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Introductory Example

I Suppose you are trying to hire a new employee (e.g., a secretary) from a
pool of applicants.

I The number n of applicants is known, you try to hire the best one.

I The quality of an applicant is unknown until you interview him.

I After each single interview you have to make an immediate decision
whether to hire or reject the applicant.

There is a simple sample-and-learn strategy that allows to hire the best
applicant with constant probability.
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Sample-and-Learn

Sample-and-Learn

I Consider applicants in random order, interview and reject first r∗ ones.

I Continue interviewing randomly and hire the first applicant that is better
than the best one so far.

I If you reach the end of the pool, hire the last applicant.

With appropriate choice of r∗, the best applicant gets hired with probability
1/e ≈ 0.37.

Similar problems arise in online markets, where buyers arrive online in a market
and sellers have to decide instantly about whether to sell items or not. Buyers
and sellers can have combinatorial constraints to buy or sell only certain subsets
of items (e.g., DVD collections, movie tickets, slots for display-ads, etc.)

We consider a general framework for combinatorial online allocation problems.

Martin Hoefer Online Algorithms 2014

Online Algorithms for Stochastic Adversaries



Secretary Problem Matroid Secretary Matching Secretary Prophet Inequalities Matroid Prophets

Generalized Secretary Problems

The Items and Values

I There are m elements from a ground set R.

I Each element x ∈ R has value wx ≥ 0.

I There is a collection I ⊆ 2R of feasible sets.

I I is closed under containment: If I ∈ I, then J ∈ I for all J ⊆ I .

Arrival and Selection

I Structure of R and I are known in advance.

I Elements arrive in random order, revealed with their value upon arrival.

I Online algorithm A decides to select or reject an element.

I An element must be selected or rejected before seeing the next one.

I The decision to select or reject is irreversible.

I The set of selected items must belong to I at all times.
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Solution Quality

Competitiveness

I Algorithm A tries to maximize value of set S of selected items
w(S) =

∑
x∈S wx .

I A is called α-competitive if

E [w(S)] ≥ 1/α · w(S∗)

with S∗ an optimum set from I that maximizes w(S).

I The expectation is taken over random order arrival and internal
randomization of A.
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Examples

Secretary Problem

I I is the set of all singleton sets.

k-Choice Secretary

I I is the set of all sets S with |S | ≤ k.

Matroid Secretary

I I is the set of all independent sets from a matroid.

Knapsack Secretary

I Each item x ∈ R has a value wx and a size sx .

I The knapsack has a capacity of 1.

I I is the set of all sets S with
∑

x∈S sx ≤ 1.

and many more...
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Matroids

Definition (Matroid)

A tuple M = (R, I) is a matroid if R = {1, . . . ,m} is a finite set of elements
and I is a nonempty family of subsets of R such that

I if I ∈ I and J ⊆ I , then J ∈ I, and

I if I , J ∈ I and |J| < |I |, then there exists an i ∈ I\J with J ∪ {i} ∈ I.

Notation

I a set I ∈ I is called independent set

I a maximal independent set B ∈ I is called a basis

I the cardinality of the bases is equal and called rank, rk(M)
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Matroids

Definition (Weighted Matroid)

I A matroid with a weight function w : R → N is called weighted.

I The weight of an independent set I is w(I ) =
∑

r∈I w(r).

I An optimal basis is a basis of minimum weight.

Proposition (swap property)

Let B be a basis and B∗ an optimal basis. Then there exists a sequence
(r1, r

∗
1 ), . . . , (rk , r

∗
k ) ∈ B × B∗, 0 ≤ k ≤ m, such that,

for 0 ≤ i ≤ k, Bi = B ∪ {r∗1 , . . . , r∗i } \ {r1, . . . , ri} is a basis, B∗ = Bk and
w(Bi ) ≤ w(Bi−1), for 1 ≤ i ≤ k.
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A Logarithmic Algorithm

Sample-and-Learn with Threshold

I Reject the first m/2 elements, denote this set by Y .

I Pick j ∈ {0, 1, 2, . . . , dlog ke} uniformly at random

I Set threshold τ = maxx∈Y wx/2j , initialize S = ∅
I At time t = m/2 + 1, . . . ,m, element xt is observed.

I If wxt ≥ τ and xt ∪ S is an independent set, then add xt to S .

Theorem (Babaioff, Immorlica, Kleinberg 2007)

Sample-and-Learn with Threshold is O(log k)-competitive for any matroid
domain where k is the rank of the matroid.
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Logarithmic Factor

Proof: We first restrict attention to elements with significant value.

I S∗ consists of elements x1, . . . , xk with value w1 ≥ . . . ≥ wk .

I Let q be such that wq ≥ w1/k and either q = k or wq+1 < w1/k.

I Observe that
∑k

i=q+1 wi < w1, so
∑q

i=1 wi ≥ w(S∗)/2.

We analyze the algorithm based on value classes derived from S∗.

I ni (T ) – number of elements of T ⊂ R with value at least wi .

I mi (T ) – number of elements of T ⊂ R with value at least wi/2.

I Observe that

q∑
i=1

wi =

[
q−1∑
i=1

(wi − wi+1)ni (S
∗)

]
+ wqnq(S∗).

I For any output S we have

w(S) ≥ 1

2
·

[
q−1∑
i=1

(wi − wi+1)mi (S)

]
+

1

2
· wqmq(S).
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Proof

Lemma
For all i = 1, . . . , q we have

ni (S
∗) ≤ 8(dlog ke+ 1) · E [mi (S)] .

Using this lemma allows to show the theorem:

E [w(S)] ≥ 1

2
·

[
q−1∑
i=1

(wi − wi+1) · E [mi (S)]

]
+

1

2
· wq · E [mq(S)]

≥ 1

16(dlog ke+ 1)

[
q−1∑
i=1

(wi − wi+1)ni (S
∗)

]
+

1

16(dlog ke+ 1)
wqnq(S∗)

=
1

16(dlog ke+ 1)

q∑
i=1

wi

≥ 1

32(dlog ke+ 1)
· w(S∗)
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Proof of Lemma

We show the lemma for each i individually. The case i = 1 is left as an
exercise. Assume i > 1.

I Denote by x∗ the element with maximum value.

I We condition on the event E that x∗ ∈ Y and j is such that
wi ≥ wx∗/2j ≥ wi/2.

I We can compute S∗ with a greedy algorithm, so wq ≥ w1/k ≥ wx∗/2dlog ke.
Hence, there exists a suitable j for every vi with i ≤ q.

I The algorithm selects this j with probability 1/(dlog ke+ 1).

I The combined probability of event E is, thus, 1/2(dlog ke+ 1).
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Proof of Lemma

We show a bound conditioned on event E .

I There is independent set S ′ = {x1, . . . , xi} of at least i elements with
value at least wi that exceed the threshold τ = wx∗/2j .

I As x∗ = x1 is in Y by assumption, in expectation, at least (i − 1)/2 ≥ i/4
elements of S ′ appear for selection in the second half.

I By the exchange property, the expected size of S conditioned on E is at
least i/4.

I As τ ≥ vi/2 and every element chosen has value at least τ , we have

E [mi (S) | E ] ≥ i/4 = ni (S
∗)/4.

Removing the conditioning on E yields the lemma.
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Is there a constant-competitive algorithm?

Matroid Secretary Conjecture

For every matroid domain there is an algorithm that is ...

Weak: ... constant-competitive.

Strong: ... e-competitive.

The conjecture has been proved in some form for many special classes of
matroids in recent years, but in general it is still open. The currently best
algorithm by Chakraborty and Lachish (2012) for general matroids is
O(
√

log k)-competitive.

For a special case of matroids we here prove the weak conjecture.
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Graphic Matroids

For graphic matroids there is an undirected graph G = (V ,E) and we can
choose any cycle-free edge set E ′ ⊆ E .

Parallel Sample-and-Learn

I Fix arbitrary ordering v1, v2, . . . , vn for V

I Choose X ∈ {0, 1} uniformly at random

I If X = 0/1, orient every e ∈ E towards node with higher/lower index

I For each v in parallel, run Sample-and-Learn on edges oriented towards v

I Output S as union of edges chosen by the Sample-and-Learn algorithms

Theorem (Korula, Pal 2009)

Parallel Sample-and-Learn is 2e-competitive for graphic matroid domains.
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Proof

Proof:

I The orientation implies that G becomes a directed acyclic graph. Hence, if
every vertex picks any incoming edge, we create no cycles and S is feasible.

I It remains to bound the expected value of S .

I Let GX be the oriented graph for X ∈ {0, 1}.
I Let hX (v) be an incoming edge of v in GX with maximum value

I Let SX = {hX (v) | v ∈ V }, and S∗ an optimum forest in G .

Proposition

w(S∗) ≤
∑
v∈V

wh0(v) + wh1(v) = w(S0) + w(S1) .
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Proof

Conditioned on the coin flip X , each vertex recovers an expected value of 1/e
of the incoming edge of maximum value. Hence, in total for both x = 0, 1

E [w(S) | X = x ] ≥ 1/e · w(Sx) .

Using the previous proposition, we see that

E [w(S)] =
1

2
· (E [w(S) | X = 0] + E [w(S) | X = 1])

≥ 1

2e
· (w(S0) + w(S1))

≥ 1

2e
· w(S∗)

which proves the theorem.
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Bipartite Matching with Random Arrivals

There is an underlying bipartite graph G = (L,R,E) with edge values we ≥ 0.

I Set L of customers, arrive in random order

I Set R of goods for sale, given in advance

I Value we of edge e = (`, r) is value of customer ` for good r .

I Each customer has unit demand, i.e., strives to obtain at most one good.

I Upon arrival, each ` ∈ L reveals values of all incident edges

I Goal: Find a matching of goods to customers with maximum value.

This scenario slightly extends the framework, in which we would only pick the
set of matched vertices from L and construct the matching in hindsight.
Instead, we strive to allocate goods to customers upon arrival, i.e., we want to
adaptively construct the set of matching edges. Note that matching edges do
not arrive in fully random order, they arrive batched with their common
endpoint in L.
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Sample-and-Price

Sample-and-Price

I k = Binom(|L|, p), S = ∅.
I Reject the first k vertices of L, denote this set by L′

I Consider edges in E ∩ (L′ × R) in non-increasing order of value and
greedily construct a matching for L′, denote this by M1

I For each r ∈ R let price(r) be the value of the edge incident in M1

I For each t = k + 1, . . . , |L|, denote `t ∈ L the vertex arriving in step t

I Let e = (`t , r) be the highest-value edge with we ≥ price(r)

I If S ∪ e is a matching, add e to S

Theorem (Korula, Pal 2009)

With p = 1/2, Sample-and-Price is 8-competitive for matching domains.

We will only show a factor of 16 here.
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Reformulation

To analyze Sample-and-Price, we consider a reformulation that works with all
elements of L′ being present in the beginning. Obviously, in expectation, it
produces the same output S . It just separates the construction of L′ and
maintains M2, the set of all candidate edges.

Sample-and-Permute

I Initialize L′ = ∅, S = ∅, M1,M2 = ∅.
I For each ` ∈ L, flip a coin with prob. p of heads. If heads, add ` to L′.

I Consider edges in E ∩ L′ × R in non-increasing order of value

I Greedily construct a matching for L′, denote this by M1

I For each r ∈ R let price(r) be the value of the edge incident in M1

I For each ` ∈ L− L′ in random order:

I Let e = (`, r) be the highest-value edge with we ≥ price(r)

I Add e to M2

I If S ∪ e is a matching, add e to S
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Reformulation II

We continue to reformulate the algorithm to make its analysis simpler. In
particular, we contract the consideration of edges into a single loop.

Simulate

I Sort all edges in E in non-increasing order of value

I Initialize M1,M2 = ∅, mark each ` ∈ L unassigned

I For each edge e = (`, r) ∈ E in sorted order:

I If (` unassigned) and (M1 ∪ e is matching), then:

I Mark ` assigned

I Flip a coin with prob. p of heads

I If heads, then M1 = M ∪ e; else M2 = M2 ∪ e.

I S = M2

I For each r ∈ R:

I If r has degree > 1 in S , remove all edges incident to r from S
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Observations

We note the following facts that are the basis for our analysis.

I We make (at most) one coin flip for each ` ∈ L in both Simulate and
Sample-and-Permute.

I If the flips turn out the same, sets M1 and M2 are similar in both
algorithms. (Why?)

I To build S , both algorithms keep edges which have a unique endpoint in
R. Simulate drops all edges from M2 with a common endpoint,
Sample-and-Permute keeps some of these edges.

I Thus, for the matchings SSPr of Sample-and-Price, SSP of
Sample-and-Permute, and SSim of Simulate we have

E [w(SSPr )] = E [w(SSP)] ≥ E [w(SSim)] .
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Analysis of Simulate

Greedy matching in decreasing order of edge-weight yields a stable matching.
Hence, if we greedily match the whole instance, such a matching Sg has
w(Sg ) ≥ w(S∗)/2. In fact, we get a similar guarantee for greedily matching
only the random subset L′ for which the coin flips turn up heads.

Lemma

E [w(M1)] ≥ p · w(S∗)/2 .

Every e ∈ M2 could have gone into M1 as well at the point of consideration. It
is easy to show E [w(M2)] ≥ (1− p)/p · E [w(M1)] and, hence,

Lemma

E [w(M2)] ≥ (1− p) · w(S∗)/2 .
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Proof of Key Lemma

The following is our key lemma that relates the output of Simulate to S∗.

Lemma
For the expected value of SSim we have

E [w(SSim)] ≥ p2(1− p)

2
· w(S∗) .

With p = 1/2 we obtain a competitive ratio of 16. With a more complicated
analysis that applies directly to Sample-and-Permute, one can show a factor of
p(1− p)/2 resulting in a competitive ratio of 8. Here, however, we stick to the
simpler analysis of Simulate.
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Proof of Key Lemma

Proof of Lemma:

I For v ∈ R, “revenue” earned by v is sum of values of edges incident in M2.

I Denote the revenue by Rev2(v) [Note:
∑

v∈R Rev2(v) = w(M2).]

I Assume e is first edge incident to v added to M2. We denote by
E [Rev2(v) | e] the expected revenue of v in this case.

It is easy to see that E [Rev2(v) | e] ≤ we/p:

I If the next edge incident to v is added to M1, v stops earning revenue.

I Each addition to M1 happens with probability p.

I If earning stops after i edges, v has earned we (first edge by assumption)
and at most (i − 1) · we from later edges.

I This happens with probability (1− p)i−1 · p. Hence,

E [Rev2(v) | e] ≤ we ·
∞∑
i=1

i · (1− p)i−1 · p = we/p

Martin Hoefer Online Algorithms 2014

Online Algorithms for Stochastic Adversaries



Secretary Problem Matroid Secretary Matching Secretary Prophet Inequalities Matroid Prophets

Proof of Key Lemma

I Similarly, denote by Rev3(v) the revenue in S , i.e., the value of (at most)
one incident edge in the final SSim.

I Again, let E [Rev3(v) | e] be the expected revenue conditioned on the case
that e is the first edge incident to v added to M2.

I With probability p, the next edge incident to v is added to M1.

I Then, no more edges incident to v are added and v has degree 1 in M2.

I Thus,

E [Rev3(v) | e] ≥ p · we ≥ p · p · E [Rev2(v) | e]

As the last bound holds for all vertices v and all incident edges e, linearity of
expectation implies

E [w(SSim)] ≥ p2E [w(M2)] ≥ p2(1− p)

2
· w(S∗) .
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Set Packing Secretary

The algorithm above is quite flexible and can be used to solve more general
variants of assignment problems. Consider the following version of set packing.

I Set L of customers, arrive in random order

I Set R of goods for sale, given in advance

I we of hyperedge e = (`, I ) is value of customer ` for set of goods I ⊆ R.

I Each customer strives to obtain one subset of goods.

I Upon arrival, each ` ∈ L reveals values of all incident hyperedges

I Goal: Construct an assignment of goods to customers with maximum
value.

Intuitively, customers represent (collections of) sets or hyperedges, and we
strive to obtain a set packing of maximum value by choosing a subset of sets
that are pairwise disjoint.
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Sample-and-Price for Set Packing

Sample-and-Price

I k = Binom(|L|, p), S = ∅.
I Reject the first k vertices of L, denote this set by L′

I Consider hyperedges incident to L′ in non-increasing order of value and
greedily construct an assignment for L′, denote this by M1

I For r ∈ R let price(r) be the value of the hyperedge incident in M1

I For each t = k + 1, . . . , |L|, denote `t ∈ L the vertex arriving in step t

I Let e = (`t , I ) be the highest-value edge s.t. for all r ∈ I , we ≥ price(r)

I If e is disjoint from S , add e to S

Theorem (Korula, Pal 2009)

Let d be the size of the largest hyperedge. With p = 1− 1/(2d),
Sample-and-Price is O(d2)-competitive for set packing domains.
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Prophets and Secretaries

I Suppose you are trying to hire a new employee from a pool of applicants.

I The number n of applicants is known, applicant i has random value Xi .

I Xi is drawn independently at random from known distribution Di .

I The true value of Xi becomes known only after an interview.

I Applicants might arrive in adversarial order for interview.

I After each single interview you have to make an immediate decision
whether to hire or reject the applicant.

If the expected optimum E [maxi Xi ] <∞, there is a simple stopping criterion
to recover at least half of the expected optimum.
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An optimal algorithm

Optimal-Stop

I Let T = E [maxj Xj ] /2 be half of the expected optimum.

I If current candidate i has Xi ≥ T , select i ; otherwise reject i

An algorithm is α-competitive if it computes a solution S that in expectation
recovers an α fraction of the expected optimum:

E [w(S)] ≥ 1/α · E
[
max
S

w(S)
]

Theorem (Krengel, Sucheston 1978)

Optimal-Stop is 2-competitive and this ratio is optimal.

We prove the upper bound, the lower bound is left as an exercise.
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Analysis

The algorithm stops at the first candidate τ that has value at least T . It might
reject everyone, but nevertheless obtains an expected value of E [Xτ ] ≥ T .

I With probability p = Pr [maxi Xi ≥ T ] at least one candidate has value T ,
so with probability (1− p) the algorithm accepts nobody.

I Suppose the algorithm processes candidate i . With probability at least
(1− p) it has accepted nobody so far.

I Also, with probability Pr [Xi > x ] candidate i has Xi > x ≥ T . Then the
algorithm accepts i .

I Hence, the probability that the algorithm accepts i and Xi > x is at least
(1− p) · Pr [Xi > x ].

I For every x ≥ T we have at acceptance time τ :

Pr [Xτ > x ] ≥ (1− p)
n∑

i=1

Pr [Xi > x ] .
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Analysis

I The union bound states that

n∑
i=1

Pr [Xi > x ] ≥ Pr
[
max

i
Xi > x

]
,

and hence

Pr [Xτ > x ] ≥ (1− p) · Pr
[
max

i
Xi > x

]
.

I Observe that by definition

2T = E
[
max

i
Xi

]
=

∫ ∞
x=0

Pr
[
max

i
Xi > x

]
dx

=

∫ T

x=0

Pr
[
max

i
Xi > x

]
dx +

∫ ∞
x=T

Pr
[
max

i
Xi > x

]
dx

I The first term is at most T , hence the latter must be at least T .
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Analysis

I Hence, we can bound as follows:

E [Xτ ] =

∫ T

x=0

Pr [Xτ > x ] dx +

∫ ∞
x=T

Pr [Xτ > x ] dx

≥ pT + (1− p)

∫ ∞
x=T

Pr
[
max

i
Xi > x

]
dx

≥ pT + (1− p)T = T

= E
[
max

i
Xi

]
/2 .

I This proves the theorem.

The inequality E [Xτ ] ≥ E [maxi Xi ] /2 is called prophet inequality, as it allows
to bound the obtained value against an optimal prophet that knows the input.
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Matroid Prophets

The scenario extends to packing domains in the obvious way. Let us consider
the following matroid prophet domain:

I Underlying matroid M = (R, I) is known

I Each i ∈ R has value wi drawn independently from known distribution Di

I Elements arrive in adversarial order, must be selected or rejected.

I Goal: Build an independent set S ∈ I with maximum value.

We present a monotone algorithm that – instead of a global threshold – uses
deterministic thresholds Ti for each element i . We assume that Ti =∞ if i
cannot be added to the currently selected independent set. The algorithm
accepts every i for which wi ≥ Ti .

Such an algorithm crucially relies on suitable thresholds Ti that (1) allow to
accept elements with a large enough value and (2) do not reject too many
valuable elements. The following notion of α-balancedness is a formalization of
this condition.
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α-balanced Thresholds

I For each i ∈ R, wi is the input weight, and w ′i is a sample weight. Both
are drawn independently at random from Di .

I The input sequence is σ = (i1,wi1), . . . , (in,win ). In our definition below,
we will fix the sequence (and thereby the wi ’s) and demand a condition for
every such sequence.

I Selected set of the algorithm is denoted S = S(σ).

I Optimal basis for w ′ is denoted B.

I By matroid exchange axiom, there is at least one partition of B into Bc

and Br such that S ∪ Br is a basis of M.

I Of all these partitions, let (Bc(S),Br (S)) be one that maximizes w ′(Br ).
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Definition

Definition
For α > 0, a monotone algorithm has α-balanced thresholds if for every input
sequence σ and V disjoint from S = S(σ) with S ∪ V ∈ I, the deterministic
thresholds Ti = Ti (σ) are such that∑

i∈S

Ti ≥
(

1

α

)
· E
[
w ′(Bc(S))

]
(1)

∑
i∈V

Ti ≤
(

1− 1

α

)
· E
[
w ′(Br (S))

]
(2)

where the expectation is over the random choice of w ′.

Proposition

If a monotone algorithm has α-balanced thresholds, then it is α-competitive for
matroid domains against online weight-adaptive adversaries.
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Proof

We denote (x)+ = max{x , 0} and show the proposition with three inequalities:

E

[∑
i∈S

Ti

]
≥ 1

α
· E
[
w ′(Bc(S))

]
(3)

E

[∑
i∈S

(wi − Ti )
+

]
≥ E

 ∑
i∈Br (S)

(w ′i − Ti )
+

 (4)

E

 ∑
i∈Br (S)

(w ′i − Ti )
+

 ≥ 1

α
· E
[
w ′(Br (S))

]
(5)

For all i ∈ S we have wi ≥ Ti and Ti + (wi − Ti )
+ = wi . Summing (3) and (4)

and applying (5) yields:

E [w(S)] ≥ 1

α
E
[
w ′(Bc(S))

]
+

1

α
E
[
w ′(Br (S))

]
=

1

α
· E
[
max
S

w(S)
]

The latter is due to B = Bc(S) ∪ Br (S) being an optimal basis for w ′, which
has the same distribution as w .
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Three Inequalities

Inequality (3) follows by (1) in the definition. For (4) we observe that

I The algorithm accepts every i with wi ≥ Ti , so

∑
i∈S

(wi − Ti )
+ =

n∑
i=1

(wi − Ti )
+ .

I Weight-adaptive adversaries do not learn wi before choosing to reveal i , so
Ti depends only on the sequence up to element i .

I Hence, the random variables wi , w
′
i , and Ti are independent.

I w and w ′ are identically distributed, so

E

[
n∑

i=1

(wi − Ti )
+

]
= E

[
n∑

i=1

(w ′i − Ti )
+

]
≥ E

 ∑
i∈Br (S)

(w ′i − Ti )
+


and (4) follows.
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Three Inequalities

Finally, to prove (5) we use property (2) from the definition of α-balanced
thresholds with V = Br (S) and calculate:

E

 ∑
i∈Br (S)

w ′i

 ≤ E

 ∑
i∈Br (S)

Ti

+ E

 ∑
i∈Br (S)

(w ′i − Ti )
+


≤
(

1− 1

α

)
· E

 ∑
i∈Br (S)

w ′i

+ E

 ∑
i∈Br (S)

(w ′i − Ti )
+


1

α
· E

 ∑
i∈Br (S)

w ′i

 ≤ E

 ∑
i∈Br (S)

(w ′i − Ti )
+


which proves the proposition.
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Optimal Algorithm for Matroids

Expected-Margin-Thresholds

I In step j , let Sj−1 denote the set of selected elements up to step j .

I Denote the element presented in step j by i = ij .

I If (Sj−1 ∪ i) 6∈ I, set Ti =∞; otherwise set

Ti =
1

2
· E
[
w ′(Br (Sj−1))− w ′(Br (Sj−1 ∪ i))

]
,

where w ′i is sampled independently from Di .

I Select i if wi ≥ Ti ; reject i otherwise.

Theorem (Kleinberg, Weinberg 2012)

Expected-Margin-Thresholds has 2-balanced thresholds and is 2-competitive for
matroid domains.

The prophet-inequality model seems ”easier” than the secretary model. We
obtain improved guarantees in the single-item case (2 vs. e). For matroids (2
vs. O(

√
log k)) the answer depends on the matroid secretary conjecture.
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