
Random discrete structures (MPI, 2014) Lecturers: Kunal Dutta and Arijit Ghosh
Topic: Tutorial 2 Date: 27/05/2014
Scribe: Kunal Dutta and Arijit Ghosh Deadline: 17/06/2014

By random variables or discrete random variables we mean random variables taking either finitely many
values or countably infinite values.

1. Given a positive integer k, describe a non-negative random variable X such that

Pr[X ≥ kE[X]] =
1

k
.

2. Let X be a non-negative integer-valued random variable such that X ≤ m, and E[X] ≥ 2m1−tδ/2.
Prove that

Pr
[
X ≥ m1−tδ/2

]
≥ m−tδ/2.

3. Let the random variable X be given by X =
∑n
i=1Xi. Show that if E[XiXj ] = E[Xi]E[Xj ] for every

pair of i and j with 1 ≤ i < j ≤ n, then V ar[X] =
∑n
i=1 V ar[Xi].

4. Give an example of a random variable with finite expectation, and unbounded variance.

5. (Probability amplification) Let a and b be chosen independently and randomly from Zn = {0, 1, 2, . . . , n−
1}, where n is a prime. Let f : Zn → {0, 1} be an unknown but fixed function, such that f(x) = 1 for
a random subset W ⊂ Zn, which is called the witness set.

(i) Compute the probability that none of a, b belong to the witness set. How many random bits did
you need to generate a and b? If you select t random numbers a1, . . . , at, such that the probability
that none of the selected numbers lies in the witness set is at most 1/t, how many random bits
do you need (here 0 ≤ t < n)?

(ii) A set of random variables X1, . . . , Xk is said to be pairwise independent if for all i 6= j, for all
x, y ∈ <, we have Pr[Xi = x|Xj = y] = Pr[Xi = x].

Suppose we generate t pseudo-random numbers from Zn by choosing ri = a.i + b mod n, for
1 ≤ i ≤ t. Let |W | = n/2. Show that (a) the ri’s are pairwise independent. (b) The probability
that none of the ri’s belong to the witness set is at most 1/t. How many random bits were needed
using this method?

6. (Chernoff Bounds: Upper Tail) Let X be the sum of n independent indicator random variables, each
equal to 1 with probability p, and zero otherwise. Let µ denote E[X].

(a) Apply the substitution Y = etX . Given δ > 0, express the event X > (1 + δ)µ in terms of Y .

(b) Obtain an upper bound on the expression obtained in (a), by applying Markov’s inequality to Y .

(c) Obtain an upper bound on the moment generating function of X, i.e. E[Y ], in terms of n, t and
p.

(d) Substitute the bound obtained in (c), to the expression obtained in (b).

(e) Differentiate the expression obtained in (e) w.r.t. t and optimize to get the tightest possible upper
bound.

7. (Chernoff Bounds: Lower Tail) Redo the previous exercise, but with the event X < (1− δ)µ, to get an
upper bound on its probability of occurence.

8. Let Gp(n) be the random graph model having vertices V = 1, 2, . . . , n, and each pair of vertices joined
by an edge with probability p = p(n) independently of the others.
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(a) The degree of a vertex v ∈ V is the number of edges incident on v. Compute the expected degree
of a vertex in Gp(n) in terms of n, p.

(b) Let p = n−ε, where ε > 0. Find the maximum degree of the random graph Gp(n), with probability
tending to 1 as n→∞.

9. Suppose we have n jobs to distribute among m processors. [Assume m divides n]. A job requires
one unit of time with probability p, and k > 1 units of time with probability 1 − p. Use Chernoff
bounds, to derive upper and lower bounds on the time required (with high probability) for all jobs to
be completed, if we randomly assign n/m jobs to each processor. (Notice the indicator variables are
not 0− 1 variables here!)
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