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Online Capacity Maximization in Wireless Networks

Wireless devices located in a metric space

Set of n communication requests

Transmissions with Interference (and Noise)

Foundational problem for more complicated
tasks is Capacity Maximization:

Maximize number of successful transmissions.

Design online algorithms when requests arrive one-by-one over time.

Approximation algorithms with provable performance guarantees.
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Interference?

Disk Graph Model

Users are transmitters in the plane

User i has a transmission range

Two transmitters can get assigned
the same channel if their ranges do
not intersect.

Set I of users is successful if there is no
intersection among ranges of users in I,
i.e., I is an independent set in the
intersection graph.
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Physical Model of Interference

Path Loss:
p

dα

Physical Model

Underlying Metric Space (V, d)
Requests between points in V

Parameter:

Path loss exponent α

Decay: gij = 1/dαij

Threshold β > 0

Noise ν ≥ 0

SINR Condition:

gii · pi ≥ β ·

ν +
∑
j 6=i

gji · pj


Successful requests are simultaneously
feasible w.r.t. their SINR condition.



Physical Model of Interference

Path Loss:
p

dα

Weighted Conflict Graph

Fixed distances dij and powers pi

Complete directed graph

w(i, j) for ordered pair of requests i, j

Measures impact of interference of i
on j, relative to j’s signal strength

Affectance:

w(i, j) =
β · gij · pi
gjjpj − βν

SINR Condition:∑
j 6=i

w(j, i) ≤ 1



Inductive Independence

In general, independent set is O(n1−ε)-hard to approximate, but affectances
are based on distances in a metric space.

Define ”undirected weights”

w̄(i, j) = w(i, j) + w(j, i) .

For request j, ordering π of requests, the forward set of j is

Γπ(j) = {i | π(i) > π(j)} .

G has inductive independence number ρ ⇔ The best ordering bounds the
incoming weight from every independent set in every forward set to at most ρ.

Definition

The inductive independence number of G is the minimum number ρ s.t. there
is ordering π which has for all j and independent sets I:∑

i∈I∩Γπ(j)

w̄(i, j) ≤ ρ .
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Inductive Independence Number

Proposition

For disk graphs, the inductive independence number ρ is at most 5.

Idea:

Non-decreasing order of radius

Geometric Argument:
At most ρ = 5 intersecting disks
with larger radius and without
mutual intersection.
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Inductive Independence in Interference Models

All prominent interference models have small upper bounds on ρ. These
bounds hold even for trivial orderings.

Model Order Bound Ref.

Disk Graphs Radius 5 [Folklore]

Protocol Model Length

⌈
π

arcsin ∆
2(∆+1)

⌉
− 1 [Wan, MobiCom’09]

IEEE 802.11 model Length 23 [Wan, MobiCom’09]

Distance-2-Match Radius O(1) [Barrett et al, PERCOMW’06]

Distance-2-Color Radius O(1) [Hoefer et al, SPAA’11]

SINR, Monotone Length O(logn) [Kesselheim, Vöcking, DISC’10]

SINR, Mean Length O(1), O(log log ∆) [Halldórsson et al, SODA’13]

SINR, Power Ctrl. Length O(1) [Kesselheim SODA’11, ESA’12]



Algorithms for Unweighted Conflict Graphs [Akcoglu et al, 2002]

Greedy Algorithm for MaxIS

1 Set S = ∅.
2 For each node i in order of π do:

3 If i is not discarded do:

4 Add i to S and discard every forward neighbor j of i.

5 Output S

A local ratio argument shows that greedy computes a ρ-approximation.

There is no ρ/ω(log4 ρ)-approximation algorithm for independent set.
Follows from a lower bound in regular graphs. [Chan, STOC’13]

Similar algorithm gives ρ-approximation for Max-Weight-IS.

There are algorithms with factor O(ρ) (O(ρ · logn)) for MaxIS
(Max-Weight-IS) in weighted conflict graphs. [Kesselheim SODA’11]

[H., Kesselheim, Vöcking SPAA’11]
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Online Optimization

Online Scenario:

Nodes from a conflict graph arrive iteratively one-by-one

Each node i reveals upon arrival all edges to previous nodes.

Decision to include or reject i before seeing the next node(s).

Impossible to revoke decisions made in earlier rounds.

Keep all accepted nodes feasible → Build an IS

Worst-Case Analysis:

Adversary determines (unweighted) conflict graph G = (V,E) adaptively

Decides in each round which node to reveal next

Strives to make algorithm perform as bad as possible

Competitive Ratio:

S∗ is optimum IS for G, S is IS constructed by online algorithm

Competitive ratio given by |S∗|/|S| ≥ 1.
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Online IS in the Worst-Case

The worst-case competitive ratio is Ω(n) for every deterministic or randomized
online algorithm, even when both the following hold:

Adversary restricted to interval graphs G with ρ = 1

Interval representation induces π with ρ = 1 and is shown to the algorithm
for the revealed subgraph in every round

n and size of the optimum |S∗| revealed to the algorithm in advance

For SINR models, there are algorithms maintaining a “safety distance” around
accepted requests. They give competitive ratios based on distances of requests,
dimension of metric space, and chosen powers.

[Fanghänel, Geulen, H., Vöcking J. Sched 2013]

Worst-case online analysis in this scenario pointless, all algorithms equally bad.
In practice, request structure often is not entirely adversarial.
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Worst-case online analysis in this scenario pointless, all algorithms equally bad.
In practice, request structure often is not entirely adversarial.



Secretary Model

Online Scenario:

Requests (i.e., nodes from a conflict graph) arrive iteratively one-by-one

Each node i reveals upon arrival all edges to previous nodes.

Decision to include or reject i before seeing the next node(s).

Impossible to revoke decisions made in earlier rounds.

Keep all accepted nodes feasible → Build an IS

Stochastic Analysis:

Adversary determines G = (V,E) in advance, nodes arrive in random order

Ordering π with low ρ for revealed subgraph in each step is known

n revealed to the algorithm in advance

Strives to make algorithm perform as bad as possible

Competitive Ratio:

S∗ is optimum IS for G, S is IS constructed by online algorithm

S is a random variable, as arrival order is random

Competitive ratio given by |S∗|/E [|S|] ≥ 1.
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Secretary Algorithm [Göbel, H., Kesselheim, Schleiden, Vöcking CoRR’13]

Sample-and-Inject for Unweighted Conflict Graphs

1 Reject the first k = Binom(n, 0.5) requests, denote this set by Vs

2 Set output S = ∅
3 For each subsequent request i do

4 Would Greedy on Vs ∪ i take i? No: Reject i.

5 Reject i with probability 1− 1/2ρ.

6 If i survived and S ∪ i is IS, accept i and set S ← S ∪ i.
7 Otherwise reject i.



Online Algorithms

Theorem

Sample-and-Inject is O(ρ2)-competitive for unweighted conflict graphs.

Proof Idea:

Greedy algorithm on Vs ∪ i gives a ρ-approximation

Due to random arrival, Vs is a “representative” subset of V

Surviving requests are feasible w.r.t. Vs but not mutually conflict-free

Second filtering step destroys mutual conflicts among surviving requests

Implies a factor of O(ρ2) in expectation



Values and Lower Bounds

Algorithm for Online Max-Weight-IS (Sketch):

At the end of the sampling phase create O(logn) classes of values based
on maxi∈Vs vi and choose one class uniformly at random.

Reject and discard all nodes (also in Vs) with values below this class. Run
the previous algorithm on the remaining nodes.

Theorem

Weighted-Sample-and-Inject is O(ρ2 · logn)-competitive for unweighted
conflict graphs and node values vi ≥ 0.

In general, an increase of (almost) logn is unavoidable:

Theorem

There is a set of instances with ρ = 1 such that every secretary online
algorithm has competitive ratio at least Ω(logn/(log log n)2).
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SINR Model and Weighted Conflict Graphs

For edge-weighted conflict graphs, we obtain the following bounds:

Unweighted CG Weighted CG

vi = 1 O(ρ2) O(ρ2 log2 n)

arbitrary O(ρ2 logn) O(ρ2 log3 n)

Adjustment:

On Vs ∪ i apply the O(ρ) approximation algorithm

Resolving conflicts is more demanding because of aggregation effects

More aggressive filtering resolves mutual conflicts among surviving nodes

Yields an additional O(log2 n) factor in both cases



Arrival and Departure

Requests revealed one-by-one uniformly at random on one day.

Request demands channel for some period on the next day.

At any time during the next day, the accepted set of requests must be
conflict-free.
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Arrival and Departure

We recursively partition our sample to identify a number of critical time points.
We decompose the instance, consider only IS problems at these time points, to
which we apply previous algorithms. This yields another O(logn) factor:

Unweighted CG Weighted CG

vi = 1 O(ρ2 logn) O(ρ2 log3 n)

arbitrary O(ρ2 log2 n) O(ρ2 log4 n)

This also implies:

Corollary

There is an O(logn)-competitive secretary algorithm for online MaxIS in
rectangle graphs.
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Stochastic Input

Prophet-Inequality Model
We know for each node the probability distribution of its value

1 We are presented probability distributions for the node values

2 Values are realized

3 In each round, adversary decides which node is revealed next

4 We must decide immediately without seeing the next node value(s).



Stochastic Input

Prophet-Inequality Model
We know for each node the probability distribution of its value

Secretary Model
Adversary fixes values but arrival in random order

Period Model
We have reference data: Each node shows up with a similar
probability as “last week” at the same time
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Graph Sampling Model

Input graph:

Node values v(i) are drawn from unknown distributions

Adversary determines node arrival order after values have been determined

Sample graph:

Node values v′(i) are drawn from unknown distributions

All nodes with positive value are presented to the algorithm in advance

Independence between different nodes,
Arbitrary correlation between v and v′

Stochastic similarity: For every node i ∈ V and every b > 0,

1/c · Pr
[
v′(i) = b

]
≤ Pr [v(i) = b] ≤ c · Pr

[
v′(i) = b

]
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Open Problems

Can we turn all ρ2-factors into ρ-factors?

Can we turn various O(logn)-factors into O(1):

MaxIS in weighted conflict graphs?

For (classes of) the SINR model?

For arrivals and departures?

Correlation between values of different nodes?

etc.
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