
Optimal Homology Basis for Arbitrary Complexes – summary

After a short  introduction some background information was given about simplicial  complexes,

because we had not seen them so far. The first part was the definition of a k-dimensional simplex.

Formally  the  simplex  is  defined  as  the  convex  hull  of  k+1  affinely  independent  points. For

dimension 0 this is just a point, or vertex. A simplex of dimension 1 would be a line segment with

two end points, also called edge. For k=2 one would get a triangle and in the third dimension it's a

tetrahedron, consisting of four triangular faces.

This now leads to the definition of a simplicial complex. It is a finite collection of simplices K such

that the faces of the simplices are also in K and that an intersection of two simplices is always a face

of both simplices. A face is in this context a component of smaller dimension, e.g. the two points of

an edge. Therefore a triangle with an edge attached to one of its vertices is a valid complex, whereas

two triangles partially sharing an edge yet with each triangle having different end points for that

edge do not form a valid simplicial complex. One important note is that three edges forming a

triangle with nothing to fill it is not the same as a 2-dimensional triangular simplex. Finally, to make

working with complexes easier the next definition introduces abstract simplicial complexes. Here

the last condition about intersections is left out and one can thereby construct more complexes and

does not have to worry about an embedding into the Euclidean space.

To finish the background part  there are  some notations and remarks  left.  Firstly,  if  an abstract

simplicial  complex  has  dimension 1,  it  resembles  a  graph.  Furthermore,  if  the  complex is  not

abstract, the graph is embedded on a surface. The representation of a simplicial complex is a set of

all  its  faces  and their  faces  recursively –  e.g.  a  triangle  {{1},{2},{3}},  consisting  of  its  three

vertices, labeled from 1 to 3. The dimension of a face is defined as dim(σ)=card(σ) -1 and lastly, the

vertex set Vert(K) consists of all faces of dimension 0 in K.

With the basics done the next part will now deal with ℤ2-Homology. For that some more definitions

are needed, the first being the definition for a d-chain.  A d-chain is a linear combination of d-

simplices of a simplicial complex K, therefore it is a subset of all d-simplices in K. Cd(K) is the set

of all d-chains in K. Every two appearances of a simplex in the chain cancel each other out, such

that at the end every simplex appears at most once in the chain. With this knowledge we can now

define how the boundary operator works. The operator is denoted by  ∂d and it maps a d-chain

c ∈ Cd(K) to the (d-1)-chain c' ∈ Cd-1(K) that consists of all the faces of dimension d-1 of c. E.g. a

triangle would be mapped to its three edges and two edges connected by a shared vertex would be

mapped to the two points that are not shared, since the shared point would appear twice and thus

cancel out in the resulting set. If applying  ∂d to some c yields the empty set, c is called a cycle.



Hence the set of all cycles Zd(K) is the kernel of ∂d. Logically the results of the boundary operator

are called boundaries and the set of all boundaries Bd(K) is also the image of the  ∂d+1 operator.

Applying ∂ twice always yields the empty set 0. From that one can conclude that Bd(K)   ⊂ Zd(K)

holds, so every boundary is also a cycle.

With this  property one  can define  the homology group Hd(K) :=  Zd(K)\Bd(K).  It  is  the  set  of

homology classes of dimension d and if two cycles belong to the same homology class, they are

homologous. After that comes the definition of the distance d(p,q) between two points p and q in a

simplex,  given  as  the  shortest  path  from p  to  q.  For  this  we  assume  that  every  edge  has  a

nonnegative weight. Furthermore, the distance from p to a simplex σ is given as the maximum of

the distances from p to one of the vertices of Vert(σ). Finally one can define the geodesic ball Bp
r of

radius r around the vertex p, that is to say a set with every simplex that has distance r or smaller

from p. Now, to measure a homology class h  ∈Hd(K), its size S(h) will be defined as the minimal

radius r such that one can find a vertex p in K and a cycle z  h with z being a subset of the geodesic∈

ball Bp
r. If βd is the dimension of Hd(K), then the size of the basis h1,...,hβd  for the homology group

is the sum S(h1)+...+S(hβd).  βd is called the Betti number. Note that the geodesic ball is just an

approximation that is not guaranteed to be close to the actual size, since a cycle inside the ball could

still wiggle a lot and thus be greater than the ball.

With all the definitions done one can now move on to the actual algorithm to compute the optimal

homology basis for a simplicial complex. The algorithm takes K as input and uses it to initialize K1,

while initializing the set for the basis B with the empty set. Then it computes βd times the smallest

homology class hℓ in Kℓ and adds it to B, with ℓ increasing from 1 to βd with every step and Kℓ+1 :=

Kℓ with hℓ sealed. Sealing works as follows: Attach a new object to the complex such that it fills the

hole of hℓ. By doing this the homology class becomes trivial. The newly added cell gets weight ∞ to

prevent interference with the size function.

The next step is to explain how the smallest homology class of Kℓ can be computed. One has to fix

a vertex p and consider all geodesic balls with growing radius centering at p. While adding new

objects to K we create new cycles. If a cycle is created we say it is born and if it disappears by

sealing it we say it dies. Persistent cycles are those which never die. The youngest essential cycle is

the one that is still alive and was created before all other living cycles. It is the candidate for the

next  non-trivial  homology class.  These  operations  take  time  O(n4),  where  n  is  the  number  of

simplices and the output will be the vertex p and the radius for the geodesic ball. Since this step is



repeated βd times, the overall running time is O(βdn4).

One can improve this running time by not recomputing everything when moving over the different

vertices and by using the property that the birth time of the first non-bounding cycle for neighboring

vertices differs by at most 1, assuming that every edge has weight 1. For our search we use breadth-

first search, creating a spanning tree and for that we also assume that the complex is connected. It is

important to determine whether a subcomplex carries any non-trivial homology of K. Therefore

another lemma is needed. For any matrix A=[A1 A2] the equation dim({Aγ|A2γ = 0}) = rank(A) –

rank(A2) holds, where the matrices represent the set of boundaries of K intersected with the set of

cycles of K that are carried by the subcomplex and the set of cycles of K intersected with the set of

cycles of K that are carried by the subcomplex. If the ranks are different, the subcomplex carries a

non-trivial homology of K.

Lastly, if βd and d have at most size O(log n), we get an overall running time of O(βdn³ log² n) with

the rank computation. If they are larger one would use the algorithm without improvement, running

in time O(βdn4). That concludes the construction of the algorithm with an optimal running time of

O(βdn³ log² n).


