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By random variables or discrete random variables we mean random variables taking either finitely many
values or countably infinite values.

1. Given a positive integer k, describe a non-negative random variable X such that

(@1

1
Pr(X > E[X]] = 1.
Let X be a non-negative integer-valued random variable such that X < m, and E[X] > 2m!~t'2,
Prove that

Pr [X > ml—té/ﬂ > m—w/z

Let the random variable X be given by X = "' | X;. Show that if E[X,;X,] = E[X;]E[X}] for every
pair of ¢ and j with 1 < < j <n, then Var[X] =Y, Var[X;].

. Give an example of a random variable with finite expectation, and unbounded variance.

. (Probability amplification) Let a and b be chosen independently and randomly from Z,, = {0,1,2,..

1}, where n is a prime. Let f : Z, — {0,1} be an unknown but fixed function, such that f(z) = for
a random subset W C Z,,, which is called the witness set.

(1)

Compute the probability that none of a, b belong to the witness set. How many random bits did
you need to generate a and b? If you select ¢t random numbers aq, . . ., a¢, such that the probability
that none of the selected numbers lies in the witness set is at most 1/¢, how many random bits
do you need (here 0 < ¢ < n)?

A set of random variables X7, ..., X} is said to be pairwise independent if for all ¢ #£ j, for all
z,y € R, we have Pr(X; = z|X; = y| = Pr[X, = z].

Suppose we generate ¢t pseudo-random numbers from Z, by choosing r; = a.i + b mod n, for
1 <i<t. Let |W|=mn/2. Show that (a) the r;’s are pairwise independent. (b) The probability
that none of the r;’s belong to the witness set is at most 1/t. How many random bits were needed
using this method?

6. (Chernoff Bounds: Upper Tail) Let X be the sum of n independent indicator random variables, each
equal to 1 with probability p, and zero otherwise. Let u denote E[X].

(a)
(b)
(c)

(d)
()

Apply the substitution Y = eX. Given § > 0, express the event X > (1 + 6)u in terms of Y.
Obtain an upper bound on the expression obtained in (a), by applying Markov’s inequality to Y.

Obtain an upper bound on the moment generating function of X, i.e. E[Y], in terms of n,t and
.
Substitute the bound obtained in (¢), to the expression obtained in (b).

Differentiate the expression obtained in (e¢) w.r.t. ¢ and optimize to get the tightest possible upper
bound.

7. (Chernoff Bounds: Lower Tail) Redo the previous exercise, but with the event X < (1 — )y, to get an
upper bound on its probability of occurence.

8. Let G,(n) be the random graph model having vertices V =1,2,...,n, and each pair of vertices joined
by an edge with probability p = p(n) independently of the others.



(a) The degree of a vertex v € V' is the number of edges incident on v. Compute the expected degree
of a vertex in G,(n) in terms of n, p.

(b) Let p=n~¢, where € > 0. Find the maximum degree of the random graph G,(n), with probability
tending to 1 as n — oo.

9. Suppose we have n jobs to distribute among m processors. [Assume m divides n]. A job requires
one unit of time with probability p, and & > 1 units of time with probability 1 — p. Use Chernoff
bounds, to derive upper and lower bounds on the time required (with high probability) for all jobs to
be completed, if we randomly assign n/m jobs to each processor. (Notice the indicator variables are
not 0 — 1 variables here!)



