Online Independent Set with Stochastic Adversaries

Oliver Göbel Martin Hoefer Thomas Kesselheim

Thomas Schleiden Berthold Vöcking

mhoefer@mpi-inf.mpg.de

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

- Wireless devices located in a metric space
- Set of *n* communication requests
- Transmissions with Interference (and Noise)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Online Capacity Maximization in Wireless Networks

- Wireless devices located in a metric space
- Set of *n* communication requests
- Transmissions with Interference (and Noise)
- Foundational problem for more complicated tasks is Capacity Maximization:

Maximize number of successful transmissions.

< □ > < 同 > < E > < E > E < OQ @</p>

Online Capacity Maximization in Wireless Networks

- Wireless devices located in a metric space
- Set of *n* communication requests
- Transmissions with Interference (and Noise)
- Foundational problem for more complicated tasks is Capacity Maximization:

Maximize number of successful transmissions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Design online algorithms when requests arrive one-by-one over time.

Online Capacity Maximization in Wireless Networks

- Wireless devices located in a metric space
- Set of *n* communication requests
- Transmissions with Interference (and Noise)
- Foundational problem for more complicated tasks is Capacity Maximization:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Maximize number of successful transmissions.

- Design online algorithms when requests arrive one-by-one over time.
- Approximation algorithms with provable performance guarantees.

Online Algorithms

SINR, Arrival/Departure

Graph Sampling Model

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Disk Graph Model

- Users are transmitters in the plane
- User *i* has a transmission range
- Two transmitters can get assigned the same channel if their ranges do not intersect.

Set I of users is successful if there is no intersection among ranges of users in I, i.e., I is an independent set in the intersection graph.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Interference?

Disk Graph Model

- Users are transmitters in the plane
- User *i* has a transmission range
- Two transmitters can get assigned the same channel if their ranges do not intersect.

Set I of users is successful if there is no intersection among ranges of users in I, i.e., I is an independent set in the intersection graph.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Physical Model of Interference

Physical Model

Underlying Metric Space (V, d)Requests between points in V

Parameter:

- \bullet Path loss exponent α
- Decay: $g_{ij} = 1/d_{ij}^{\alpha}$
- $\bullet~{\rm Threshold}~\beta>0$
- $\bullet \ \ {\rm Noise} \ \nu \geq 0$

SINR Condition:

$$egin{array}{ccc} g_{ii} \cdot p_i & \geq & eta \cdot \left(
u + \sum_{j
eq i} g_{ji} \cdot p_j
ight) \end{array}$$

Successful requests are simultaneously feasible w.r.t. their SINR condition.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Physical Model of Interference

Weighted Conflict Graph

- Fixed distances d_{ij} and powers p_i
- Complete directed graph
- $\bullet \ w(i,j)$ for ordered pair of requests i,j
- Measures impact of interference of *i* on *j*, relative to *j*'s signal strength

• Affectance:

$$w(i,j) = \frac{\beta \cdot g_{ij} \cdot p_i}{g_{jj}p_j - \beta \nu}$$

SINR Condition:

$$\sum_{j \neq i} w(j, i) \leq 1$$

Sac

Inductive Independence

In general, independent set is $O(n^{1-\varepsilon})\text{-hard}$ to approximate, but affectances are based on distances in a metric space.

Inductive Independence

In general, independent set is $O(n^{1-\varepsilon})$ -hard to approximate, but affectances are based on distances in a metric space.

Define "undirected weights"

$$\bar{w}(i,j) = w(i,j) + w(j,i) .$$

For request j, ordering π of requests, the forward set of j is

 $\Gamma_{\pi}(j) = \{i \mid \pi(i) > \pi(j)\}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Inductive Independence

In general, independent set is $O(n^{1-\varepsilon})$ -hard to approximate, but affectances are based on distances in a metric space.

Define "undirected weights"

 $\bar{w}(i,j) = w(i,j) + w(j,i) .$

For request j, ordering π of requests, the forward set of j is

 $\Gamma_{\pi}(j) = \{i \mid \pi(i) > \pi(j)\} .$

G has inductive independence number $\rho \Leftrightarrow$ The best ordering bounds the incoming weight from every independent set in every forward set to at most ρ .

Definition

The inductive independence number of G is the minimum number ρ s.t. there is ordering π which has for all j and independent sets I:

$$\sum_{\in I \cap \Gamma_{\pi}(j)} \bar{w}(i,j) \le \rho \; \; .$$

Proposition

For disk graphs, the inductive independence number ρ is at most 5.

Idea:

- Non-decreasing order of radius
- Geometric Argument: At most $\rho = 5$ intersecting disks with larger radius and without mutual intersection.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Proposition

For disk graphs, the inductive independence number ρ is at most 5.

Idea:

- Non-decreasing order of radius
- Geometric Argument: At most $\rho = 5$ intersecting disks with larger radius and without mutual intersection.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

All prominent interference models have small upper bounds on $\rho.$ These bounds hold even for trivial orderings.

Model	Order	Bound	Ref.
Disk Graphs	Radius	5	[Folklore]
Protocol Model	Length	$\left\lceil \frac{\pi}{\arcsin \frac{\Delta}{2(\Delta+1)}} \right\rceil - 1$	[Wan, MobiCom'09]
IEEE 802.11 model	Length	23	[Wan, MobiCom'09]
Distance-2-Match	Radius	O(1)	[Barrett et al, PERCOMW'06]
Distance-2-Color	Radius	O(1)	[Hoefer et al, SPAA'11]
SINR, Monotone	Length	$O(\log n)$	[Kesselheim, Vöcking, DISC'10]
SINR, Mean	Length	$O(1)$, $O(\log \log \Delta)$	[Halldórsson et al, SODA'13]
SINR, Power Ctrl.	Length	O(1)	[Kesselheim SODA'11, ESA'12]

< □ > < 同 > < E > < E > E < OQ @</p>

Greedy Algorithm for MaxIS

- 2 For each node i in order of π do:
- \bigcirc If *i* is not discarded do:
- Add i to S and discard every forward neighbor j of i.

O Output S

- A local ratio argument shows that greedy computes a ρ -approximation.
- There is no $\rho/\omega(\log^4 \rho)$ -approximation algorithm for independent set. Follows from a lower bound in regular graphs. [Chan, STOC'13]

< □ > < 同 > < E > < E > E < OQ @</p>

Greedy Algorithm for MaxIS

- 2 For each node i in order of π do:
- \bigcirc If *i* is not discarded do:
- Add i to S and discard every forward neighbor j of i.

O Output S

- A local ratio argument shows that greedy computes a ρ -approximation.
- There is no $\rho/\omega(\log^4 \rho)$ -approximation algorithm for independent set. Follows from a lower bound in regular graphs. [Chan, STOC'13]
- Similar algorithm gives ρ -approximation for Max-Weight-IS.

Greedy Algorithm for MaxIS

- 2 For each node i in order of π do:
- \bigcirc If *i* is not discarded do:
- Add i to S and discard every forward neighbor j of i.

O Output S

- A local ratio argument shows that greedy computes a ρ -approximation.
- There is no $\rho/\omega(\log^4 \rho)$ -approximation algorithm for independent set. Follows from a lower bound in regular graphs. [Chan, STOC'13]
- Similar algorithm gives ρ -approximation for Max-Weight-IS.
- There are algorithms with factor O(p) (O(p ⋅ log n)) for MaxIS (Max-Weight-IS) in weighted conflict graphs. [Kesselheim SODA'11]
 [H., Kesselheim, Vöcking SPAA'11]

2 Online Algorithms

SINR, Arrival/Departure

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Online Scenario:

- Nodes from a conflict graph arrive iteratively one-by-one
- Each node *i* reveals upon arrival all edges to previous nodes.
- Decision to include or reject *i* before seeing the next node(s).

< □ > < 同 > < E > < E > E < OQ @</p>

- Impossible to revoke decisions made in earlier rounds.
- \bullet Keep all accepted nodes feasible \rightarrow Build an IS

Online Scenario:

- Nodes from a conflict graph arrive iteratively one-by-one
- Each node *i* reveals upon arrival all edges to previous nodes.
- Decision to include or reject *i* before seeing the next node(s).
- Impossible to revoke decisions made in earlier rounds.
- \bullet Keep all accepted nodes feasible \rightarrow Build an IS

Worst-Case Analysis:

• Adversary determines (unweighted) conflict graph G = (V, E) adaptively

< □ > < 同 > < E > < E > E < OQ @</p>

- Decides in each round which node to reveal next
- Strives to make algorithm perform as bad as possible

Online Scenario:

- Nodes from a conflict graph arrive iteratively one-by-one
- Each node *i* reveals upon arrival all edges to previous nodes.
- Decision to include or reject *i* before seeing the next node(s).
- Impossible to revoke decisions made in earlier rounds.
- \bullet Keep all accepted nodes feasible \rightarrow Build an IS

Worst-Case Analysis:

• Adversary determines (unweighted) conflict graph G = (V, E) adaptively

- Decides in each round which node to reveal next
- Strives to make algorithm perform as bad as possible

Competitive Ratio:

- S^* is optimum IS for G, S is IS constructed by online algorithm
- Competitive ratio given by $|S^*|/|S| \ge 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

 The worst-case competitive ratio is $\Omega(n)$ for every deterministic or randomized online algorithm, even when both the following hold:

- Adversary restricted to interval graphs G with $\rho=1$
- Interval representation induces π with $\rho=1$ and is shown to the algorithm for the revealed subgraph in every round

< □ > < 同 > < E > < E > E < OQ @</p>

• n and size of the optimum $|S^*|$ revealed to the algorithm in advance

The worst-case competitive ratio is $\Omega(n)$ for every deterministic or randomized online algorithm, even when both the following hold:

- Adversary restricted to interval graphs G with $\rho=1$
- Interval representation induces π with $\rho=1$ and is shown to the algorithm for the revealed subgraph in every round
- n and size of the optimum $|S^*|$ revealed to the algorithm in advance

For SINR models, there are algorithms maintaining a "safety distance" around accepted requests. They give competitive ratios based on distances of requests, dimension of metric space, and chosen powers.

[Fanghänel, Geulen, H., Vöcking J. Sched 2013]

< □ > < 同 > < E > < E > E < OQ @</p>

The worst-case competitive ratio is $\Omega(n)$ for every deterministic or randomized online algorithm, even when both the following hold:

- Adversary restricted to interval graphs G with $\rho=1$
- Interval representation induces π with $\rho = 1$ and is shown to the algorithm for the revealed subgraph in every round
- n and size of the optimum $|S^*|$ revealed to the algorithm in advance

For SINR models, there are algorithms maintaining a "safety distance" around accepted requests. They give competitive ratios based on distances of requests, dimension of metric space, and chosen powers.

[Fanghänel, Geulen, H., Vöcking J. Sched 2013]

< □ > < 同 > < E > < E > E < OQ @</p>

Worst-case online analysis in this scenario pointless, all algorithms equally bad. In practice, request structure often is not entirely adversarial.

Secretary Model

Online Scenario:

- Requests (i.e., nodes from a conflict graph) arrive iteratively one-by-one
- Each node *i* reveals upon arrival all edges to previous nodes.
- Decision to include or reject *i* before seeing the next node(s).
- Impossible to revoke decisions made in earlier rounds.
- \bullet Keep all accepted nodes feasible \rightarrow Build an IS

Stochastic Analysis:

• Adversary determines G = (V, E) in advance, nodes arrive in random order

< □ > < 同 > < E > < E > E < OQ @</p>

- $\bullet\,$ Ordering π with low ρ for revealed subgraph in each step is known
- n revealed to the algorithm in advance
- Strives to make algorithm perform as bad as possible

Secretary Model

Online Scenario:

- Requests (i.e., nodes from a conflict graph) arrive iteratively one-by-one
- Each node *i* reveals upon arrival all edges to previous nodes.
- Decision to include or reject *i* before seeing the next node(s).
- Impossible to revoke decisions made in earlier rounds.
- \bullet Keep all accepted nodes feasible \rightarrow Build an IS

Stochastic Analysis:

• Adversary determines G = (V, E) in advance, nodes arrive in random order

< □ > < 同 > < E > < E > E < OQ @</p>

- \bullet Ordering π with low ρ for revealed subgraph in each step is known
- $\bullet \ n$ revealed to the algorithm in advance
- Strives to make algorithm perform as bad as possible

Competitive Ratio:

- S^* is optimum IS for G, S is IS constructed by online algorithm
- $\bullet \ S$ is a random variable, as arrival order is random
- Competitive ratio given by $|S^*|/\mathbb{E}[|S|] \ge 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Sample-and-Inject for Unweighted Conflict Graphs

- **Q** Reject the first k = Binom(n, 0.5) requests, denote this set by V_s
- **2** Set output $S = \emptyset$
- \bullet For each subsequent request i do
- Would Greedy on $V_s \cup i$ take *i*? No: Reject *i*.
- Solution Reject i with probability $1 \frac{1}{2\rho}$.
- If i survived and $S \cup i$ is IS, accept i and set $S \leftarrow S \cup i$.
- **Otherwise reject** i.

Theorem

Sample-and-Inject is $O(\rho^2)$ -competitive for unweighted conflict graphs.

Proof Idea:

- Greedy algorithm on $V_s \cup i$ gives a ρ -approximation
- Due to random arrival, V_s is a "representative" subset of V
- Surviving requests are feasible w.r.t. V_s but not mutually conflict-free
- Second filtering step destroys mutual conflicts among surviving requests

< □ > < 同 > < E > < E > E < OQ @</p>

• Implies a factor of $O(\rho^2)$ in expectation

Algorithm for Online Max-Weight-IS (Sketch):

- At the end of the sampling phase create O(log n) classes of values based on max_{i∈Vs} v_i and choose one class uniformly at random.
- Reject and discard all nodes (also in V_s) with values below this class. Run the previous algorithm on the remaining nodes.

(日)

Algorithm for Online Max-Weight-IS (Sketch):

- At the end of the sampling phase create O(log n) classes of values based on max_{i∈Vs} v_i and choose one class uniformly at random.
- Reject and discard all nodes (also in V_s) with values below this class. Run the previous algorithm on the remaining nodes.

< □ > < 同 > < E > < E > E < OQ @</p>

Theorem

Weighted-Sample-and-Inject is $O(\rho^2 \cdot \log n)$ -competitive for unweighted conflict graphs and node values $v_i \ge 0$.

Algorithm for Online Max-Weight-IS (Sketch):

- At the end of the sampling phase create O(log n) classes of values based on max_{i∈Vs} v_i and choose one class uniformly at random.
- Reject and discard all nodes (also in V_s) with values below this class. Run the previous algorithm on the remaining nodes.

Theorem

Weighted-Sample-and-Inject is $O(\rho^2 \cdot \log n)$ -competitive for unweighted conflict graphs and node values $v_i \ge 0$.

In general, an increase of (almost) $\log n$ is unavoidable:

Theorem

There is a set of instances with $\rho = 1$ such that every secretary online algorithm has competitive ratio at least $\Omega(\log n/(\log \log n)^2)$.

A D > 4 回 > 4 □ > 4

Online Algorithms

For edge-weighted conflict graphs, we obtain the following bounds:

	Unweighted CG	Weighted CG
$v_i = 1$	$O(\rho^2)$	$O(\rho^2 \log^2 n)$
arbitrary	$O(\rho^2 \log n)$	$O(\rho^2 \log^3 n)$

Adjustment:

- On $V_s \cup i$ apply the $O(\rho)$ approximation algorithm
- Resolving conflicts is more demanding because of aggregation effects
- More aggressive filtering resolves mutual conflicts among surviving nodes
- \bullet Yields an additional $O(\log^2 n)$ factor in both cases

Arrival and Departure

- Requests revealed one-by-one uniformly at random on one day.
- Request demands channel for some period on the next day.
- At any time during the next day, the accepted set of requests must be conflict-free.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Arrival and Departure

- Requests revealed one-by-one uniformly at random on one day.
- Request demands channel for some period on the next day.
- At any time during the next day, the accepted set of requests must be conflict-free.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

We recursively partition our sample to identify a number of critical time points. We decompose the instance, consider only IS problems at these time points, to which we apply previous algorithms. This yields another $O(\log n)$ factor:

	Unweighted CG	Weighted CG
$v_i = 1$	$O(\rho^2 \log n)$	$O(\rho^2 \log^3 n)$
arbitrary	$O(\rho^2 \log^2 n)$	$O(\rho^2 \log^4 n)$

This also implies:

Corollary

There is an $O(\log n)$ -competitive secretary algorithm for online MaxIS in rectangle graphs.

< □ > < 同 > < E > < E > E < OQ @</p>

Online Algorithms

SINR, Arrival/Departure

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Prophet-Inequality Model

We know for each node the probability distribution of its value

- We are presented probability distributions for the node values
- Values are realized
- In each round, adversary decides which node is revealed next
- We must decide immediately without seeing the next node value(s).

• Prophet-Inequality Model

We know for each node the probability distribution of its value

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Secretary Model

Adversary fixes values but arrival in random order

• Prophet-Inequality Model

We know for each node the probability distribution of its value

Secretary Model

Adversary fixes values but arrival in random order

Period Model

We have reference data: Each node shows up with a similar probability as "last week" at the same time

< □ > < 同 > < E > < E > E < OQ @</p>

- Node values v(i) are drawn from unknown distributions
- Adversary determines node arrival order after values have been determined

(ロ)、(型)、(E)、(E)、 E) の(の)

- \bullet Node values v(i) are drawn from unknown distributions
- Adversary determines node arrival order after values have been determined

Sample graph:

- Node values $v^{\prime}(i)$ are drawn from unknown distributions
- All nodes with positive value are presented to the algorithm in advance

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- Node values v(i) are drawn from unknown distributions
- Adversary determines node arrival order after values have been determined

Sample graph:

- Node values $v^{\prime}(i)$ are drawn from unknown distributions
- All nodes with positive value are presented to the algorithm in advance

< □ > < 同 > < E > < E > E < OQ @</p>

Independence between different nodes, Arbitrary correlation between \boldsymbol{v} and \boldsymbol{v}'

- Node values v(i) are drawn from unknown distributions
- Adversary determines node arrival order after values have been determined

Sample graph:

- Node values v'(i) are drawn from unknown distributions
- All nodes with positive value are presented to the algorithm in advance

Independence between different nodes, Arbitrary correlation between v and v^\prime

Stochastic similarity: For every node $i \in V$ and every b > 0,

$$1/c \cdot \Pr\left[v'(i) = b\right] \quad \leq \quad \Pr\left[v(i) = b\right] \quad \leq \quad c \cdot \Pr\left[v'(i) = b\right]$$

< □ > < 同 > < E > < E > E < OQ @</p>

- Can we turn all ρ^2 -factors into ρ -factors?
- Can we turn various O(log n)-factors into O(1): MaxIS in weighted conflict graphs?
 For (classes of) the SINR model?
 For arrivals and departures?
- Correlation between values of different nodes?

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• etc.