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Online Capacity Maximization in Wireless Networks

@ Wireless devices located in a metric space

@ Set of n communication requests

@ Transmissions with Interference (and Noise)
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Online Capacity Maximization in Wireless Networks

@ Wireless devices located in a metric space

@ Set of n communication requests

@ Transmissions with Interference (and Noise)

e Foundational problem for more complicated
tasks is Capacity Maximization:

Maximize number of successful transmissions.

@ Design online algorithms when requests arrive one-by-one over time.

@ Approximation algorithms with provable performance guarantees.
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@ Inductive Independence



Interference?

Disk Graph Model

@ Users are transmitters in the plane
@ User ¢ has a transmission range

@ Two transmitters can get assigned
the same channel if their ranges do
not intersect.

Set I of users is successful if there is no
intersection among ranges of users in I,
i.e., I is an independent set in the
intersection graph.
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Physical Model of Interference

Physical Model

Underlying Metric Space (V, d)
Requests between points in V'

Parameter:
@ Path loss exponent «
@ Decay: gi; = 1/d3;
@ Threshold 8 > 0

@ Noise v > 0

SINR Condition:

gii-pi = B- V+Zgji'pj
J#i

Successful requests are simultaneously
feasible w.r.t. their SINR condition.
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Physical Model of Interference

Weighted Conflict Graph

@ Fixed distances d;; and powers p;
o Complete directed graph
@ w(i,j) for ordered pair of requests i, j

@ Measures impact of interference of ¢
on j, relative to j's signal strength
o Affectance:

N B-gij-pi
whd) = 94ip; — Bv

SINR Condition:

> w(i) <1

i
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Inductive Independence
are based on distances in a metric space.

In general, independent set is O(n'~¢)-hard to approximate, but affectances
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Define "undirected weights”
(i, j) = w(i, j) +w(j, 1)

For request j, ordering m of requests, the forward set of j is
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Inductive Independence

In general, independent set is O(n'~¢)-hard to approximate, but affectances
are based on distances in a metric space.

Define "undirected weights”

(i, j) = w(i, j) + w(j,i) .
For request j, ordering m of requests, the forward set of j is

Lr(g) ={i [ w(i) > 7(5)}
G has inductive independence number p < The best ordering bounds the
incoming weight from every independent set in every forward set to at most p.
The inductive independence number of G is the minimum number p s.t. there
is ordering 7 which has for all j and independent sets I:

>

w(i,j) < p .
i€INT 1 (5)




Inductive Independence Number

For disk graphs, the inductive independence number p is at most 5.

Idea:

@ Non-decreasing order of radius

o Geometric Argument:
At most p = 5 intersecting disks
with larger radius and without
mutual intersection. O
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Inductive Independence in Interference Models

All prominent interference models have small upper bounds on p. These
bounds hold even for trivial orderings.

Model Order Bound Ref.
Disk Graphs Radius 5 [Folklore]
Protocol Model Length mei-‘ — 1  [Wan, MobiCom'09]

2(A+D)
IEEE 802.11 model Length 23 [Wan, MobiCom’09]
Distance-2-Match Radius  O(1) [Barrett et al, PERCOMW'06]
Distance-2-Color Radius  O(1) [Hoefer et al, SPAA'11]
SINR, Monotone Length  O(logn) [Kesselheim, Vécking, DISC'10]
SINR, Mean Length  O(1), O(loglog A)  [Halldérsson et al, SODA'13]
SINR, Power Ctrl. Length  O(1) [Kesselheim SODA'11, ESA'12]
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Algorithms for Unweighted Conflict Graphs [Akcoglu et al, 2002]

Greedy Algorithm for MaxIS

Q@ Set S=10.

@ For each node 7 in order of 7 do:

© If ¢ is not discarded do:

(« ] Add i to S and discard every forward neighbor j of i.
© Output S

@ A local ratio argument shows that greedy computes a p-approximation.

@ There is no p/w(log® p)-approximation algorithm for independent set.
Follows from a lower bound in regular graphs. [Chan, STOC'13]
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Algorithms for Unweighted Conflict Graphs [Akcoglu et al, 2002]

Greedy Algorithm for MaxIS

@ Set S =0.

For each node % in order of 7 do:

o

© If ¢ is not discarded do:

(« ] Add i to S and discard every forward neighbor j of i.
(5]

Output S

A local ratio argument shows that greedy computes a p-approximation.

There is no p/w(log* p)-approximation algorithm for independent set.

Follows from a lower bound in regular graphs. [Chan, STOC'13]

e Similar algorithm gives p-approximation for Max-Weight-IS.

There are algorithms with factor O(p) (O(p - logn)) for MaxIS

(Max-Weight-IS) in weighted conflict graphs. [Kesselheim SODA'11]
[H., Kesselheim, Vécking SPAA’11]
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Online Optimization

Online Scenario:
@ Nodes from a conflict graph arrive iteratively one-by-one
@ Each node i reveals upon arrival all edges to previous nodes.
@ Decision to include or reject i before seeing the next node(s).

@ Impossible to revoke decisions made in earlier rounds.

Keep all accepted nodes feasible — Build an IS
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Online Optimization

Online Scenario:
@ Nodes from a conflict graph arrive iteratively one-by-one
@ Each node i reveals upon arrival all edges to previous nodes.
@ Decision to include or reject i before seeing the next node(s).
@ Impossible to revoke decisions made in earlier rounds.

o Keep all accepted nodes feasible — Build an IS

Worst-Case Analysis:
@ Adversary determines (unweighted) conflict graph G = (V, E) adaptively

@ Decides in each round which node to reveal next

@ Strives to make algorithm perform as bad as possible

Competitive Ratio:

@ S™ is optimum IS for G, S is IS constructed by online algorithm
e Competitive ratio given by [S™|/|S| > 1.




Online Arrivals — Example




Online Arrivals — Example

DA



Online Arrivals — Example

DA



Online Arrivals — Example

DA



Online Arrivals — Example

DA



Online Arrivals — Example

DA



Online Arrivals — Example

DA



Online Arrivals — Example

DA



Online Arrivals — Example

DA



Online Arrivals — Example

DA



Online Arrivals — Example

DA



Online Arrivals — Example




Online IS in the Worst-Case

The worst-case competitive ratio is {2(n) for every deterministic or randomized
online algorithm, even when both the following hold:

o Adversary restricted to interval graphs G with p =1

@ Interval representation induces m with p = 1 and is shown to the algorithm
for the revealed subgraph in every round

@ 7 and size of the optimum [S™| revealed to the algorithm in advance
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The worst-case competitive ratio is {2(n) for every deterministic or randomized
online algorithm, even when both the following hold:

o Adversary restricted to interval graphs G with p =1

@ Interval representation induces 7 with p = 1 and is shown to the algorithm
for the revealed subgraph in every round

@ 7 and size of the optimum [S™| revealed to the algorithm in advance

For SINR models, there are algorithms maintaining a “safety distance” around

accepted requests. They give competitive ratios based on distances of requests,
dimension of metric space, and chosen powers.

[Fanghanel, Geulen, H., Vécking J. Sched 2013]
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Online IS in the Worst-Case

The worst-case competitive ratio is {2(n) for every deterministic or randomized
online algorithm, even when both the following hold:

o Adversary restricted to interval graphs G with p =1

@ Interval representation induces 7 with p = 1 and is shown to the algorithm
for the revealed subgraph in every round

@ 7 and size of the optimum [S™| revealed to the algorithm in advance

For SINR models, there are algorithms maintaining a “safety distance” around

accepted requests. They give competitive ratios based on distances of requests,
dimension of metric space, and chosen powers.

[Fanghanel, Geulen, H., Vécking J. Sched 2013]

Worst-case online analysis in this scenario pointless, all algorithms equally bad.
In practice, request structure often is not entirely adversarial.
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Secretary Model

Stochastic Analysis:
@ Adversary determines G = (V, E) in advance, nodes arrive in random order
@ Ordering m with low p for revealed subgraph in each step is known
@ n revealed to the algorithm in advance

@ Strives to make algorithm perform as bad as possible




Secretary Model

Stochastic Analysis:
@ Adversary determines G = (V, E) in advance, nodes arrive in random order
@ Ordering m with low p for revealed subgraph in each step is known
@ n revealed to the algorithm in advance

@ Strives to make algorithm perform as bad as possible

Competitive Ratio:
@ S™ is optimum IS for G, S is IS constructed by online algorithm
@ S is a random variable, as arrival order is random

e Competitive ratio given by |S*|/E[|S]] > 1.




Secretary Algorithm [Gbel, H., Kesselheim, Schleiden, Vcking CoRR'13]

Sample-and-Inject for Unweighted Conflict Graphs

@ Reject the first kK = Binom(n,0.5) requests, denote this set by V
@ Set output S =0

© For each subsequent request i do

Would Greedy on V; U1 take ¢? No: Reject i.

Reject ¢ with probability 1 — 1/2p.

If ¢ survived and S U is IS, accept 7 and set S < S U .

Otherwise reject 7.
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Online Algorithms

Sample-and-Inject is O(p?)-competitive for unweighted conflict graphs.

Proof ldea:
o Greedy algorithm on V; U ¢ gives a p-approximation
@ Due to random arrival, Vs is a “representative” subset of V'
@ Surviving requests are feasible w.r.t. Vs but not mutually conflict-free
@ Second filtering step destroys mutual conflicts among surviving requests
e Implies a factor of O(p?) in expectation
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Values and Lower Bounds

Algorithm for Online Max-Weight-IS (Sketch):

@ At the end of the sampling phase create O(logn) classes of values based
on max;cv, v; and choose one class uniformly at random.

@ Reject and discard all nodes (also in Vi) with values below this class. Run
the previous algorithm on the remaining nodes.
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Values and Lower Bounds

Algorithm for Online Max-Weight-IS (Sketch):

@ At the end of the sampling phase create O(logn) classes of values based
on max;cv, v; and choose one class uniformly at random.

@ Reject and discard all nodes (also in Vi) with values below this class. Run
the previous algorithm on the remaining nodes.

Theorem

Weighted-Sample-and-Inject is O(p* - log n)-competitive for unweighted
conflict graphs and node values v; > 0.

In general, an increase of (almost) logn is unavoidable:

Theorem

There is a set of instances with p = 1 such that every secretary online
algorithm has competitive ratio at least Q(logn/(loglogn)?).




© SINR, Arrival/Departure



SINR Model and Weighted Conflict Graphs

For edge-weighted conflict graphs, we obtain the following bounds:

H Unweighted CG | Weighted CG

v =1 O(p”) O(p*log®n)
arbitrary O(p?logn) O(p* log® n)

Adjustment:
@ On VU1 apply the O(p) approximation algorithm
@ Resolving conflicts is more demanding because of aggregation effects

@ More aggressive filtering resolves mutual conflicts among surviving nodes
@ Yields an additional O(log® n) factor in both cases
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Arrival and Departure

@ Requests revealed one-by-one uniformly at random on one day.
@ Request demands channel for some period on the next day.

@ At any time during the next day, the accepted set of requests must be
conflict-free.
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Arrival and Departure

We recursively partition our sample to identify a number of critical time points.
We decompose the instance, consider only IS problems at these time points, to
which we apply previous algorithms. This yields another O(log n) factor:

H Unweighted CG | Weighted CG

v =1 O(p*logn) O(p?log®n)
arbitrary O(p*log® n)

O(p*log" n)
This also implies:

Corollary

There is an O(log n)-competitive secretary algorithm for online MaxIS in
rectangle graphs.




@ Graph Sampling Model



Stochastic Input

o Prophet-Inequality Model
We know for each node the probability distribution of its value

@ We are presented probability distributions for the node values
@ Values are realized

© In each round, adversary decides which node is revealed next

@ We must decide immediately without seeing the next node value(s).
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e Secretary Model

Adversary fixes values but arrival in random order




Stochastic Input

o Prophet-Inequality Model
We know for each node the probability distribution of its value
e Secretary Model

Adversary fixes values but arrival in random order
o Period Model

We have reference data: Each node shows up with a similar
probability as “last week” at the same time




Graph Sampling Model
Input graph:
@ Node values v(i) are drawn from unknown distributions

@ Adversary determines node arrival order after values have been determined
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Graph Sampling Model
Input graph:

@ Node values v(i) are drawn from unknown distributions

@ Adversary determines node arrival order after values have been determined
Sample graph:

@ Node values v'(¢) are drawn from unknown distributions

@ All nodes with positive value are presented to the algorithm in advance
Independence between different nodes,
Arbitrary correlation between v and v’

1/c-Pr[v'(i) =b]

Stochastic similarity: For every node i € V' and every b > 0,

< Priv(i)=b <

c-Pr[v'(i) =b]




Open Problems

@ Can we turn all p*>-factors into p-factors?

@ Can we turn various O(log n)-factors into O(1):
MaxIS in weighted conflict graphs?
For (classes of) the SINR model?

For arrivals and departures?
@ Correlation between values of different nodes?

@ etc.
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