By random variables or discrete random variables we mean random variables taking either finitely many values or countably infinite values.

- 1. Show that $\ln n \le H_n \le \ln n + 1$, where $H_n = \sum_{i=1}^n \frac{1}{i}$.
- 2. (a) For any two event E_1 and E_2 , prove

$$\mathbf{Pr}[E_1 \cup E_2] = \mathbf{Pr}[E_1] + \mathbf{Pr}[E_2] - \mathbf{Pr}[E_1 \cap E_2].$$

(b) Let E_1, \ldots, E_n be any events. Then

$$\mathbf{Pr}\left[\bigcup_{i=1}^{n} E_{i}\right] = \sum_{i} \mathbf{Pr}[E_{i}] - \sum_{i < j} \mathbf{Pr}[E_{i} \cap E_{j}] + \sum_{i < j < k} \mathbf{Pr}[E_{i} \cap E_{j} \cap E_{k}] - \dots + (-1)^{l+1} \sum_{i_{1} < i_{2} < \dots < i_{l}} \mathbf{Pr}\left[\bigcap_{r=1}^{l} E_{i_{r}}\right].$$

(c) Let E_1, \ldots, E_n be any events, then

$$\mathbf{Pr}\left[\bigcup_{i=1}^{n} E_i\right] \le \sum_{i} \mathbf{Pr}[E_i].$$

3. (Law of total probability) Let E_1, \ldots, E_n be mutually disjoint events in the probability space Ω such that $\Omega = \bigcup_{i=1}^n E_i$. Then

$$\mathbf{Pr}[B] = \sum_{i=1}^{n} \mathbf{Pr}[B \cap E_i] = \sum_{i=1}^{n} \mathbf{Pr}[B \mid E_i]\mathbf{Pr}[E_i].$$

(Hint: Use 2 (b) and the following result $\mathbf{Pr}[A \cap B] = \mathbf{Pr}[A \mid B]\mathbf{Pr}[B]$)

4. (Bayes' law) Let E_1, \ldots, E_n be mutually disjoint events in the probability space Ω such that $\Omega = \bigcup_{i=1}^{n} E_i$. Then

$$\mathbf{Pr}[E_j \mid B] = \frac{\mathbf{Pr}[E_j \cap B]}{\mathbf{Pr}[B]} = \frac{\mathbf{Pr}[B \mid E_j]\mathbf{Pr}[E_j]}{\sum_{i=1}^{n} \mathbf{Pr}[B \mid E_i]\mathbf{Pr}[E_i]}$$

5. (a) For any finite collection of discrete random variables X_1, \ldots, X_n with finite expectations

$$\mathbb{E}\left[\sum_{i=1}^{n} X_{n}\right] = \sum_{i=1}^{n} \mathbb{E}[X_{i}].$$

- (b) For any constant c and a discrete random variables X, $\mathbb{E}[cX] = c\mathbb{E}[X]$.
- (c) For any random variables X and Y, $\mathbb{E}[X] = \mathbb{E}[\exp[X | Y]].$
- 6. (a) Show that for any convex function $f : \mathbb{R} \to \mathbb{R}$, and any x_1, \ldots, x_n and $\lambda_1, \ldots, \lambda_n \ge 0$ with $\sum_{i=1}^n \lambda_i = 1$, then

$$f\left(\sum_{i=1}^{n}\lambda_{i}x_{i}\right)\leq\sum_{i=1}^{n}\lambda_{i}f(x_{i}).$$

(b) (Jensen's inequality) Let X be a random variable that takes only finitely many values, then show that

$$f(\mathbb{E}[X]) \le \mathbb{E}[f(X)].$$

Prove the above result using 6 (a), and don't assume differentiability of f.

- 7. If X is a random variable taking only non-negative integer values then,
 - (a) $\mathbb{E}[X] = \sum_{i=1}^{\infty} \mathbf{Pr}[X \ge i].$
 - (b) $\mathbb{E}[X] \ge \mathbf{Pr}[X > 0].$
- 8. (Binomial random variables) Let X be a binomial random variable with parameters $n \in 1, 2, ...$ and $p \in [0, 1]$, i.e. $\forall j \in \{1, ..., n\}$, $\mathbf{Pr}[X = j] = {n \choose i} p^j (1-p)^{n-j}$. Then show that $\mathbb{E}[X] = np$.
- 9. (Geometric random variable) A geometric random variable X with parameter $p \in [0, 1]$ is defined by the following probability distribution: $\forall n \in 1, 2, ..., ...$

$$\Pr[X = n] = (1 - p)^{n - 1} p.$$

Show

- (a) $\mathbb{E}[X] = \frac{1}{n}$.
- (b) (Memorylessness property) $\mathbf{Pr}[X = n + k \mid X > k] = \mathbf{Pr}[X = n].$
- 10. (Coupon collector's problem) Suppose each box of cereals contains one of n different coupons independently and uniformly at random from the n possible coupons. Let X be the random variable denoting the number of boxes one needs to buy until they have one coupon of each type. Show that $\mathbb{E}[X] = nH_n$. (Hint: use 5 (a) and 9 (a))
- 11. (Balancing vectors problem) Let v_1, \ldots, v_n be *n* vectors in \mathbb{R}^n with $||v_i|| \leq 1$. Let $p_1, \ldots, p_n \in [0, 1]$ and $w = \sum_{i=1}^n p_i v_i$. Then there exist exist $\epsilon_1, \ldots, \epsilon_n \in \{0, 1\}$ so that,

$$\|w - \sum_{i=1}^{n} \epsilon_i v_i\| \le \frac{\sqrt{n}}{2}.$$

(Hint: use *expectation*)

- 12. (Independent set) Let G = (V, E) be a graph with *n*-vertices and nd/2 edges. Show that there exists an independent set of size $\geq n/2d$ in G. (Hint: use *alterations*)
- 13. (Dominating set) G = (V, E) be a graph with *n*-vertices and all the vertices have degree $\geq \delta$. Then show that there exists a dominating set of size $\leq \frac{n(1+\ln(\delta+1))}{\delta+1}$ in G. (Hint: use *alterations*)