? ??? ??? ??? 

??? ??? ??? ???  ??? 

??? ??? ??? ??? ??? 

DATA STRUCTURE 
𝑠 cells 

USER 

What is the  
answer to 
QUERY X? 

QUERY 
ANSWERED 

IN 𝟐 PROBES 

I read the bits 
“1010” and 

“1100”… so the 
answer is Y. 



Problem #1: Permutations 
 Represent a permutation 𝜋 of size 𝑛 such that we can 

compute 𝜋(𝑖) and 𝜋−1(𝑖) for any 𝑖 ∈ [1, 𝑛] 

 Example: 𝜋 = (4,3,1,2,5,7,6) 

 

 

 

1 2 3 4 5 6 7 

𝜋 1 = 4 𝜋−1 4 = 1 



Problem #1: Permutations 
 There are 𝑛! permutations  

 So, we need about 𝑛 log 𝑛 bits to represent one 

 We can just store an array to represent 𝜋 
 This takes 𝑛 log 𝑛 + Θ(𝑛) bits; 𝜋(𝑖) in Θ 1  time 

 What about computing the inverse? 𝜋−1 𝑖  
 Simple solution: store two arrays 

 This takes 2𝑛 log 𝑛 + Θ(𝑛) bits; 𝜋(𝑖) and 𝜋−1 𝑖  in Θ 1  time 

 Can we do better? 
 Yes: using hashing we can, for any constant 𝜀 > 0, get 

(1 + 𝜀)𝑛 log 𝑛 bits; 𝜋(𝑖) and 𝜋−1 𝑖  in Θ 1  time 



Problem #1: Permutations 
 There are 𝑛! permutations  

 So, we need about 𝑛 log 𝑛 bits to represent one 

 We can just store an array to represent 𝜋 
 This takes 𝑛 log 𝑛 + Θ(𝑛) bits; 𝜋(𝑖) in Θ 1  time 

 What about computing the inverse? 𝜋−1 𝑖  
 Simple solution: store two arrays 

 This takes 2𝑛 log 𝑛 + Θ(𝑛) bits; 𝜋(𝑖) and 𝜋−1 𝑖  in Θ 1  time 

 Can we do better? 
 Yes: using hashing we can, for any constant 𝜀 > 0, get 

(1 + 𝜀)𝑛 log 𝑛 bits; 𝜋(𝑖) and 𝜋−1 𝑖  in Θ 1  time 

NOT 
SUCCINCT 



Problem #2:Represent Digraphs 
 Represent a digraph 𝐺 = (𝑉, 𝐸) such that we can: 

 Report the 𝑖-th in-neighbour of a node 

 Report the 𝑗-th out-neighbour of a node 

0 1 1 0 1 1 0 1 

1 0 0 0 1 0 0 0 

1 0 0 1 0 0 0 0 

0 0 1 0 0 1 0 0 

1 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 1 

0 1 0 0 0 1 0 0 

0 0 0 1 0 0 0 0 

Report out-
neighbours of 
vertex: r-select(𝑟, 𝑖) 

Report in neighbours of 
vertex: c-select(𝑐, 𝑗) 



Problem #2:Represent Digraphs 
 We can store an 𝑚 edge digraph on 𝑛 vertices using log 𝑛

2

𝑚
+

𝑜 log 𝑛
2

𝑚
  bits and support one operation in Θ 1  time via “hashing” 

 

 We can support both operations if the graph is very dense or sparse: 

 𝑚 = 𝑜(𝑛𝛿) for any constant 𝛿 > 0 

 𝑚 = Ω(𝑛2/ log1−𝛿 𝑛) for some 𝛿 > 0 

 

 For all other ranges the best we can seem to is: 

1 + 𝜀 log 𝑛
2

𝑚
 bits if we want 𝛩(1) time for both operations 

(again, using “hashing”) 



Problem #2:Represent Digraphs 
 We can store an 𝑚 edge digraph on 𝑛 vertices using log 𝑛

2

𝑚
+

𝑜 log 𝑛
2

𝑚
  bits and support one operation in Θ 1  time via “hashing” 

 

 We can support both operations if the graph is very dense or sparse: 

 𝑚 = 𝑜(𝑛𝛿) for any constant 𝛿 > 0 

 𝑚 = Ω(𝑛2/ log1−𝛿 𝑛) for some 𝛿 > 0 

 

 For all other ranges the best we can seem to is: 

1 + 𝜀 log 𝑛
2

𝑚
 bits if we want 𝛩(1) time for both operations 

(again, using “hashing”) 

NOT 
SUCCINCT 



Do we need the additive 𝜀? 
 Golynski (2009): we can’t do better for these problems 

 Primary reason: the types of queries 

 The types of queries have the reciprocal property 

Forward Queries 𝐹𝐵 
Example: 𝜋(𝑖) 

Inverse Queries 𝐼𝐵 
Example: 𝜋−1(𝑖) 

1 2 3 4 5 6 7 

𝜋 1  

𝜋 2  
𝜋 3  𝜋 4  

𝜋 5  

𝜋 6  
𝜋 7  𝜋 8  𝜋−1 1  

𝜋−1 2  
𝜋−1 3  𝜋−1 4  

𝜋−1 5  

𝜋−1 6  
𝜋−1 7  𝜋−1 8  

Object 𝐵 



Reciprocal Property 
 Let 𝐹𝐵 be the set of forward queries for object 𝐵 

 Let 𝐼𝐵 be the set of inverse queries for object 𝐵 

 There is a bijection 𝜂:𝐹𝐵 → 𝐼𝐵 between these sets 

Object 𝐵 

Forward Queries 𝐹𝐵 
Example: 𝜋(𝑖) 

Inverse Queries 𝐼𝐵 
Example: 𝜋−1(𝑖) 

1 2 3 4 5 6 7 

𝜋 1  

𝜋 2  
𝜋 3  𝜋 4  

𝜋 5  

𝜋 6  
𝜋 7  𝜋 8  𝜋−1 1  

𝜋−1 2  
𝜋−1 3  𝜋−1 4  

𝜋−1 5  

𝜋−1 6  
𝜋−1 7  𝜋−1 8  



Reciprocal Property (2) 
 Suppose we have a description of the sets 𝐹𝐵 and 𝐼𝐵 

 … and we know the answers to 𝐹𝐵
∗ ⊆ 𝐹𝐵 and 𝐼𝐵

∗ ⊆ 𝐼𝐵 

 … and for the remaining queries we know the bijection 

 

Object 𝐵 

Forward Queries 𝐹𝐵 
Example: 𝜋(𝑖) 

Inverse Queries 𝐼𝐵 
Example: 𝜋−1(𝑖) 

1 2 3 4 5 6 7 

𝜋 1  

𝜋 2  
𝜋 3  𝜋 4  

𝜋 5  

𝜋 6  
𝜋 7  𝜋 8  𝜋−1 1  

𝜋−1 2  
𝜋−1 3  𝜋−1 4  

𝜋−1 5  

𝜋−1 6  
𝜋−1 7  𝜋−1 8  



Reciprocal Property (2) 
 Suppose we have a description of the sets 𝐹𝐵 and 𝐼𝐵 

 … and we know the answers to 𝐹𝐵
∗ ⊆ 𝐹𝐵 and 𝐼𝐵

∗ ⊆ 𝐼𝐵 

 … and for the remaining queries we know the bijection 

 That is: for all queries 𝐹𝐵
′ = 𝐹𝐵 ∖ 𝐹𝐵

∗ ∖ 𝜂−1 𝐼𝐵
∗  we know 

the corresponding inverse query in 𝐼𝐵
′ = 𝐼𝐵 ∖ 𝐼𝐵

∗ ∖ 𝜂 𝐹𝐵
∗   

 

If, with the above information we 
can reconstruct the object 𝐵, then 
𝐵 has the reciprocal property 



Outline of Lower Bound 
 The lower bound is based on round elimination  

 Suppose we have a data structure 𝐷 for representing 𝐵 

 𝐵 has the reciprocal property 

 Probes 𝑡 cells in 𝐷 to answer any forward/inverse query 

 We design a compression algorithm which: 

 In a single round: deletes and protects some cells in 𝐷 

 Writes out some information to recover the lost information 

 Does this until a constant fraction of the cells are deleted 

 Under certain conditions: 

amount written ≪ amount deleted 

 



Outline of Implications 
 𝐷 can be used to uniquely identify 𝐵  

 Assume object 𝐵 requires Υ cells to be represented 

 Let 𝑅 be the # of additional bits for compression 

 If 𝐷 occupies 𝑆 cells then 1 − 𝜀 𝑆 +
𝑅

𝑤
+ 𝑂(1)  ≥ Υ 

 Therefore, 𝐷 cannot be succinct if  
𝑅

𝑤
= 𝑜(Υ) 

Black Box 
Data Structure 𝐷 



Outline of Implications 
 𝐷 can be used to uniquely identify 𝐵  

 Assume object 𝐵 requires Υ cells to be represented 

 Let 𝑅 be the # of additional bits for compression 

 If 𝐷 occupies 𝑆 cells then 1 − 𝜀 𝑆 +
𝑅

𝑤
+ 𝑂(1)  ≥ Υ 

 Therefore, 𝐷 cannot be succinct if  
𝑅

𝑤
= 𝑜(Υ) 

Compressed 
Representation of 𝐵 



The Lower Bound: Set Up 
 Let’s simplify things a bit… 

 Focus on problem #2: representing a digraph 

 

 Store an 𝑆 cell structure 𝐷 representing digraph 𝐺  

 Assume forward/inverse queries probe 𝑡 = Θ(1) cells 

 Let 𝐶𝑘 denote number of remaining cells before round 𝑘: 

 A cell is remaining if not deleted or protected 

 Key Invariant: 𝑪𝒌 ≥ 𝑺/𝟐 

 Let 𝑚 be the total number edges in 𝐺: 𝑚 = 𝐹𝐵 = |𝐼𝐵| 

 



Proof with Pictures 

Remaining Queries 

Data Structure 𝐷 occupies 𝑆 cells 
𝐶𝑘 cells remaining 

Deleted Cells 
Protected Cells 
Remaining Cells 



Proof with Pictures 

Remaining Queries 

r-select(2,1) 

c-select(8,10) 

Data Structure 𝐷 occupies 𝑆 cells 
𝐶𝑘 cells remaining 

Deleted Cells 
Protected Cells 
Remaining Cells 



Proof with Pictures 

Remaining Queries 

r-select(2,1) 

c-select(8,10) 

Each query 
inspects at most 𝑡 

cells 

Data Structure 𝐷 occupies 𝑆 cells 
𝐶𝑘 cells remaining 

Deleted Cells 
Protected Cells 
Remaining Cells 



Proof with Pictures 
Data Structure 𝐷 occupies 𝑆 cells 
𝐶𝑘 cells remaining 

Remaining Queries 

Deleted Cells 
Protected Cells 
Remaining Cells 

r-select(2,1) 

Less than 
𝐶𝑘

2
 remaining 

cells probed by more than 
4𝑡𝑚

𝑆
 separate forward 

queries   

Less than 
𝐶𝑘

2
 remaining 

cells probed by more than 
4𝑡𝑚

𝑆
 separate inverse queries   



Proof with Pictures 

Remaining Queries 

r-select(2,1) 

So, we can find a 
cell that is used by 

at most 
4𝑡𝑚

𝑆
 forward 

and inverse queries 

Less than 
𝐶𝑘

2
 remaining 

cells probed by more than 
4𝑡𝑚

𝑆
 separate forward 

queries   

Less than 
𝐶𝑘

2
 remaining 

cells probed by more than 
4𝑡𝑚

𝑆
 separate inverse queries   

Data Structure 𝐷 occupies 𝑆 cells 
𝐶𝑘 cells remaining 

Deleted Cells 
Protected Cells 
Remaining Cells 



Proof with Pictures 

Remaining Queries 

r-select(2,1) 

r-select(3,3) 

r-select(8,1) 

r-select(9,4) 

c-select(1,2) 

c-select(2,2) 

c-select(10,2) 

c-select(14,1) 

Cell 𝑑𝑘 

Data Structure 𝐷 occupies 𝑆 cells 
𝐶𝑘 cells remaining 

Deleted Cells 
Protected Cells 
Remaining Cells 



Proof with Pictures 

Remaining Queries 

r-select(2,1) 

r-select(3,3) 

r-select(8,1) 

r-select(9,4) 

c-select(1,2) 

c-select(2,2) 

c-select(10,2) 

c-select(14,1) 

Write a 
permutation of 

size at most 

4𝑡𝑚

𝑆
 

Data Structure 𝐷 occupies 𝑆 cells 
𝐶𝑘 cells remaining 

Deleted Cells 
Protected Cells 
Remaining Cells 



Proof with Pictures 

Remaining Queries 

r-select(2,1) 

r-select(3,3) 

r-select(8,1) 

r-select(9,4) 

c-select(1,2) 

c-select(2,2) 

c-select(10,2) 

c-select(14,1) 

Data Structure 𝐷 occupies 𝑆 cells 
𝐶𝑘 cells remaining 

Deleted Cells 
Protected Cells 
Remaining Cells 

Protect all additional cells 
associated 𝐹 𝑑𝑘  and 𝐼 𝑑𝑘 : 
𝑡 𝐹 𝑑𝑘 + 𝐼 𝑑𝑘 ≤ 

8𝑡2𝑚

𝑆
 cells  



Proof with Pictures 

Remaining Queries 

r-select(2,1) 

r-select(3,3) 

r-select(8,1) 

r-select(9,4) 

c-select(1,2) 

c-select(2,2) 

c-select(10,2) 

c-select(14,1) 

Data Structure 𝐷 occupies 𝑆 cells 
𝐶𝑘 cells remaining 

Deleted Cells 
Protected Cells 
Remaining Cells 

Also, for queries whose inverses 
are not 𝐹 𝑑𝑘 ∪ 𝐼 𝑑𝑘 : find and 
protect cells associated with the 

inverses: at most 
𝑡 𝐹 𝑑𝑘 + 𝐼 𝑑𝑘 ≤ 

8𝑡2𝑚

𝑆
 cells  



Proof with Pictures 

Remaining Queries 

Now 𝑑𝑘 is deleted. Proceed 
to round 𝑘 + 1, setting: 
𝐶𝑘+1 = 𝐶𝑘 ∖ (𝑃 𝑑𝑘 ∪ 𝑑𝑘 ) 
We have deleted one cell, 

and protected at most 
16𝑡2𝑚/𝑆 

Data Structure 𝐷 occupies 𝑆 cells 
𝐶𝑘 cells remaining 

Deleted Cells 
Protected Cells 
Remaining Cells 



Remaining Details Without Pictures 
 

 How many cells remain after round 𝑘: 

 𝐶𝑘+1 = 𝑆 −  𝑃 𝑑𝑖𝑘  − 𝑘 ≥ 𝑆 −
16𝑘(𝑡2𝑚+𝑆)

𝑆
  

 So, if the total number of rounds is 𝑧 then 
𝑧 = 𝑆2/(32(𝑡2𝑚+ 𝑆)) 

is sufficient to maintain invariant 𝐶𝑘 ≥ 𝑆/2 

 



What to Store? 
 Store the locations of the deleted cells 

 This takes log 𝑆
𝑧

 bits 

 Store the contents of all non-deleted cells compacted 

 This takes 𝑆 − 𝑧 cells of 𝑤 bits 

 Store all the permutations for deleted cells (lex. order) 

 This takes 𝑧 log
4𝑡𝑚

𝑆
! ≤ 𝑧

4𝑡𝑚

𝑆
log
4𝑡𝑚

𝑆
 bits 

 Store an encoding of all the queries for rows/columns: 

 This takes 2log 𝑚+𝑛
𝑛

 bits 



Implications for the Compression 
 If we can recover 𝐺 then it must be the case that 

𝑆 − 𝑧 +
𝑅

𝑤
≥ Υ − O(1) 

 Assume 𝑆 ≥ Υ where Υ = log 𝑛
2

𝑚
/𝑤, and 𝑤 = Θ(log 𝑛): 

𝑅 =  log
𝑆

𝑧
+ 𝑧
4𝑡𝑚

𝑆
log
4𝑡𝑚

𝑆
+ 2 log

𝑚 + 𝑛

𝑛
 

 This simplifies to: 

𝑅 =  𝑂
𝑆2 log

𝑚 + 𝑆
𝑆

𝑚 + 𝑆
+
𝑆𝑚

𝑚 + 𝑆
log
𝑚

𝑆
+ 𝑛 log

𝑚 + 𝑛

𝑛
 

 

 

 

So, if 𝑚 = 𝑛1+𝛿 for some constant 𝛿 ∈ (0,1)  

then 
𝑅

𝑤
= 𝑜 Υ   

but 𝑧 = Ω(Υ)! 



How to Recover 𝐺 (Non-Technical) 
 All that remains is to describe how to recover 𝐺 

 We can simulate queries on the non-deleted part of 𝐷 
 There are three types of queries: 

1. Queries that succeed without requesting deleted cells 

2. Queries that fail but their reciprocal succeeds 

3. Queries that fail and their reciprocal fails on same deleted cell 

 We can detect which type of query we are dealing with 
 First one is not a problem 

 For the second and third type: 

 We identify the subset of queries for a deleted cell 

 Enumerate these in the lex. order used to store the permutations 

 Determine whether query participates in the permutation or not 



Conclusion 
 Some operations don’t permit a succinct data structure 

 We have seen two: 

 Forward/Inverse in a permutation 

 Listing in and out-neighbours in a digraph 

 Golynski discusses one other: 

 Search and access in a text 

 Interesting open problems: 

 For digraphs can bounds be made output sensitive? 

 Bounds only apply when # queries ~ ITLB 

 Can we come up with a more general theorem? 

 

 



Non-Binary Rank and Select 
 Consider the following array of 𝑛 numbers: 

 

 

 Such an array can represent: 

 Documents: string of 𝑛 symbols from alphabet [0, 𝜎 − 1] 

 Point Sets: 𝑛 points on a 𝑛 × 𝜎 grid 

 Two “Natural” Operations: 

 Rank(𝑖, 𝛼): return the # of occurrences of 𝛼 up to pos. 𝑖 

 Select(𝑖, 𝛼): return the index of the 𝑖-th 𝛼 

 

 

0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6 



How To Do It 
 Make a tree: Divide alphabet in half at each node 

 

 0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6 

0 3 2 1 1 1 2 3 1 0 0 2 3 3 7 5 4 6 5 5 4 5 5 6 4 4 4 7 6 5 7 6 

0 1 1 1 1 0 0 5 4 5 5 4 5 5 4 4 4 5 3 2 2 3 2 3 3 7 6 6 7 6 7 6 

[0,7] 

[0,3] [4,7] 

[0,1] [2,3] [4,5] [6,7] 



How To Do It 
 Make a tree: Just store a bit vector at each node 

 

 0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 

[0,7] 

[0,3] [4,7] 

[0,1] [2,3] [4,5] [6,7] 

This is called a wavelet tree 



How To Do It 
 Make a tree: Just store a bit vector at each node 

 

 0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 

[0,7] 

[0,3] [4,7] 

[0,1] [2,3] [4,5] [6,7] 

000 → 0 



How To Do It 
 Make a tree: Just store a bit vector at each node 

 

 0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 

[0,7] 

[0,3] [4,7] 

[0,1] [2,3] [4,5] [6,7] 

000 → 0 
111 → 7 



How To Do It 
 Make a tree: Just store a bit vector at each node 

 

 0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 

[0,7] 

[0,3] [4,7] 

[0,1] [2,3] [4,5] [6,7] 

000 → 0 
111 → 7 
101 → 5 

 etc. 



Space Analysis 
 Make a tree: Only need 𝑛 log 𝜎 + 𝑜(𝑛 log 𝜎) bits 

 

 

Store each level as a contiguous bit vector in fully indexable dictionary: 
log 𝜎 levels; each has 𝑛 bits (plus 𝑜(𝑛) redundancy) 

Don’t need to actually store a “tree” 

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 

[0,7] 

[0,3] [4,7] 

[0,1] [2,3] [4,5] [6,7] 



Basic Operations: Access 

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 

[0,7] 

[0,3] [4,7] 

[0,1] [2,3] [4,5] [6,7] 

0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6 

To perform Access(𝑖) in Θ(log𝜎) time (in the example Access(14)): 
 1) Access bit 𝑖 in current node (start at root); call bit value 𝑏 
 2) If not in a leaf:  
  Compute 𝑗 = Rank(𝑖, 𝑏) on bit vector in current node 
   Follow branch 𝑏, and recursively Access(𝑗) there…  
Concatenate all bits 𝑏 along this path, and return this as the answer: 100 → 4 
   

0 1 

0 1 0 1 



Basic Operations: Rank 

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 

[0,7] 

[0,3] [4,7] 

[0,1] [2,3] [4,5] [6,7] 

0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6 

To perform Rank(𝑖, 𝛼) in Θ(log𝜎) time (in the example: Rank(14,2)): 
 1) Compute 𝑗 = Rank(𝑖, 𝑏), where 𝑏 is the next most significant bit of 𝛼 
 2) If not in a leaf: branch to node 𝑏 and recurse setting 𝑖 = 𝑗  

0 1 

0 1 0 1 



Basic Operations: Select 

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 

[0,7] 

[0,3] [4,7] 

[0,1] [2,3] [4,5] [6,7] 

0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6 

To perform Select(𝑖, 𝛼) in Θ(log𝜎) time starting at correct leaf (example: Select(3,6)): 
 1) Compute 𝑗 = Select(𝑖, 𝑏), where 𝑏 is the next least significant bit of 𝛼 
 2) If not in the root: move to parent and recurse setting 𝑖 = 𝑗   

0 1 

0 1 0 1 



Brief History of the “Wavelet Tree” 
 Chazelle (1988): Compact Range Tree 

 His concern was making the space Θ(𝑛) words 

 Succinct data structures weren’t invented yet… 

 He wanted to solve orthogonal range searching problems 
 We will also focus on these kinds of problems 

 Grossi, Gupta and Vitter (2003): Wavelet Tree 
 More or less described the same thing we just covered 

 They were concerned with text indexing problems 

These are the same data structure!  
(modulo the compressed bit vectors) 



Better Space Analysis 
 We use fully indexable dictionaries for each level 

 They can use less than 𝑛 bits… can we do better than 𝑛 log 𝜎? 

 Zeroth Order Empirical Entropy of an array 𝐴: 
 Let 𝑛𝛼 be the frequency of symbol 𝛼 ∈ [0, log 𝜎 − 1] 

 Define 𝐻0 𝐴 =
1

𝑛
 𝑛𝛼𝛼 log

𝑛

𝑛𝛼
 

 If all symbols equally likely, then this is just 𝑛 log 𝜎  

 Consider a bit vector 𝐵, i.e., the case where 𝜎 = 2 
 Using Stirling’s Approximation one can prove: 

𝑛
𝑛1
≤ 2𝑛𝐻0 𝐵 … so log 𝑛

𝑛1
≤ 𝑛𝐻0 𝐵  

 What does this mean for the wavelet tree? 



This is just 
the entropy 

of A! 

Better Space Analysis (2) 
 I will write the subscripts in binary here… 𝑛2 → 𝑛10 
 Consider array 𝐴 where 𝜎 = [0,3] (i.e., wavelet tree with two levels)… 

 How much space to store the root bit vector: 
 Let 𝑚0 = 𝑛00 + 𝑛01 and 𝑚1 = 𝑛10 + 𝑛11 

 The bit vector is no more than 𝑚0 log
𝑛

𝑚0
+𝑚1 log

𝑛

𝑚1
 bits 

 Children:  
 Bit vectors occupy no more than 

𝑛00 log
𝑚0
𝑛00
+ 𝑛01 log

𝑚0
𝑛01
+ 𝑛10 log

𝑚1
𝑛10
+ 𝑛11 log

𝑚1
𝑛11
  

 Total Space: 
 𝑚0 log

𝑛

𝑚0
+ 𝑛00 log

𝑚0

𝑛00
+ 𝑛01 log

𝑚0

𝑛01
= 𝑛00 log

𝑛

𝑛00
+ 𝑛01 log

𝑛

𝑛01
   

 𝑚1 log
𝑛

𝑚1
+ 𝑛10 log

𝑚𝟏

𝑛10
+ 𝑛11 log

𝑚1

𝑛11
= 𝑛10 log

𝑛

𝑛10
+ 𝑛11 log

𝑛

𝑛11
  

 

 



Better Space Analysis (2) 
 I will write the subscripts in binary here… 𝑛2 → 𝑛10 
 Consider array 𝐴 where 𝜎 = [0,3] (i.e., wavelet tree with two levels)… 

 How much space to store the root bit vector: 
 Let 𝑚0 = 𝑛00 + 𝑛01 and 𝑚1 = 𝑛10 + 𝑛11 

 The bit vector is no more than 𝑚0 log
𝑛

𝑚0
+𝑚1 log

𝑛

𝑚1
 bits 

 Children:  
 Bit vectors occupy no more than 

𝑛00 log
𝑚0
𝑛00
+ 𝑛01 log

𝑚0
𝑛01
+ 𝑛10 log

𝑚1
𝑛10
+ 𝑛11 log

𝑚1
𝑛11
  

 Total Space: 
 𝑚0 log

𝑛

𝑚0
+ 𝑛00 log

𝑚0

𝑛00
+ 𝑛01 log

𝑚0

𝑛01
= 𝑛00 log

𝑛

𝑛00
+ 𝑛01 log

𝑛

𝑛01
   

 𝑚1 log
𝑛

𝑚1
+ 𝑛10 log

𝑚𝟏

𝑛10
+ 𝑛11 log

𝑚1

𝑛11
= 𝑛10 log

𝑛

𝑛10
+ 𝑛11 log

𝑛

𝑛11
  

 

 

This is just 
the entropy 

of A! 

The wavelet tree occupies 

𝑛𝐻0 𝐴 + 𝑜
𝑛 log 𝜎 log log 𝑛

log 𝑛
 bits 



Orthogonal Range Counting 

0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6 

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 

[0,7] 

[0,3] 

[0,1] [2,3] [4,5] 

0 1 

0 1 0 1 

“Two-Sided” Query: 0,20 × [0,5] 19 points 



Orthogonal Range Counting 

0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6 

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 

[0,7] 

[0,3] 

[0,1] [2,3] [4,5] 

0 1 

0 1 0 1 

“Three-Sided” Query: 𝟕, 20 × [0,5] 14 points 



Orthogonal Range Counting 

0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6 

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 

[0,7] 

[0,3] 

[0,1] [2,3] [4,5] 

0 1 

0 1 0 1 

“Four-Sided” Query: 7,20 × [𝟐, 5] 8 points 



Analysis: Orthogonal Counting 
 Two-Sided:  

 Follow one root-to-leaf path 

 Constant time in each node (rank/select) 

 Overall Time: Θ(log 𝜎) 

 Three-Sided:  
 Root-to-leaf traversal + cost of two two-sided queries 

 Overall Time Θ(log 𝜎) 

 Four-Sided: 
 Root-to-leaf traversal + cost of two three-sided queries 

 Overall Time Θ(log 𝜎) 



Orthogonal Range Counting 

0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6 

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 

[0,7] 

[0,3] 

[0,1] [2,3] [4,5] 

0 1 

0 1 0 1 

“Four Sided” Query: 0,20 × [0,5] 

Reporting 

Once we can count the “red guys” we need only  
select each one and track it to its leaf.  This yields its 
𝑦 value.  For the 𝑥 value we can track up to the root. 



Analysis: Orthogonal Reporting 
 Use the counting algorithm to find the “red guys” 

 Find nodes s.t. all subtree elements are in the rectangle 

 Track each one to its leaf to determine the 𝑦 value 

 Once we find the 𝑦 value, track to the root for 𝑥 value 

 Overall time: 

 If 𝑡 points are reported, this takes: Θ( 𝑡 + 1 log 𝜎) 

 
Nice additional property: We can report the 
points sorted by 𝑦 order.  Reporting the first 

point above a “line” is sometimes called a range 
successor or range next-value query. 



Range Selection (Gagie et al. 2009) 

0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6 

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 

[0,7] 

[0,3] 

[0,1] [2,3] [4,5] 

0 1 

0 1 0 1 

“Two-Sided” Query: 0,20 × [0,5] 
Find 𝑘-th smallest element: 𝑒. 𝑔. , 𝑘 = 9 



0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6 

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 

[0,7] 

[0,3] 

[0,1] [2,3] [4,5] 

0 1 

0 1 0 1 

“Two-Sided” Query: 0,20 × [0,5] 
Find 𝑘-th smallest element: 𝑒. 𝑔. , 𝑘 = 9 

Range Selection (Gagie et al. 2009) 



0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6 

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 

[0,7] 

[0,3] 

[0,1] [2,3] [4,5] 

0 1 

0 1 0 1 

“Two-Sided” Query: 0,20 × [0,5] 
Find 𝑘-th smallest element: 𝑒. 𝑔. , 𝑘 = 9 

Range Selection (Gagie et al. 2009) 



0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6 

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 

[0,7] 

[0,3] 

[0,1] [2,3] [4,5] 

0 1 

0 1 0 1 

“Two-Sided” Query: 0,20 × [0,5] 
Find 𝑘-th smallest element: 𝑒. 𝑔. , 𝑘 = 9 

Range Selection (Gagie et al. 2009) 



0 7 5 4 3 2 6 5 5 1 1 1 2 3 4 5 1 0 0 2 5 6 4 4 3 4 3 7 6 5 7 6 

0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 

0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 

0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 

[0,7] 

[0,3] 

[0,1] [2,3] [4,5] 

0 1 

0 1 0 1 

“Two-Sided” Query: 0,20 × [0,5] 
Find 𝑘-th smallest element: 𝑒. 𝑔. , 𝑘 = 9 

Range Selection (Gagie et al. 2009) 



Report Distinct Symbols (Also Gagie et al.) 

 Also known as coloured range reporting 

 Once we can do selection this is a piece of cake: 

 Select for 𝑘 = 1 and report that 𝑦 value: 𝑦1 

 Count the number 𝑛1 of elements in 𝑥1, 𝑥2 × [0, 𝑦1] 

 Select 𝑘 = 𝑛1 + 1 and report the 𝑦 value 𝑦2 

 Count the number 𝑛2 of elements in 𝑥1, 𝑥2 × [0, 𝑦2] 

 Returns all distinct symbols in Θ 𝑡 + 1 log 𝜎  time 



Some Improvements 
 The wavelet tree is not the end of the story: 

Ref. Access Rank Select 

(Golynski et al. 2008) 

Θ
log 𝜎

log log 𝑛
 Θ
log 𝜎

log log 𝑛
 Θ
log 𝜎

log log 𝑛
 

(Golynski et al. 2006),  
(Barbay et al. 2012) 

Θ(log log 𝜎) Θ(log log 𝜎) Θ(1) 

(Golynski et al. 2006),  
(Barbay et al. 2012) 
 

Θ(1) Θ(log log 𝜎) Θ(log log 𝜎) 

(Belazzougui-Navarro, 
2012) 

Θ(1) 
Θ log
log 𝜎

log𝑤
 
𝜔(1) 



Lecture #8: Announcements & Topics 
 Exam:  

 July 25th 10:30-13:30 room 24 (exam)  

 August 25th 12:15-15:00 room 21 (re-exam) 

 

 Assignment #4 Posted 

 Submit Q2 in a text file separate lines 

 

 (Succinct) Dynamic Data Structures 

 



Dynamic Bit Vector 
 Let’s consider the following dynamic problem: 

 Support these operations on a bit vector of 𝑢 bits: 

 Access(𝑖): return the bit at index 𝑖 

 Rank(𝑖): return number of 1 bits up to index 𝑖 

 Select(𝑖): return the index of the 𝑖-th one 

 Flip(𝑖): Flip the bit at index 𝒊 

 

 How can we efficiently support all of these operations? 

 Let’s consider Jacobson’s original solution… 



Jacobson’s Solution (Revisited) 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 

Cut into blocks of size log2 𝑢 bits 

Cut blocks into subblocks of size 
log 𝑢

2
 bits 



The “Natural” Idea 
 Computer Scientists like Trees: 

 Leaf blocks of  log2 𝑢 consecutive bits 
 Build a tree w/ constant fan out over the leaves 

 Each node stores, for each child:  
 The number of leaves in the subtree  
 The number of ones in all subtrees to the left 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 

1:0,1:3 1:0,1:2 1:0,1:2 

2:0,2:5,2:10 



The “Natural” Idea 
 Supporting Rank(𝑖) is not so hard: 

 Select branch containing leaf  
𝑖

log2 𝑢
 

 Recurse to child, keeping total of num. of ones to the left 

 At the leaf, use table to compute num. of ones up to pos. 𝑖 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 

1:0,1:3 1:0,1:2 1:0,1:2 

2:0,2:5,2:10 



The “Natural” Idea 
 Supporting Select(𝑖) is also not so hard: 

 Select branch where 𝑖-th one resides and recurse 

 At the leaf, read 
log 𝑢

2
 bits at a time to find 𝑖-th one 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 

1:0,1:3 1:0,1:2 1:0,1:2 

2:0,2:5,2:10 



The “Natural” Idea 
 What about Flip(𝑖)? 

 Move from root to leaf, adjusting counts in each node 

 Fan out is constant, so we spend Θ(1) time in each node 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 

1:0,1:3 1:0,1:2 1:0,1:2 

2:0,2:5,2:10 



The “Natural” Idea 
 What about Flip(𝑖)? 

 Move from root to leaf, adjusting counts in each node 

 Fan out is constant, so we spend Θ(1) time in each node 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 

1:0,1:3 1:0,1:3 1:0,1:2 

2:0,2:5,2:11 



Good, but not so interesting 
 This takes 𝑢 + 𝑜(𝑢) bits… not 𝐻0 𝐵 + 𝑜(𝑢) 

 We will come back to this issue later… 

 We don’t really want Flip(𝑖) 

 We want to be able to Insert(𝑖, {0,1}) or Delete(𝑖) 

 “Yeah, yeah, this is not a problem… just resize the leaves!” 

 When a leaf gets too big, split it in two, and rebalance the tree 

 If a leaf gets too small, merge it with some siblings 

 Adds Θ(log 𝑢) overhead since we copy log 𝑛 bits at time 

 
Not so fast!  You can’t just “resize the leaves”.  We 
haven’t even talked about what the model is for 

allocating and deallocating memory! 



Okay then.  What is the Model? 
 Standard Memory Manager Model (Raman and Rao, 2003): 

 Allocate(𝑘):  

 Returns a pointer to a block of 2𝑘 consecutive memory 

locations (𝑤2𝑘 bits), all initialized to 0, in Θ 2𝑘  time.  This 

increases the space usage of the algorithm by 𝑤2𝑘 bits. 

 You do not get to have blocks of arbitrary numbers of bits! 

 Free(𝑝): 

 Marks the specified block as deleted, and reduces the space 
usage of the algorithm by the 𝑤 × “the size of the block” 

 Model DOES NOT take fragmentation into account 

 Will come back to this later… 

 

 



Digression: Dynamic Arrays 
 We don’t yet know how to do the following succinctly: 

 Given an array of maximum length 𝑛 support: 
 Locate(𝑖): return a pointer to location 𝑖 
 Grow(): Increase the size of the array by 1 
 Shrink(): Decrease the size of the array by 1 

 
 Idea #1: Standard Doubling Trick: (Double array size when full…) 

 Θ 1  time for Locate(𝑖) 
 Θ(1) time for Grow/Shrink (in the amortized sense) 
 However, space is quite large: 

 If we halve when reduced to 1/𝑐 full then space is 𝑐 +
𝑐

2
𝑛 

 For example: if we halve array when 1/3 full then space is 4.5𝑛! 
 

 
 



Idea #2: Like-A-Rotated-List 
 Recall the rotated list scheme: 

 Keep ~ 2𝑛 lists, where list 𝑖 has length 𝑖 

 We should try to grow like this instead of doubling… 

 Overall waste would be Θ 𝑛  which is much better 

 However, we can’t allocate non-powers-of-two 

 Furthermore, Locate(𝑖) is a pain: 

 𝑖-th element in list 𝑘 =
1+8𝑖−1

2
 in position 𝑖 − 𝑘(𝑘 − 1)/2 

 List number is not constant time to compute due to sqrt! 

 It is possible to get around this but we will do something else… 



Idea #3: (Brodnik et al. 1999) 
 Have conceptual blocks of size 2𝑖 

 Split block 𝑖 into 2
𝑖

2  subblocks of size 2
𝑖

2  

 We need an index storing pointers to subblocks 
 



Idea #3: (Brodnik et al. 1999) 
 How to grow? 

If the last subblock 𝑠 − 1 is full: 
If the last block 𝑏 − 1 is full: 

Increment 𝑏 

If 𝑏 is odd 

This double the number of subblocks in a block 

Otherwise 

This double the number of elements in a subblock 

If there are no empty subblocks* 

If the index is full, double its size 

Allocate the new subblock 

Increment 𝑠, 𝑛, and number of elements in block 𝑠 − 1 

 
*When a Shrink() occurs, don’t immediately deallocate… 



Idea #3: (Brodnik et al. 1999) 
 How much extra space? 

 Number of subblocks is Θ 𝑛  

 Therefore index has Θ( 𝑛) pointers 

 Last empty subblock has size Θ 𝑛  

 Therefore overall waste is Θ( 𝑛) 

 



Idea #3: (Brodnik et al. 1999) 
 How to Locate(𝑖): 

 Let 𝑖2 be the bits of 𝑖 + 1 with leading zeros removed* 

 Let 𝑘 = 𝑖2 − 1 

 𝑏 be the high 
𝑘

2
 bits of 𝑖2 after the 1 

 𝑐 be the low 
𝑘

2
 bits 

 Let 𝑝 = 2𝑘 − 1 (num. subblocks in blocks prior to block 𝑘) 

 Return element 𝑐 in subblock 𝑝 + 𝑏 
 

*Can find first one in constant time with basic oper. 

  or, we can just build a lookup table… Θ( 𝑛) space 

 



Lower Bound 
 Ω( 𝑛) extra storage is necessary in the worst case for 

resizable arrays 

1. Consider 𝑛 insertions followed by 𝑛 deletions 

2. Let 𝑓(𝑛) be the size of the largest memory block 

3. Let 𝑔 𝑛  be the number of memory blocks 

4. Thus, 𝑓 𝑛 𝑔 𝑛 ≥ 𝑛 

5. Claim 1: 𝑔(𝑛) space for the memory block headers 

6. Claim 2: 𝑓(𝑛) waste after largest mem. block allocated 

7. Thus, max{𝑔 𝑛 , 𝑓 𝑛 } space wasted at some point 



Dynamic Bit Vector (Revisited) 
 Suppose we wish to support the following operations: 

 Access(𝑖): Return the bit at index 𝑖 

 Rank(𝑖): Return number of 1 bits up to index 𝑖 

 Select(𝑖): Return the index of the 𝑖-th one 

 Insert(𝑖, {0,1}): Insert the specified bit at index 𝑖 

 Delete(𝑖): Delete the bit at index 𝑖 

 

 To simplify, we will assume  
 The bit vector has size 𝑢 = Θ(𝑢∗) where 𝑢∗ is an upper bound 

 The word size 𝑤 = Θ log 𝑢 = Θ(log 𝑢∗) 
 So, we assume 𝑢 changes, but not by too much… 



Black Box: Weight Balanced B-Tree 
 (Arge and Vitter, 2003): T is a weight-balanced B-tree with 

branching parameter 𝑎 and leaf parameter 𝑘, 𝑎 >  4 and 
𝑘 >  0, if the following conditions hold: 
 All leaves of 𝑇 are on the same level and have weight between k and 2k −1. 

 Except for the root, an internal node on level 𝑙 has weight larger than 𝑎𝑙𝑘/2 

 An internal node on level 𝑙 has weight less than 2𝑎𝑙𝑘 

 The root has more than one child. 

 Some Useful Properties: 
 Height is 𝑂 log𝑎 𝑛/𝑘  if tree has weight 𝑛 

 Number of splits/fusing operations is 𝑂 log𝑎 𝑇 /𝑘  

 All internal nodes have between 𝑎/4 and 4𝑎 children 

 Root has between 2 and 4𝑎 children 



Approach #1: Resizable Arrays 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 

1:0,1:3 1:0,1:2 1:0,1:2 

2:0,2:5,2:10 

Resizable array of size between 
log2 𝑢∗ and 2 log2 𝑢∗ − 1 BITS 

Extra bits per array: Θ(log1.5 𝑢∗) 

WBB-Tree, branching 
parameter 8 (for example), 
and leaf parameter log2 𝑢∗ 

There are at most Θ
𝑢

log2 𝑢∗
 internal nodes.  

Also, the extra space used by the resizable 

arrays is at most Θ
𝑢

log 𝑢∗ 
 



Approach #1: Resizable Arrays 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 

1:0,1:3 1:0,1:2 1:0,1:2 

2:0,2:5,2:10 

Overall Space: 𝑢 + 𝑜(𝑢) 
Updates of leaves: Θ(log 𝑢∗) worst case time 

Updating tree: Θ(log 𝑢) worst case time 
We can to deal with 𝑢 changing and not knowing 𝑢∗  

Using more complicated bit tricks can improve all operations to 

Θ
log 𝑢

log log 𝑢
 in the worst case, which is optimal. 

Resizable array of size between 
log2 𝑢∗ and 2 log2 𝑢∗ − 1 BITS 

Extra bits per array: Θ(log1.5 𝑢∗) 

WBB-Tree, branching 
parameter 8 (for example), 
and leaf parameter log2 𝑢∗ 



Approach #2: List Based Mem. Manager 

 Remember the implicit dictionary (discussed way back when) 

 In the implicit dictionary we kept lists for maniples: 

 List 𝑖 contained all maniples of 𝑖 consecutive elements 

 Let’s apply this approach to the leaves of our WBB-tree 

 As before, each list consists of nodes  

 A node stores an array of 2log2 𝑢∗ bits 

 A linked list of pointers back to the tree 

 List 𝑖 will store all leaves of 𝑖 bits 

 Always allocate new nodes at the head of a list 

 Fill gaps by swapping with first logical block in head 

 



Approach #2: List Based Mem. Manager 

List 
2log2 𝑢∗  − 1 

List  
log2 𝑢∗ 

List 
 log2 𝑢∗ + 1 



Approach #2: List Based Mem. Manager 
 How much space is wasted? 

 At most one node per list: Θ(log4 𝑢∗) bits… 
 For example: if 𝑢∗ = 232 bits then waste is 220 bits 

 WBB-tree still takes Θ
𝑢

log 𝑢∗
 bits 

 Better than the other approach for a few reasons: 
 Less space wasted 

 Compression becomes rather trivial 
 Just encode/decode each block on the fly to get 𝐻0 𝐵 + 𝑜(𝑢

∗) bits 

 Have lists of size [1,2 log2 𝑢∗] 

 All nodes are the same size 
 We can consider fragmentation in terms of 𝑢∗: the max value of 𝑢 

 



 We allocate: 
 Nodes in our list based memory manager 

 One node per leaf in the WBB-tree 

 Linked list nodes for the back pointers 
 Also one per leaf 

 WBB-tree nodes (we have bounds on how big these are) 
 Again, there are at most Θ(# of leaves) of these 

 Suppose we maintain three separate heaps 
 When we allocate one of these types of nodes we use it 

 Instead of freeing it, we put it in the heap of its type 

 These heap will have size Θ
𝑢∗

log 𝑢∗
… a high watermark bound 

Approach #2: List Based Mem. Manager 



Conclusion 
 We can apply what we learned about implicit data 

structures to the word-RAM model… techniques carry 
over even though the model is very different 

 We have sketched how to dynamize the succinct data 
structures presented so far (numerous details omitted) 

 Main issues are memory management, dealing with a 
changing value of 𝑢. 

 Once we have a dynamic bit vector, we easily get 
dynamic trees, dynamic wavelet trees, etc. 


