
Van Emde Boas, x-fast and y -fast trees

Paweł Gawrychowski

31 maja 2014

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 1 / 19

Word RAM Memory is divided into cells of size w ≥
log n called words. There is a fixed set of
O(1) time C-style operations, one of them
being indirect addressing, so given a word
containing x , we can access the cell x (not
the case in the pointer machine model!).
The input consists of numbers stored in
single words.

AC0 RAM All operations must be implemented
by constant-depth, unbounded fan-in,
polynomial-size (in w) circuits. No multi-
plication.

Practical RAM Just addition, shift, and bitwise boolean
operations.

Cell probe model We only pay for accessing cells. The com-
putation itself is free and the model is no-
nuniform. Good for lower bounds!

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 2 / 19

So far we have focused mostly on keeping the space small. During the
next few lectures we will be more interested in decreasing the time
complexity. We will start with a very basic problem.

Static predecessor search
Preprocess a sequence of integers 0 ≤ a1 < a2 < . . . < an < U so that
later, given any x , we can efficiently determine the largest i such that
ai ≤ x .

The problem has two parameters: n and U. We assume that the word
size is large enough, meaning w ≥ log n and w ≥ log U (it might be
easier to simply think that U = 2w). We want to achieve low query
complexity while keeping the size of our structure small.

What space complexity means in our model?
If the space usage is S, then the only cells that we are allowed to use
are at offsets 1,2, . . . ,S. This is to forbid some weird tricks.

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 3 / 19

So far we have focused mostly on keeping the space small. During the
next few lectures we will be more interested in decreasing the time
complexity. We will start with a very basic problem.

Static predecessor search
Preprocess a sequence of integers 0 ≤ a1 < a2 < . . . < an < U so that
later, given any x , we can efficiently determine the largest i such that
ai ≤ x .

The problem has two parameters: n and U. We assume that the word
size is large enough, meaning w ≥ log n and w ≥ log U (it might be
easier to simply think that U = 2w). We want to achieve low query
complexity while keeping the size of our structure small.

What space complexity means in our model?
If the space usage is S, then the only cells that we are allowed to use
are at offsets 1,2, . . . ,S. This is to forbid some weird tricks.

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 3 / 19

So far we have focused mostly on keeping the space small. During the
next few lectures we will be more interested in decreasing the time
complexity. We will start with a very basic problem.

Static predecessor search
Preprocess a sequence of integers 0 ≤ a1 < a2 < . . . < an < U so that
later, given any x , we can efficiently determine the largest i such that
ai ≤ x .

The problem has two parameters: n and U. We assume that the word
size is large enough, meaning w ≥ log n and w ≥ log U (it might be
easier to simply think that U = 2w). We want to achieve low query
complexity while keeping the size of our structure small.

What space complexity means in our model?
If the space usage is S, then the only cells that we are allowed to use
are at offsets 1,2, . . . ,S. This is to forbid some weird tricks.

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 3 / 19

So far we have focused mostly on keeping the space small. During the
next few lectures we will be more interested in decreasing the time
complexity. We will start with a very basic problem.

Static predecessor search
Preprocess a sequence of integers 0 ≤ a1 < a2 < . . . < an < U so that
later, given any x , we can efficiently determine the largest i such that
ai ≤ x .

The problem has two parameters: n and U. We assume that the word
size is large enough, meaning w ≥ log n and w ≥ log U (it might be
easier to simply think that U = 2w). We want to achieve low query
complexity while keeping the size of our structure small.

What space complexity means in our model?
If the space usage is S, then the only cells that we are allowed to use
are at offsets 1,2, . . . ,S. This is to forbid some weird tricks.

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 3 / 19

Static predecessor search
Preprocess a sequence of integers 0 ≤ a1 < a2 < . . . < an < U so that
later, given any x , we can efficiently determine the largest i such that
ai < x .

Naive solution I
Use binary search. The query time is O(log n) and the space is O(n).

Naive solution II
Store answers to all possible queries. The query time is O(1) and the
space is O(U).

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 4 / 19

Static predecessor search
Preprocess a sequence of integers 0 ≤ a1 < a2 < . . . < an < U so that
later, given any x , we can efficiently determine the largest i such that
ai < x .

Naive solution I
Use binary search. The query time is O(log n) and the space is O(n).

Naive solution II
Store answers to all possible queries. The query time is O(1) and the
space is O(U).

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 4 / 19

Static predecessor search
Preprocess a sequence of integers 0 ≤ a1 < a2 < . . . < an < U so that
later, given any x , we can efficiently determine the largest i such that
ai < x .

Naive solution I
Use binary search. The query time is O(log n) and the space is O(n).

Naive solution II
Store answers to all possible queries. The query time is O(1) and the
space is O(U).

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 4 / 19

Dynamic predecessor search
Maintain a set of integers {a1,a2, . . . ,an} ⊆ [U] under inserting and
removing elements so that, given any x , we can efficiently determine
the largest i such that ai ≤ x .

Naive solution I
Store the numbers in a balanced search tree. The query and update
time is O(log n) and the space is O(n).

Naive solution II
Store answers to all possible queries. The query time is O(1) and the
space is O(U), but the update time is O(U) in the worst possible case
(although maybe we are lucky and it is smaller).

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 5 / 19

Dynamic predecessor search
Maintain a set of integers {a1,a2, . . . ,an} ⊆ [U] under inserting and
removing elements so that, given any x , we can efficiently determine
the largest i such that ai ≤ x .

Naive solution I
Store the numbers in a balanced search tree. The query and update
time is O(log n) and the space is O(n).

Naive solution II
Store answers to all possible queries. The query time is O(1) and the
space is O(U), but the update time is O(U) in the worst possible case
(although maybe we are lucky and it is smaller).

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 5 / 19

Dynamic predecessor search
Maintain a set of integers {a1,a2, . . . ,an} ⊆ [U] under inserting and
removing elements so that, given any x , we can efficiently determine
the largest i such that ai ≤ x .

Naive solution I
Store the numbers in a balanced search tree. The query and update
time is O(log n) and the space is O(n).

Naive solution II
Store answers to all possible queries. The query time is O(1) and the
space is O(U), but the update time is O(U) in the worst possible case
(although maybe we are lucky and it is smaller).

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 5 / 19

The goal

We will see a number of better solutions.

Static predecessor search
Query time O(log log U) in O(n) space is possible.

Static predecessor search

Query time O(log log U
log log log U) in O(n1+ε) space is possible.

Static predecessor search

Query time O(log n
log w) in O(n) space is possible.

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 6 / 19

The goal

We will see a number of better solutions.

Static predecessor search
Query time O(log log U) in O(n) space is possible.

Static predecessor search

Query time O(log log U
log log log U) in O(n1+ε) space is possible.

Static predecessor search

Query time O(log n
log w) in O(n) space is possible.

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 6 / 19

The goal

We will see a number of better solutions.

Static predecessor search
Query time O(log log U) in O(n) space is possible.

Static predecessor search

Query time O(log log U
log log log U) in O(n1+ε) space is possible.

Static predecessor search

Query time O(log n
log w) in O(n) space is possible.

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 6 / 19

The goal

We will see a number of better solutions.

Static predecessor search
Query time O(log log U) in O(n) space is possible.

Static predecessor search

Query time O(log log U
log log log U) in O(n1+ε) space is possible.

Static predecessor search

Query time O(log n
log w) in O(n) space is possible.

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 6 / 19

The goal

Using a certain dynamization technique, called the exponential search
trees, we will then dynamize these solutions to get the following.

Static predecessor search

Query time O(min(log log n + log n
log w , log log n + log log U

log log log U)) in O(n)
space is possible.

This is really interesting, because the minimum is always at most√
log n

log log n . So we can always beat the naive log n time solution while
keeping the space linear!

Assumptions
Most of the time, we will be interested in linear space and deterministic
bounds. We will explicitly mention whenever this is not the case.

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 7 / 19

The goal

Using a certain dynamization technique, called the exponential search
trees, we will then dynamize these solutions to get the following.

Static predecessor search

Query time O(min(log log n + log n
log w , log log n + log log U

log log log U)) in O(n)
space is possible.

This is really interesting, because the minimum is always at most√
log n

log log n . So we can always beat the naive log n time solution while
keeping the space linear!

Assumptions
Most of the time, we will be interested in linear space and deterministic
bounds. We will explicitly mention whenever this is not the case.

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 7 / 19

The goal

Using a certain dynamization technique, called the exponential search
trees, we will then dynamize these solutions to get the following.

Static predecessor search

Query time O(min(log log n + log n
log w , log log n + log log U

log log log U)) in O(n)
space is possible.

This is really interesting, because the minimum is always at most√
log n

log log n . So we can always beat the naive log n time solution while
keeping the space linear!

Assumptions
Most of the time, we will be interested in linear space and deterministic
bounds. We will explicitly mention whenever this is not the case.

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 7 / 19

The goal

Using a certain dynamization technique, called the exponential search
trees, we will then dynamize these solutions to get the following.

Static predecessor search

Query time O(min(log log n + log n
log w , log log n + log log U

log log log U)) in O(n)
space is possible.

This is really interesting, because the minimum is always at most√
log n

log log n . So we can always beat the naive log n time solution while
keeping the space linear!

Assumptions
Most of the time, we will be interested in linear space and deterministic
bounds. We will explicitly mention whenever this is not the case.

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 7 / 19

Van Emde Boas trees
We start with a solution which is either randomized or takes
superlinear space. Nevertheless, it is easy to understand and
historically the first to achieve log log U query time.
The idea is to use recursion. We chop every ai into the high and low
part. We allocate a huge table of length 2U/2 with one entry
corresponding to every possible high part. For every possible high part
we store:

1 a smaller bottom structure storing all low parts of the numbers
with such high part,

2 a single bit denoting if there are any numbers with such high part,
3 the largest number with such high part.
4 the smallest number with such high part.

Additionally, we store a smaller top structure storing the high parts of
all numbers.

The smaller structures are over [
√

U].

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 8 / 19

Van Emde Boas trees
We start with a solution which is either randomized or takes
superlinear space. Nevertheless, it is easy to understand and
historically the first to achieve log log U query time.
The idea is to use recursion. We chop every ai into the high and low
part. We allocate a huge table of length 2U/2 with one entry
corresponding to every possible high part. For every possible high part
we store:

1 a smaller bottom structure storing all low parts of the numbers
with such high part,

2 a single bit denoting if there are any numbers with such high part,
3 the largest number with such high part.
4 the smallest number with such high part.

Additionally, we store a smaller top structure storing the high parts of
all numbers.

The smaller structures are over [
√

U].

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 8 / 19

Van Emde Boas trees
We start with a solution which is either randomized or takes
superlinear space. Nevertheless, it is easy to understand and
historically the first to achieve log log U query time.
The idea is to use recursion. We chop every ai into the high and low
part. We allocate a huge table of length 2U/2 with one entry
corresponding to every possible high part. For every possible high part
we store:

1 a smaller bottom structure storing all low parts of the numbers
with such high part,

2 a single bit denoting if there are any numbers with such high part,
3 the largest number with such high part.
4 the smallest number with such high part.

Additionally, we store a smaller top structure storing the high parts of
all numbers.

The smaller structures are over [
√

U].

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 8 / 19

Van Emde Boas trees
We start with a solution which is either randomized or takes
superlinear space. Nevertheless, it is easy to understand and
historically the first to achieve log log U query time.
The idea is to use recursion. We chop every ai into the high and low
part. We allocate a huge table of length 2U/2 with one entry
corresponding to every possible high part. For every possible high part
we store:

1 a smaller bottom structure storing all low parts of the numbers
with such high part,

2 a single bit denoting if there are any numbers with such high part,
3 the largest number with such high part.
4 the smallest number with such high part.

Additionally, we store a smaller top structure storing the high parts of
all numbers.

The smaller structures are over [
√

U].

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 8 / 19

Van Emde Boas trees
We start with a solution which is either randomized or takes
superlinear space. Nevertheless, it is easy to understand and
historically the first to achieve log log U query time.
The idea is to use recursion. We chop every ai into the high and low
part. We allocate a huge table of length 2U/2 with one entry
corresponding to every possible high part. For every possible high part
we store:

1 a smaller bottom structure storing all low parts of the numbers
with such high part,

2 a single bit denoting if there are any numbers with such high part,
3 the largest number with such high part.
4 the smallest number with such high part.

Additionally, we store a smaller top structure storing the high parts of
all numbers.

The smaller structures are over [
√

U].

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 8 / 19

Van Emde Boas trees
We start with a solution which is either randomized or takes
superlinear space. Nevertheless, it is easy to understand and
historically the first to achieve log log U query time.
The idea is to use recursion. We chop every ai into the high and low
part. We allocate a huge table of length 2U/2 with one entry
corresponding to every possible high part. For every possible high part
we store:

1 a smaller bottom structure storing all low parts of the numbers
with such high part,

2 a single bit denoting if there are any numbers with such high part,
3 the largest number with such high part.
4 the smallest number with such high part.

Additionally, we store a smaller top structure storing the high parts of
all numbers.

The smaller structures are over [
√

U].

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 8 / 19

Van Emde Boas trees
We start with a solution which is either randomized or takes
superlinear space. Nevertheless, it is easy to understand and
historically the first to achieve log log U query time.
The idea is to use recursion. We chop every ai into the high and low
part. We allocate a huge table of length 2U/2 with one entry
corresponding to every possible high part. For every possible high part
we store:

1 a smaller bottom structure storing all low parts of the numbers
with such high part,

2 a single bit denoting if there are any numbers with such high part,
3 the largest number with such high part.
4 the smallest number with such high part.

Additionally, we store a smaller top structure storing the high parts of
all numbers.

The smaller structures are over [
√

U].

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 8 / 19

Van Emde Boas trees
We start with a solution which is either randomized or takes
superlinear space. Nevertheless, it is easy to understand and
historically the first to achieve log log U query time.
The idea is to use recursion. We chop every ai into the high and low
part. We allocate a huge table of length 2U/2 with one entry
corresponding to every possible high part. For every possible high part
we store:

1 a smaller bottom structure storing all low parts of the numbers
with such high part,

2 a single bit denoting if there are any numbers with such high part,
3 the largest number with such high part.
4 the smallest number with such high part.

Additionally, we store a smaller top structure storing the high parts of
all numbers.

The smaller structures are over [
√

U].

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 8 / 19

Van Emde Boas trees

How to implement predecessor? We chop x into the high and low part.

1 If there are no numbers with such high part, or all such numbers
are larger or equal to x , we find the predecessor of the high part in
the top structure, and return the largest number with such high
part.

2 Otherwise we find the predecessor of the low part in the bottom
structure corresponding to the high part of x , and return a number
composed of that high part and the found predecessor as the low
part.

The query time is T (U) = O(1) + T (
√

U), so as promised. But what is
the space and update time?

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 9 / 19

Van Emde Boas trees

How to implement predecessor? We chop x into the high and low part.

1 If there are no numbers with such high part, or all such numbers
are larger or equal to x , we find the predecessor of the high part in
the top structure, and return the largest number with such high
part.

2 Otherwise we find the predecessor of the low part in the bottom
structure corresponding to the high part of x , and return a number
composed of that high part and the found predecessor as the low
part.

The query time is T (U) = O(1) + T (
√

U), so as promised. But what is
the space and update time?

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 9 / 19

Van Emde Boas trees

How to implement predecessor? We chop x into the high and low part.

1 If there are no numbers with such high part, or all such numbers
are larger or equal to x , we find the predecessor of the high part in
the top structure, and return the largest number with such high
part.

2 Otherwise we find the predecessor of the low part in the bottom
structure corresponding to the high part of x , and return a number
composed of that high part and the found predecessor as the low
part.

The query time is T (U) = O(1) + T (
√

U), so as promised. But what is
the space and update time?

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 9 / 19

Van Emde Boas trees

How to implement predecessor? We chop x into the high and low part.

1 If there are no numbers with such high part, or all such numbers
are larger or equal to x , we find the predecessor of the high part in
the top structure, and return the largest number with such high
part.

2 Otherwise we find the predecessor of the low part in the bottom
structure corresponding to the high part of x , and return a number
composed of that high part and the found predecessor as the low
part.

The query time is T (U) = O(1) + T (
√

U), so as promised. But what is
the space and update time?

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 9 / 19

Van Emde Boas trees
The space is S(U) = O(

√
U) + (1 +

√
U)S(

√
U). This might seem

superlinear, but actually isn’t, see the blackboard.
The update time is T (U) = O(1) + 2T (

√
U), because we might need

to update both the top structure and one of the bottom structures.
Unfortunately, this solves to O(log U).

The trick
We don’t store all low parts in a bottom structure. Recall that for every
possible high part we have two separate fields where we put the
smallest and the largest low part. The largest low part is not stored in
the bottom structure, we keep it only in the designated field.

The time for insertion becomes T (U) = O(1) + T (
√

U), because we
need to update either the top structure or one of the bottom structures.
Same for deletions, but here we need to be more careful and update
the largest and the smallest number after returning from the recursive
call. The recurrence solves to T (U) = O(log log U).

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 10 / 19

Van Emde Boas trees
The space is S(U) = O(

√
U) + (1 +

√
U)S(

√
U). This might seem

superlinear, but actually isn’t, see the blackboard.
The update time is T (U) = O(1) + 2T (

√
U), because we might need

to update both the top structure and one of the bottom structures.
Unfortunately, this solves to O(log U).

The trick
We don’t store all low parts in a bottom structure. Recall that for every
possible high part we have two separate fields where we put the
smallest and the largest low part. The largest low part is not stored in
the bottom structure, we keep it only in the designated field.

The time for insertion becomes T (U) = O(1) + T (
√

U), because we
need to update either the top structure or one of the bottom structures.
Same for deletions, but here we need to be more careful and update
the largest and the smallest number after returning from the recursive
call. The recurrence solves to T (U) = O(log log U).

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 10 / 19

Van Emde Boas trees
The space is S(U) = O(

√
U) + (1 +

√
U)S(

√
U). This might seem

superlinear, but actually isn’t, see the blackboard.
The update time is T (U) = O(1) + 2T (

√
U), because we might need

to update both the top structure and one of the bottom structures.
Unfortunately, this solves to O(log U).

The trick
We don’t store all low parts in a bottom structure. Recall that for every
possible high part we have two separate fields where we put the
smallest and the largest low part. The largest low part is not stored in
the bottom structure, we keep it only in the designated field.

The time for insertion becomes T (U) = O(1) + T (
√

U), because we
need to update either the top structure or one of the bottom structures.
Same for deletions, but here we need to be more careful and update
the largest and the smallest number after returning from the recursive
call. The recurrence solves to T (U) = O(log log U).

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 10 / 19

Van Emde Boas trees
The space is S(U) = O(

√
U) + (1 +

√
U)S(

√
U). This might seem

superlinear, but actually isn’t, see the blackboard.
The update time is T (U) = O(1) + 2T (

√
U), because we might need

to update both the top structure and one of the bottom structures.
Unfortunately, this solves to O(log U).

The trick
We don’t store all low parts in a bottom structure. Recall that for every
possible high part we have two separate fields where we put the
smallest and the largest low part. The largest low part is not stored in
the bottom structure, we keep it only in the designated field.

The time for insertion becomes T (U) = O(1) + T (
√

U), because we
need to update either the top structure or one of the bottom structures.
Same for deletions, but here we need to be more careful and update
the largest and the smallest number after returning from the recursive
call. The recurrence solves to T (U) = O(log log U).

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 10 / 19

Van Emde Boas trees

Of course the O(U) space bound is disappointing. We will show how
to decrease it to O(n).

Dynamic perfect hashing [Dietzfelbinger, Karlin, Mehlhorn,
Meyer auf der Heide, Rohnert, Tarjan 1990]
We can implement a hash table in deterministic worst-case O(1) time
per lookup, expected amortized O(1) time per update, and O(n) space.

(this is a dynamization of the FKS scheme that you have already seen,
but we won’t go into the details)
Now observe that instead of allocating a huge table of length

√
U, we

can use a hash table! The time complexities remain the same, except
that now the updates are expected and amortized. But what will be the
resulting space complexity?

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 11 / 19

Van Emde Boas trees

Of course the O(U) space bound is disappointing. We will show how
to decrease it to O(n).

Dynamic perfect hashing [Dietzfelbinger, Karlin, Mehlhorn,
Meyer auf der Heide, Rohnert, Tarjan 1990]
We can implement a hash table in deterministic worst-case O(1) time
per lookup, expected amortized O(1) time per update, and O(n) space.

(this is a dynamization of the FKS scheme that you have already seen,
but we won’t go into the details)
Now observe that instead of allocating a huge table of length

√
U, we

can use a hash table! The time complexities remain the same, except
that now the updates are expected and amortized. But what will be the
resulting space complexity?

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 11 / 19

Van Emde Boas trees

Of course the O(U) space bound is disappointing. We will show how
to decrease it to O(n).

Dynamic perfect hashing [Dietzfelbinger, Karlin, Mehlhorn,
Meyer auf der Heide, Rohnert, Tarjan 1990]
We can implement a hash table in deterministic worst-case O(1) time
per lookup, expected amortized O(1) time per update, and O(n) space.

(this is a dynamization of the FKS scheme that you have already seen,
but we won’t go into the details)
Now observe that instead of allocating a huge table of length

√
U, we

can use a hash table! The time complexities remain the same, except
that now the updates are expected and amortized. But what will be the
resulting space complexity?

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 11 / 19

Van Emde Boas trees

Of course the O(U) space bound is disappointing. We will show how
to decrease it to O(n).

Dynamic perfect hashing [Dietzfelbinger, Karlin, Mehlhorn,
Meyer auf der Heide, Rohnert, Tarjan 1990]
We can implement a hash table in deterministic worst-case O(1) time
per lookup, expected amortized O(1) time per update, and O(n) space.

(this is a dynamization of the FKS scheme that you have already seen,
but we won’t go into the details)
Now observe that instead of allocating a huge table of length

√
U, we

can use a hash table! The time complexities remain the same, except
that now the updates are expected and amortized. But what will be the
resulting space complexity?

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 11 / 19

Van Emde Boas trees

If we use the trick with storing the largest number separately, then
counting the space (in words) per element gives us the recurrence
S(U) = 1 + S(

√
U), so O(n log log U) in total. Disappointing, we want

linear space!
Can we get linear space for the simpler static case?
Yes! We will use an insight from succinct data structures. Instead of
counting words we count bits. We insert the numbers one-by-one and
count how many new bits of spaces do we need. In the worst case, we
need to set the largest and smallest number with a given high part and
recurse in the smaller structure. Possibly, we also need to create that
structure, which requires storing a new pointer in the hash table.
Ignoring the pointer, the space in bits per element is
S(U) = log U + S(

√
U), which solves to just O(log U)! So, O(n) words

in total. But what about the pointers?

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 12 / 19

Van Emde Boas trees

If we use the trick with storing the largest number separately, then
counting the space (in words) per element gives us the recurrence
S(U) = 1 + S(

√
U), so O(n log log U) in total. Disappointing, we want

linear space!
Can we get linear space for the simpler static case?
Yes! We will use an insight from succinct data structures. Instead of
counting words we count bits. We insert the numbers one-by-one and
count how many new bits of spaces do we need. In the worst case, we
need to set the largest and smallest number with a given high part and
recurse in the smaller structure. Possibly, we also need to create that
structure, which requires storing a new pointer in the hash table.
Ignoring the pointer, the space in bits per element is
S(U) = log U + S(

√
U), which solves to just O(log U)! So, O(n) words

in total. But what about the pointers?

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 12 / 19

Van Emde Boas trees

If we use the trick with storing the largest number separately, then
counting the space (in words) per element gives us the recurrence
S(U) = 1 + S(

√
U), so O(n log log U) in total. Disappointing, we want

linear space!
Can we get linear space for the simpler static case?
Yes! We will use an insight from succinct data structures. Instead of
counting words we count bits. We insert the numbers one-by-one and
count how many new bits of spaces do we need. In the worst case, we
need to set the largest and smallest number with a given high part and
recurse in the smaller structure. Possibly, we also need to create that
structure, which requires storing a new pointer in the hash table.
Ignoring the pointer, the space in bits per element is
S(U) = log U + S(

√
U), which solves to just O(log U)! So, O(n) words

in total. But what about the pointers?

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 12 / 19

Van Emde Boas trees

We cannot ignore the pointers. Observe that n ≤ U, and we have
already proved that the number of words that we need is
O(n log log U). Therefore, a pointer to any “place” in our structure takes
just O(log U) bits, assuming that we arrange all parts of the structure
in a contiguous block of memory. So, we first store the hash table
(together with the largest/smallest information), then the top structure,
and finally the bottom structures one-by-one. Then the additional
space for every element is just O(log U) in bits, so O(n) words in total.

OK that was complicated. Cannot we do something simpler?

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 13 / 19

Van Emde Boas trees

We cannot ignore the pointers. Observe that n ≤ U, and we have
already proved that the number of words that we need is
O(n log log U). Therefore, a pointer to any “place” in our structure takes
just O(log U) bits, assuming that we arrange all parts of the structure
in a contiguous block of memory. So, we first store the hash table
(together with the largest/smallest information), then the top structure,
and finally the bottom structures one-by-one. Then the additional
space for every element is just O(log U) in bits, so O(n) words in total.

OK that was complicated. Cannot we do something simpler?

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 13 / 19

Indirection

Turns out that we can use a simple but powerful tool called indirection.
The first goal will be to implement a static van Emde Boas tree without
the optimization trick (in the static case we have only queries anyway,
so the trick doesn’t influence the time complexity).

Indirection
We choose B and we split the whole sequence into blocks of length
roughly B. There are n

B of them. We construct a predecessor structure
storing the largest number in every block. Additionally, the predecessor
structure stores a pointer to the block where a given number comes
from. A block stores a sorted list of its number.

A predecessor query reduces to a predecessor query in the large
structure and a predecessor query in a block (we might need both!).

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 14 / 19

Indirection

Turns out that we can use a simple but powerful tool called indirection.
The first goal will be to implement a static van Emde Boas tree without
the optimization trick (in the static case we have only queries anyway,
so the trick doesn’t influence the time complexity).

Indirection
We choose B and we split the whole sequence into blocks of length
roughly B. There are n

B of them. We construct a predecessor structure
storing the largest number in every block. Additionally, the predecessor
structure stores a pointer to the block where a given number comes
from. A block stores a sorted list of its number.

A predecessor query reduces to a predecessor query in the large
structure and a predecessor query in a block (we might need both!).

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 14 / 19

Indirection

Turns out that we can use a simple but powerful tool called indirection.
The first goal will be to implement a static van Emde Boas tree without
the optimization trick (in the static case we have only queries anyway,
so the trick doesn’t influence the time complexity).

Indirection
We choose B and we split the whole sequence into blocks of length
roughly B. There are n

B of them. We construct a predecessor structure
storing the largest number in every block. Additionally, the predecessor
structure stores a pointer to the block where a given number comes
from. A block stores a sorted list of its number.

A predecessor query reduces to a predecessor query in the large
structure and a predecessor query in a block (we might need both!).

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 14 / 19

Indirection

Say that we use the simple static van Emde Boas tree without the
optimization trick as the large structure. Its size is O(n

B log U) in words.
When we are in a block, we just binary search for the answer. The time
complexity is O(log log U + log B). Choosing B = log U gives us linear
space and O(log log U) query time.

Dynamic van Emde Boas tree through indirection
This kind of works in the dynamic setting, too. We need to relax the
invariants that every block is of length B. Say that we only insist that
the size of every block is between 1

2B and 2B.

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 15 / 19

Indirection

Say that we use the simple static van Emde Boas tree without the
optimization trick as the large structure. Its size is O(n

B log U) in words.
When we are in a block, we just binary search for the answer. The time
complexity is O(log log U + log B). Choosing B = log U gives us linear
space and O(log log U) query time.

Dynamic van Emde Boas tree through indirection
This kind of works in the dynamic setting, too. We need to relax the
invariants that every block is of length B. Say that we only insist that
the size of every block is between 1

2B and 2B.

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 15 / 19

Dynamic indirection
The numbers of blocks is still n

B . Now the list of a block might change,
so we implement it using any balanced search tree. Then a query or
an update there takes O(log B) time. Instead of saying that the large
structure stores the largest number from every block, we relax the
condition so that the large structure stores numbers separating the the
blocks, see the blackboard. These numbers might or might not still be
in the current set.
If we only need to implement insertions, we simply say that as soon as
the size of a block reaches 2B, we split it into two and insert a new
element into the large structure. Then an insertion in the large
structure happens once every B insertions into the set, so choosing
(again) B = log U gives us amortized time O(log log U) for insertions
and worst-case O(log log U) for queries.
Deletions are more tricky. We need to relax the invariant again. One
possibility is that the sizes of the blocks are between 1 and 2B, but
there are no two consecutive blocks of size less than 1

2B.

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 16 / 19

Dynamic indirection
The numbers of blocks is still n

B . Now the list of a block might change,
so we implement it using any balanced search tree. Then a query or
an update there takes O(log B) time. Instead of saying that the large
structure stores the largest number from every block, we relax the
condition so that the large structure stores numbers separating the the
blocks, see the blackboard. These numbers might or might not still be
in the current set.
If we only need to implement insertions, we simply say that as soon as
the size of a block reaches 2B, we split it into two and insert a new
element into the large structure. Then an insertion in the large
structure happens once every B insertions into the set, so choosing
(again) B = log U gives us amortized time O(log log U) for insertions
and worst-case O(log log U) for queries.
Deletions are more tricky. We need to relax the invariant again. One
possibility is that the sizes of the blocks are between 1 and 2B, but
there are no two consecutive blocks of size less than 1

2B.

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 16 / 19

Dynamic indirection
The numbers of blocks is still n

B . Now the list of a block might change,
so we implement it using any balanced search tree. Then a query or
an update there takes O(log B) time. Instead of saying that the large
structure stores the largest number from every block, we relax the
condition so that the large structure stores numbers separating the the
blocks, see the blackboard. These numbers might or might not still be
in the current set.
If we only need to implement insertions, we simply say that as soon as
the size of a block reaches 2B, we split it into two and insert a new
element into the large structure. Then an insertion in the large
structure happens once every B insertions into the set, so choosing
(again) B = log U gives us amortized time O(log log U) for insertions
and worst-case O(log log U) for queries.
Deletions are more tricky. We need to relax the invariant again. One
possibility is that the sizes of the blocks are between 1 and 2B, but
there are no two consecutive blocks of size less than 1

2B.

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 16 / 19

x-fast trees

We will conclude with a (much) simpler structure with the same
bounds, i.e., O(log log U) for queries and linear space.

x-fast trees
Imagine a binary trie storing all numbers. Create a perfect hash table
with all prefixes of the numbers, i.e., pointers from labels of the paths
in the trie to the corresponding nodes. In every node, store the
children, and the smallest/largest number in the subtree, and the
predecessor of the smaller number in the subtree.

The prefect hash table stores O(n log U) elements. A query can be
performed by binary searching for the longest prefix of x which exists
in the binary trie, see the blackboard. So the query complexity is
O(log log U)!

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 17 / 19

y -fast tree

But we promised linear space!

y -fast tree
Indirection with B = log U again.

This also gives good bounds for updates, because now we don’t have
to create log U nodes for every new element.

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 18 / 19

y -fast tree

But we promised linear space!

y -fast tree
Indirection with B = log U again.

This also gives good bounds for updates, because now we don’t have
to create log U nodes for every new element.

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 18 / 19

y -fast tree

But we promised linear space!

y -fast tree
Indirection with B = log U again.

This also gives good bounds for updates, because now we don’t have
to create log U nodes for every new element.

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 18 / 19

Questions?

Paweł Gawrychowski ()Van Emde Boas, x-fast and y -fast trees 31 maja 2014 19 / 19

