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By random variables or discrete random variables we mean random variables taking either finitely many
values or countably infinite values.

1. Show that lnn ≤ Hn ≤ lnn+ 1, where Hn =
∑n
i=1

1
i .

2. (a) For any two event E1 and E2, prove

Pr[E1 ∪ E2] = Pr[E1] + Pr[E2]−Pr[E1 ∩ E2].

(b) Let E1, . . . , En be any events. Then

Pr

[
n⋃
i=1

Ei

]
=

∑
i

Pr[Ei]−
∑
i<j

Pr[Ei ∩ Ej ] +
∑
i<j<k

Pr[Ei ∩ Ej ∩ Ek]− . . .

+(−1)l+1
∑

i1< i2< ···< il

Pr

[
l⋂

r=1

Eir

]
.

(c) Let E1, . . . , En be any events, then

Pr

[
n⋃
i=1

Ei

]
≤
∑
i

Pr[Ei].

3. (Law of total probability) Let E1, . . . , En be mutually disjoint events in the probability space Ω such
that Ω =

⋃n
i=1Ei. Then

Pr[B] =

n∑
i=1

Pr[B ∩ Ei] =

n∑
i=1

Pr[B | Ei]Pr[Ei].

(Hint: Use 2 (b) and the following result Pr[A ∩B] = Pr[A | B]Pr[B])

4. (Bayes’ law) Let E1, . . . , En be mutually disjoint events in the probability space Ω such that Ω =⋃n
i=1Ei. Then

Pr[Ej | B] =
Pr[Ej ∩B]

Pr[B]
=

Pr[B | Ej ]Pr[Ej ]∑n
i=1 Pr[B | Ei]Pr[Ei]

.

5. (a) For any finite collection of discrete random variables X1, . . . , Xn with finite expectations

E

[
n∑
i=1

Xn

]
=

n∑
i=1

E[Xi].

(b) For any constant c and a discrete random variables X, E[cX] = cE[X].

(c) For any random variables X and Y , E[X] = E [exp [X | Y ]].

6. (a) Show that for any convex function f : R → R, and any x1, . . . , xn and λ1, . . . , λn ≥ 0 with∑n
i=1 λi = 1, then

f

(
n∑
i=1

λixi

)
≤

n∑
i=1

λif(xi).
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(b) (Jensen’s inequality) Let X be a random variable that takes only finitely many values, then show
that

f(E[X]) ≤ E[f(X)].

Prove the above result using 6 (a), and don’t assume differentiability of f .

7. If X is a random variable taking only non-negative integer values then,

(a) E[X] =
∑∞
i=1 Pr[X ≥ i].

(b) E[X] ≥ Pr[X > 0].

8. (Binomial random variables) Let X be a binomial random variable with parameters n ∈ 1, 2, . . . and
p ∈ [0, 1], i.e. ∀j ∈ {1, . . . , n}, Pr[X = j] =

(
n
j

)
pj(1− p)n−j . Then show that E[X] = np.

9. (Geometric random variable) A geometric random variable X with parameter p ∈ [0, 1] is defined by
the following probability distribution: ∀n ∈ 1, 2, . . . , . . .

Pr[X = n] = (1− p)n−1p.

Show

(a) E[X] = 1
p .

(b) (Memorylessness property) Pr[X = n+ k | X > k] = Pr[X = n].

10. (Coupon collector’s problem) Suppose each box of cereals contains one of n different coupons indepen-
dently and uniformly at random from the n possible coupons. Let X be the random variable denoting
the number of boxes one needs to buy until they have one coupon of each type. Show that E[X] = nHn.
(Hint: use 5 (a) and 9 (a))

11. (Balancing vectors problem) Let v1, . . . , vn be n vectors in Rn with ‖vi‖ ≤ 1. Let p1, . . . , pn ∈ [0, 1]
and w =

∑n
i=1 pivi. Then there exits exist ε1, . . . , εn ∈ {0, 1} so that,

‖w −
n∑
i=1

εivi‖ ≤
√
n

2
.

(Hint: use expectation)

12. (Independent set) Let G = (V,E) be a graph with n-vertices and nd/2 edges. Show that there exists
an independent set of size ≥ n/2d in G. (Hint: use alterations)

13. (Dominating set) G = (V,E) be a graph with n-vertices and all the vertices have degree ≥ δ. Then

show that there exists a dominating set of size ≤ n(1+ln(δ+1))
δ+1 in G. (Hint: use alterations)
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