By random variables or discrete random variables we mean random variables taking either finitely many values or countably infinite values.

1. Given a positive integer k, describe a non-negative random variable X such that

$$\mathbf{Pr}[X \ge k\mathbb{E}[X]] = \frac{1}{k}.$$

2. Let X be a non-negative integer-valued random variable such that $X \leq m$, and $\mathbb{E}[X] \geq 2m^{1-t\delta/2}$. Prove that

$$\mathbf{Pr}\Big[X \ge m^{1-t\delta/2}\Big] \ge m^{-t\delta/2}.$$

- 3. Let the random variable X be given by $X = \sum_{i=1}^{n} X_i$. Show that if $\mathbb{E}[X_i X_j] = \mathbb{E}[X_i]\mathbb{E}[X_j]$ for every pair of i and j with $1 \le i < j \le n$, then $Var[X] = \sum_{i=1}^{n} Var[X_i]$.
- 4. Give an example of a random variable with finite expectation, and unbounded variance.
- 5. (Probability amplification) Let a and b be chosen independently and randomly from $\mathbb{Z}_n = \{0, 1, 2, \ldots, n-1\}$, where n is a prime. Let $f : \mathbb{Z}_n \to \{0, 1\}$ be an unknown but fixed function, such that f(x) = 1 for a random subset $W \subset \mathbb{Z}_n$, which is called the *witness set*.
 - (i) Compute the probability that none of a, b belong to the witness set. How many random bits did you need to generate a and b? If you select t random numbers a_1, \ldots, a_t , such that the probability that none of the selected numbers lies in the witness set is at most 1/t, how many random bits do you need (here $0 \le t < n$)?
 - (ii) A set of random variables X₁,..., X_k is said to be *pairwise independent* if for all i ≠ j, for all x, y ∈ ℜ, we have Pr[X_i = x|X_j = y] = Pr[X_i = x].
 Suppose we generate t pseudo-random numbers from Z_n by choosing r_i = a.i + b mod n, for 1 ≤ i ≤ t. Let |W| = n/2. Show that (a) the r_i's are pairwise independent. (b) The probability that none of the r_i's belong to the witness set is at most 1/t. How many random bits were needed using this method?
- 6. (Chernoff Bounds: Upper Tail) Let X be the sum of n independent indicator random variables, each equal to 1 with probability p, and zero otherwise. Let μ denote $\mathbb{E}[X]$.
 - (a) Apply the substitution $Y = e^{tX}$. Given $\delta > 0$, express the event $X > (1 + \delta)\mu$ in terms of Y.
 - (b) Obtain an upper bound on the expression obtained in (a), by applying Markov's inequality to Y.
 - (c) Obtain an upper bound on the moment generating function of X, i.e. $\mathbb{E}[Y]$, in terms of n, t and p.
 - (d) Substitute the bound obtained in (c), to the expression obtained in (b).
 - (e) Differentiate the expression obtained in (e) w.r.t. t and optimize to get the tightest possible upper bound.
- 7. (Chernoff Bounds: Lower Tail) Redo the previous exercise, but with the event $X < (1 \delta)\mu$, to get an upper bound on its probability of occurrence.
- 8. Let $\mathcal{G}_p(n)$ be the random graph model having vertices $V = 1, 2, \ldots, n$, and each pair of vertices joined by an edge with probability p = p(n) independently of the others.

- (a) The degree of a vertex $v \in V$ is the number of edges incident on v. Compute the expected degree of a vertex in $\mathcal{G}_p(n)$ in terms of n, p.
- (b) Let $p = n^{-\epsilon}$, where $\epsilon > 0$. Find the maximum degree of the random graph $\mathcal{G}_p(n)$, with probability tending to 1 as $n \to \infty$.
- 9. Suppose we have n jobs to distribute among m processors. [Assume m divides n]. A job requires one unit of time with probability p, and k > 1 units of time with probability 1 p. Use Chernoff bounds, to derive upper and lower bounds on the time required (with high probability) for all jobs to be completed, if we randomly assign n/m jobs to each processor. (Notice the indicator variables are not 0 1 variables here!)