Exercise 1 (10 points)
Searching on a star is a generalization of the cow-path problem: There are m rays all originating from the same point s. An agent starts at s and is searching for some item located at some unknown distance on an (again unknown) ray. We consider the algorithm that visits the rays in a circular fashion, and walks a distance of

$$x_i = \left(\frac{m}{m-1} \right)^i$$

on the i'th ray it visits. Prove that the above algorithm, has a competitive ratio of

$$1 + 2 \left(\frac{m^m}{(m-1)^{m-1}} \right).$$

Exercise 2 (15 points)
We consider the problem of online scheduling with the objective of minimizing the total flow time $\sum_i (C_i - r_i)$ of the schedule. Algorithm rank round robin (RRR) schedules at every instantaneous time t each unfinished task i for an amount proportional to $rank_t(i)$, where $rank_t(i)$ denotes the number of tasks that are unfinished at t and were released no later than r_i, i.e., $rank_t(i) := |\{j| r_j \leq r_i \& j \text{ is unfinished at } t\}|$.

So, if there are k unfinished tasks at timepoint t, the i'th of them (ordered by release times) would be assigned an $i/\sum_{j=1}^{k} j$ fraction of the processor.

Prove that RRR is $(2 + \epsilon)$-speed $O(1)$-competitive.

Hint: Use the potential function

$$\Phi(t) := \sum_{i \in RRR(t)} z_i(t)rank_t(i),$$
where (as in the lecture), \(z_i(t) = \max\{p_i^{RRR}(t) - p_i^{OPT}(t), 0\} \), \(p_i^A(t) \) is the processing volume that is unfinished for task \(i \) under algorithm \(A \) at timepoint \(t \), and \(RRR(t) \) is the set of unfinished tasks under \(RRR \) at time \(t \).

Exercise 3 (8+7 points)
Recall the online scheduling problem for minimizing the total flow time \(\sum_i (C_i - r_i) \) on a single-processor from the lecture. The algorithm *Shortest Remaining Processing Time (SRPT)* processes at every point in time the task with the shortest remaining processing time among all unfinished tasks. Prove that:

a) SRPT achieves a competitive ratio of 1 for the objective of minimizing total flow-time on a single processor.
Hint: Try to use proof by contradiction, and apply an exchange argument.

b) SRPT has a competitive ratio strictly greater than 1 for the objective of weighted flow time on a single processor. In this problem every task \(i \) is also associated with a weight \(w_i \) and we wish to minimize

\[
\sum_i w_i (C_i - r_i) .
\]