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1 Problem statement

Let X be a topological space (here, think of X as R2 or some polygon endowed with the relative topology
of R2 on the polygon). Then a continuous map p : [0, 1] → X is called a path, p(0) and p(1) are the
endpoints of p (specifically, x0 is the start point of p). Given to paths p1, p2 with the same endpoints
x0 and x1, a continuous mapping H : [0, 1]× [0, 1]→ X is called a path-homotopy between p1 and p2 if
H(t, 0) = x0, H(t, 1) = x1 for all t ∈ [0, 1] and H(0, ·) = p1 and H(1, ·) = p2 Two paths p1, p2 are said
to be homotopic if there is a path-homotopy between them, written p1 ∼ p2. The relation ∼ forms an
equivalence relation on the set of all paths in X.

A polygon is a closed subset of R2 that is bounded by a polygonal chain, i.e. a finite sequence of line
segments forming a loop. A polygon with holes is a polygon P from which the union of the interiors of a
finite number of polygons contained in P was removed. Every polygon is understood to be a polygon with
holes.

Given some polygon of complexity n and a path π consisting of k line segments, the problem is now to
find a shortest path that is homotopic to π.

2 The Algorithm

As stated, the input is a polygon P , say of complexity n, with holes and a path π, with starting point s
and endpoint t. The described algorithm was given by Hershberger and Snoeyink [1].

2.1 High-level description

On a high level, the algorithm proceeds in five stages:

1. Triangulate P and obtain a triangulation ∆ of P . While doing so, assign to each diagonal δ ∈ ∆
uniquely some label `(δ)

2. Record the sequence S in which π passes through the diagonals of ∆

3. Reduce the crossing sequence S to the reduced sequence Ŝ as follows: While there is some consecutive
occurrence of the same label, i.e., S has `(δ)`(δ) as a substring for some δ ∈ ∆, remove this substring
from S.

4. Construct a sleeve Σ from Ŝ as follows: Start with the triangle containing the start point of π
and add it to Σ. Then, following the reduced sequence Ŝ, glue copies of the triangles together at
the diagonals corresponding to the diagonals in Ŝ. It is important to use a new copy everytime one
encounters a triangle, such that the resulting set is a topological disk (but not necessarily a polygon
anymore)
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5. Compute a shortest path in the sleeve between the endpoints of π, which is then the desired
shortest path homotopic to π.

As for step 3, consider the string AABBABABBACDDCA. The corresponding reduced sequence is given through
ABA. Write u ∼R v if two strings u and v have the same reduced sequence, and similarly, p1 ∼R p2 if two
paths have the same reduced sequence. One can show that u ∼R v forms an equivalence relation on the
set of words.1 Two paths in P are homotopic if and only if they have the same reduced sequence, that is,
when Π denotes the set of paths in P , then Π/ ∼ = Π/ ∼R.

Steps 1 and 5 are non-trivial. Triangulating can be done with standard text book algorithms. We elaborate
on step 5 in the following subsection.

2.2 Shortest paths in sleeves using funnels

In step 5 of the algorithm, we need to compute the shortest path between the endpoints of the sleeve. We
do so using the notion of a funnel, as introduced by Lee and Preparata [2]. It is most convenient to define
this structure by how it is computed.

2.2.1 Preprocessing

Given the sleeve Σ, we construct a funnel as follows: First, we remove all diagonals δ from ∆ such that s
and t lie on the same side of δ. Number the remaining diagonals δ1, . . . , δk in the order they appear in the
sleeve. Write di and di for start and end point of diagonal δi, respectively. A path from s to t will cross
the diagonals in this order.

Also, by appropriately pruning the sleeve, we may assume that s and t are the end points of some diagonals.

2.2.2 The structure of the funnel

The funnel consists of three components: The point s is followed by a path (more precisely, the already
constructed portion of the shortest path) of points, that at some point, called the cusp, splits up in
two funnel walls (left and right, from the perspective of s), which are concave (from the perspective of
Σ) polygonal chains, that is, they ”turn left” and ”turn right”, respectively. The walls (which will be
implemented using a double-ended queue) represent the shortest paths from the current cusp to the end of
the respective funnel wall.

This relies on the following observation: For some diagonal δi, consider the shortest paths πi and πi from
s to di and di in Σ, respectively. Then, πi and πi may have some segment, starting from s, in common,
until at some point (i.e., the cusp), they split up and follow different, disjoint paths in Σ. These paths
need to be concave, as otherwise, making them concave by dropping some vertices will only shorten the
path, which is a contradiction to minimality.

2.2.3 Construction of the funnel

Initially, the path is empty, the cusp equals s and the left and right funnel walls contain the respective end
points of δ1. Now, the diagonals δ1, . . . , δk are processed in this order. When some diagonal δj is added,
one of dj , d

j has already been added to one of the funnel walls, and the point p currently processed is

1Even more, if forms a congruence relation, i.e. it is compatible with concatenation
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added to the respective opposite one. Now we want to retain the property that the funnel wall w (where
w is left or right) containing p is the shortest path to p.

Observe how each point u in the funnel defines a wedge by extending the two edges incident with u in w
in the direction of the funnel. Now, starting with the last point of w, we pop points from the funnel until
the wedge defined by the point a to be popped next contains p . Then, p is pushed onto the funnel. If,
during the process of popping, the cusp c is popped, the new cusp c is given by a (this means that the
shortest path to p leads over the other funnel wall). After processing the last diagonal, the funnel will
contain a shortest path to t, as desired.

2.3 Runtime analysis

Step 1 can be done in time O(n log n) (or even in randomized time O(n log∗ n) using Seidel’s algorithm).
Step 2 is trivially done in time O(x), where x is the length of the crossing sequence (which is a measure of
the length of π). Step 3 can be done using a single stack: Process the symbols of S in turn. For each
symbol s in S, if the top of the stack is distinct from s, push s onto the stack. If s equals the top of the
stack, pop the top of the stack and throw away s. This gives the reduced sequence in time O(x). Step
4 can also be implemented in time O(x), for it takes time O(1) for each of the x triangles to glue it to
the already constructed part of the sleeve in an appropriate way. Computing the funnel in step 5 takes
time O(x), as each vertex in the sleeve is checked for updating the funnel only once, and there are x of
these. This leads to time O(x), because updating the funnel for each vertex takes amortized time O(1).
For, although in each step, there might be O(x) vertices popped, in total, every vertex may be popped
only once, giving O(x) time for the funnel computation.

In total, this gives a running time of O(n log n+ x).

3 Extensions

One might consider different measures for the path length. One such measure is the so-called link-metric,
where the length of a path is not its euclidean length, but instead given by the number of line segments it
contains. That is, the problem changes to computing a path homotopic to a given one that uses as few
line segments as possible. One can show, however, that this is reducible to the case of euclidean shortest
paths, by computing euclidean shortest paths and then, using a greedy method, minimizing the number of
link segments in this path. This is elaborated in section 4 in the article by Hershberger and Snoeyink [1].
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