
Random discrete structures (MPI, 2014) Lecturers: Kunal Dutta and Arijit Ghosh
Topic: Final exam Date: 04/08/2014
Scribe: Kunal Dutta and Arijit Ghosh Due: 08/08/2014

By random variables or discrete random variables we mean random variables taking either finitely many
values or countably infinite values.

Short problems. Each of the following short problems comprise of five credits.

1. Let X be a random variable.

(a) For all even integer k ≥ 2, show that E
[
Xk
]
≥ E[X]

k
.

(b) If X is a non-negative integer valued random variable then Pr[X > 0] ≤ E[X].

(c) Show that Pr[X = 0] ≤ Var[X]

E[X]2
.

2. Let a coin be such that heads comes up independently with probability p on each flip. What is the
expected number of flips until you get k heads?

3. Suppose cards are being drawn at random with replacement from a deck of n cards.

(a) What is the expected number of cards we must draw until we have seen all n cards?

(b) Suppose we have drawn only 2n times. What is the expected number of different cards chosen
from the deck?

4. Consider the random walk on the integer numbers starting at 0. Let F (n) be the expected number of
steps for this walk to reach either −n or +n. Give exact expression for F (n).

5. For n ≥ 4 and let H = (V,E) be an n-uniform hypergraph.

(a) If |E| ≤ 4n−1, then there exists a coloring of vertices of H such that very edge in H contains
vertices with at least two different colors.

(b) If |E| ≤ 4n−1

3n , then show that there exists a coloring of vertices of H such that very edge in H
contains vertices of all four colors.

6. We saw in class that (X, d)
O(logn)
↪−−−−−→ l

O(log2 n)
1 where n is the number of points in the metric space

(X, d), i.e., #X = n. Using this result and Holder’s inequality show that (X, d)
O(logn)
↪−−−−−→ l

O(log2 n)
p .

Hölder’s inequality: ‖x‖p · ‖y‖q ≥ 〈x, y〉 where 1
p + 1

q = 1.

7. Let F = {S1, . . . , Sm} be a collection of m sets with Si ⊂ [n] = {1, . . . , n}. Given an assignment
χ : [n]→ {1, −1}, the discrepancy of a set S ⊆ [n] is defined as

discχ(S) =|
∑
x∈S

χ(x) | .

Discrepancy of F wrt χ is defined as

discχ(F) = max
Si∈F

discχ(Si).

Using a random assignment χ : [n] → {1, −1} and Chernoff bound show existence of a coloring such
that the discrepancy of F wrt to that coloring is O(

√
n logm).
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8. Let Cn denotes a cycle (graph) with n-vertices, and d(, ) denotes the shortest distance metric between
the vertices of Cn (note that we assume edges in Cn and unit length). Show that Cn can be embedded
in a famility of trees Fn on n-vertices such that

1 ≤ ET←F [dT (x, y)]

d(x, y)
< 2,

where dT (x, y) denotes the shorest distance metric in the tree T .

9. Let p be a prime number, and m, n are positive integers. Given a set of m linear equalities over n
variables modp show that there exists an assignment to the variables that will satisfy at least 1

p of
linear equalities. What happens if p is not a prime?

10. Consider the general setting of the Lovász local lemma, i.e. probability space Ω, and ”bad” events
A1, . . . , Am which we want to forbid. Now let B be another event in the same probability space.
Suppose that B depends on the set of events Γ(B) ⊆ {A1, . . . , Am}. Then prove that,

Pr

[
B |

m∏
i=1

Āi

]
≤ Pr[B]∏

i∈Γ(B)(1− xi)
,

where xi’s are the reals corresponding to the events Ai in the usual statement of the Lovász Local
Lemma.

Long problems. Each of the following long problems comprise of 10 credits.

1. Consider a fair die, i.e., when we roll the die the probability we get i, for i ∈ {1, 2, 3, 4, 5, 6}, is equal
to 1/6. What is the expected number of rolls until the first pair of consecutive sixes appears?

2. Given a graph G = (V ;E) with V = n, a dominating set for G is a subset D ⊆ V such that each vertex
v ∈ V is either in D or has a neighbor in D.

(a) Show that any graph with minimum degree δ has a dominating set of size at most n logn
δ+1 .

(b) Improve the bound for dominating set to n(1+log(δ+1))
δ+1

3. See the definition of discrepancy given above in problem-(7). In that problem we were interested in
upper bounding discrepancy of a family of sets F . In this problem we want to lower bound discrepancy,
i.e., we want to show there exists a family of sets F with n subsets of [n] such that for every coloring
χ : [n]→ {1, −1}, discχ(F) > Ω(

√
n). Complete the proof by proving the following subproblems:

(a) For a fixed χ : [n]→ {1, −1}, pick a subset S ⊆ [n] by including each element in S with probability
1
2 . Show that there exists a constant c > 0 such that

Pr
[
discchi(S) >

√
n/c
]
> 1/2.

(b) Let F consists of n sets picked independently as above. Show that for any fixed assignment
χ : [n]→ {1, −1}, discχ(F) >

√
n/c with probability > 1− 1

2n .

(c) Using union bound over all 2n assignments to show existence of a family F with n sets for which
all assignments χ : [n]→ {1, −1} have discrepancy >

√
n/c.

4. Let F be an infinite family of graphs. Let G ∈ G(n, p), where p = p(n) and G(n, p) denotes the
Erdős-Reńyi random graph model. Suppose F , p are such that the expected number of subgraphs on k
vertices, belonging to the family F , in G is t > 1, t fixed. Prove that there exists a graph on n vertices
which does not contain any subgraph of size k from the family F .
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5. Let G = (V,E) be an undirected graph and suppose each v ∈ V is associated with a set S(v) of 8r
colors, where r ≥ 1. Suppose, in addition that for each v ∈ V and c ∈ S(v) there are at most r
neighbours u of v such that c lies in S(u). Prove that there is a proper coloring of G assigning to each
vertex v a color from its class S(v) such that, for any edge (u, v) ∈ E, the colors assigned to u and v
are different.

[Hint: Consider the family of events Au,v,c, such that u and v are both colored with color c.]

6. Consider the Lollipop graph given below:

u

x1
x2

xn = v

Complete graph

Kn

n vertices

The top part is a complete graph Kn on n vertices, and the lower tail is a path of length n. Compute
tight bounds for the following quantities:

(a) The expected time of the random walk starting at u to arrive at v.

(b) The expected time of the random walk starting at v to arrive at u.

(c) The expected time of the random walk starting at v to visit all the vertices in the graph.

(d) The expected time of the random walk starting at u to visit all the vertices in the graph.

7. Show that for a n point set P ⊂ RD and d = O
(

logn
ε2

)
there exists a linear map f : RD → Rd such

that for all pi, pj , pk ∈ P ,

| (pj − pi)T(pk − pi)− (f(pj)− f(pi))
T(f(pk)− f(pi)) |≤ ε ‖pj − pi‖‖pk − pi‖.

[Hint: See the proof of Johnson-Lindenstrauss lemma covered in class.]

8. Suppose we are given a discrete probability distribution X on [n], i.e., we are given pi ≥ 0 such that
Pr[X = i] = pi and

∑n
i=1 pi = 1. We want to preprocess this distribution in O(n) time such that

given an oracle that uniformly generates random number from the interval [0, 1], we should be able to
sample the distribution X in O(1) time for each query. Assume that we are working in the real RAM
model of computation.

9. We are given n points distributed uniformly at random within the unit square in a plane. Each point
connects to the k-closest points. Let us denote the resulting graph as Γ(n, k). Show that there exists
α such that if k ≥ α log n, then Γ(n, k) is connected with probability at least 1− 1/n.
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10. A random variable X taking on positive integer values is said to be a Poisson random variable with
parameter λ > 0 if

Pr[X = i] = exp (−λ)
λi

i!

for i = 0, 1, 2, . . .

(a) Show that E[X] = λ.

(b) Let X1, . . . , Xn be identically distributed Poisson random variable with parameter λ, and let
X =

∑n
i=1Xi. Show that

i. Show that X is a Poisson random variable with parameter nλ.

ii. Pr[X > (1 + ε)nλ] ≤ exp (−ε2nλ).

4


